Research Article

Paul Ressel*

Functions operating on several multivariate distribution functions

https://doi.org/10.1515/demo-2023-0104
received June 28, 2023; accepted September 22, 2023

Abstract

Functions f on $[0,1]^{m}$ such that every composition $f \circ\left(g_{1}, \ldots, g_{m}\right)$ with d-dimensional distribution functions g_{1}, \ldots, g_{m} is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for $d=2$ means ultramodularity. For $m=1$ (and $d=2$), this is equivalent with increasing convexity.

Keywords: multivariate distribution function, ultramodular, Bernstein polynomials, Faà di Bruno's formula, higher order, monotonicity

MSC 2020: 26E05, 26B40, 60E05

1 Introduction

Which functions of distribution functions ("d.f.s") are again d.f.s? - this is a very general question, with an obvious answer only in dimension one. If g_{1} and g_{2} are both univariate d.f.s, and $f:[0,1]^{2} \rightarrow \mathbb{R}_{+}$is just increasing (i.e., $f(x) \leq f(y)$ for $x \leq y$), then $\left[f \circ\left(g_{1}, g_{2}\right)\right](t):=f\left(g_{1}(t), g_{2}(t)\right.$) is again a d.f. (disregarding right continuity), but $\left[f \circ\left(g_{1} \times g_{2}\right)\right](x):=f\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)$ need not be a bivariate d.f., as the example $f:=1_{\left\{(s, t) \in[0,1]^{2} \mid s \leq t\right\}}$ and $g_{1}(t)=g_{2}(t):=(t \vee 0) \wedge 1$ shows. In this situation, f itself has to be a two-dimensional d.f. in order to guarantee that $f \circ\left(g_{1} \times g_{2}\right)$ is also of this type.

We see already that we are confronted with two related but different questions. The first one: given m multivariate d.f.s g_{1}, \ldots, g_{m} of (possibly different) dimensions n_{1}, \ldots, n_{m}, and $f:[0,1]^{m} \rightarrow \mathbb{R}_{+}$, under which general conditions at f is then $f \circ\left(g_{1} \times \cdots \times g_{m}\right)$ again a d.f.? And the second question: if $n_{1}=\cdots=n_{m}=d$, what are necessary and sufficient conditions for f, such that $f \circ\left(g_{1}, \ldots, g_{m}\right)$ is another d-variate d.f.?

The first question was solved some years ago: f has to be " $\mathbf{n}-\uparrow$ " with $\mathbf{n}:=\left(n_{1}, \ldots, n_{m}\right)$, a notion to be explained shortly (see [12, Theorem 12]). The second question was posed already in [5] and will be answered in this article. It turns out that the function f then has to fulfill a very natural condition, known for $d=2$ as being an "ultramodular aggregation function."

An important role in the proof of the main result will be played by a multivariate generalization of the famous Faà di Bruno formula. In order to apply it, we have to use C^{∞} approximations, in particular multivariate Bernstein polynomials.

Notations:

$\mathbb{R}_{+}=\left[0, \infty\left[, \mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\{0,1,2, \ldots\}\right.\right.$,
$|\mathbf{n}|=\sum_{i=1}^{d} n_{i}$ for $\mathbf{n} \in \mathbb{N}_{0}^{d}, \mathbf{r}_{d}:=(r, r, \ldots, r) \in \mathbb{N}_{0}^{d}$ for $r \in \mathbb{N}_{0}($ mostly for $r \in\{0,1\}),[d]:=\{1,2, \ldots, d\}$,

$$
\mathbf{1}_{\alpha}(i):=\left\{\begin{array}{l}
1, i \in \alpha \\
0, i \in \alpha^{\mathrm{C}}
\end{array} \quad \text { for } \alpha \subseteq[d], x_{\alpha}:=\left(x_{i}\right)_{i \in \alpha}\right.
$$

[^0]$(f \times g)(x, y):=(f(x), g(y))$ for mappings f, g,
$(f, g)(x):=(f(x), g(x))$ for mappings with the same domain,
$(f \otimes g)(x, y):=f(x) \cdot g(y)$ for real-valued f, g,
e_{1}, \ldots, e_{d} are the usual unit vectors in \mathbb{R}^{d},
d.f. means distribution function.

2 Some notions of multivariate monotonicity

Let $I_{1}, \ldots, I_{d} \subseteq \mathbb{R}$ be non-degenerate intervals, $I:=I_{1} \times \cdots \times I_{d}$, and let $f: I \rightarrow \mathbb{R}$ be any function. For $s \in I$ and $h \in \mathbb{R}_{+}^{d}$ such that also $s+h \in I$, put

$$
\left(E_{h} f\right)(s):=f(s+h)
$$

and $\Delta_{h}:=E_{h}-E_{0}$, i.e., $\left(\Delta_{h} f\right)(s):=f(s+h)-f(s)$. Since $\left\{E_{h} \mid h \in \mathbb{R}_{+}^{d}\right\}$ is commutative (where defined), so is also $\left\{\Delta_{h} \mid h \in \mathbb{R}_{+}^{d}\right\}$. In particular, with e_{1}, \ldots, e_{d} denoting standard unit vectors in $\mathbb{R}^{d}, \Delta_{h_{1} e_{1}, \ldots,}, \Delta_{h_{d} e_{d}}$ commute. As usual, $\Delta_{h}^{0} f:=f$ (also for $h=0$, but clearly $\Delta_{0} f=0$). For $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ and $h=\left(h_{1}, \ldots, h_{d}\right) \in \mathbb{R}_{+}^{d}$ we put

$$
\Delta_{h}^{\mathrm{n}}:=\Delta_{h_{1} e_{1}}^{n_{1}} \Delta_{h_{2} e_{2}}^{n_{2}} \ldots \Delta_{h_{d} e_{d}}^{n_{d}},
$$

so that $\left(\Delta_{h}^{\mathrm{n}} f\right)(s)$ is defined for $s, s+\sum_{i=1}^{d} n_{i} h_{i} e_{i} \in I$.

Definition. $f: I \rightarrow \mathbb{R}$ is $\mathbf{n}-\uparrow\left(\right.$ read "n-increasing") iff $\left(\Delta_{h}^{\mathrm{p}} f\right)(s) \geq 0 \forall s \in I, \forall h \in \mathbb{R}_{+}^{d}, \forall \mathbf{p} \in \mathbb{N}_{0}^{d}$ and $0 \neq \mathbf{p} \leq \mathbf{n}$, such that $s_{j}+p_{j} h_{j} \in I_{j} \forall j \in[d]$.

A specially important case is $\mathbf{n}=\mathbf{1}_{d}$; being $\mathbf{1}_{d}-\uparrow$ is the "crucial" property of d.f.s. More precisely, $f: I \rightarrow \mathbb{R}_{+}$ is the d.f. of a (non-negative) measure μ, i.e., $f(s)=\mu([-\infty, s] \cap \bar{I}) \forall s \in I$, if and only if f is $\mathbf{1}_{d^{-}} \uparrow$ and rightcontinuous; c.f. [10, Theorem 7].

Let us for a moment consider the case $d=1$. Then, $I \subseteq \mathbb{R}, \mathbf{n}=n \in \mathbb{N}$, we assume $n \geq 2$, and a famous old result of Boas and Widder [1, Lemma 1] shows that a continuous function $f: I \rightarrow \mathbb{R}$ is n - \uparrow (i.e., $\left.\Delta_{h}^{j} f \geq 0 \quad \forall j \in[n], \quad \forall h>0\right)$ iff

$$
\left(\Delta_{h_{1}} \Delta_{h_{2}} \ldots \Delta_{h_{j}} f\right)(s) \geq 0
$$

$\forall j \in[n], \forall h_{1}, \ldots, h_{j}>0$ such that $s, s+h_{1}+\cdots+h_{j} \in I$. For $n=2, f$ is $2-\uparrow$ iff it is increasing and convex (and automatically continuous on $I \backslash\{\sup I\}$).

The following definition now seems to be natural:

Definition. Let $I_{1}, \ldots, I_{d} \subseteq \mathbb{R}$ be non-degenerate intervals, $I=I_{1} \times \cdots \times I_{d}, f: I \rightarrow \mathbb{R}$, and $k \in \mathbb{N}$. Then, f is called k-increasing (" $k-\uparrow$ ") iff $\forall j \in[k], \forall h^{(1)}, \ldots, h^{(j)} \in \mathbb{R}_{+}^{d}, \forall s \in I$ such that $s+h^{(1)}+\cdots+h^{(j)} \in I$

$$
\left(\Delta_{h^{(1)}} \ldots \Delta_{h^{())}} f\right)(s) \geq 0 .
$$

(We do not assume f to be continuous.)

We mentioned already that a univariate f is $2-\uparrow$ iff it is increasing and convex. But also multivariate $2-\uparrow$ functions are well known: they are called ultramodular, mostly ultramodular aggregation functions, the latter meaning they are also increasing, and defined as functions $f:[0,1]^{d} \rightarrow[0,1]$ with $f\left(\mathbf{0}_{d}\right)=0$ and $f\left(\mathbf{1}_{d}\right)=1$. The restriction to the standard unit cube $[0,1]^{d}$ is not one of course, but sometimes appropriate as we will see. In our terminology, if f is $k-\uparrow$, it is by definition also j - \uparrow for $1 \leq j \leq k$, in particular just increasing.

In this connection, also increasing supermodular functions should be mentioned: in the bivariate case, they coincide with $(1,1)-\uparrow$ functions, and in higher dimensions, they are "pairwise $(1,1)-\uparrow$ " in the obvious meaning; cf. [6].

Already in dimension two increasing convexity and being $2-\uparrow$ are uncomparable properties: on \mathbb{R}_{+}^{2} the product is $2-\uparrow$, but not convex; and the Euclidean norm is convex, however not $2-\uparrow$.

Remark 1. Already in 2005, Bronevich [2] introduced k - \uparrow functions, calling them " k-monotone." Later on, the name "strongly k-monotone" was used [5,8], a terminology usually associated with strict inequalities, therefore not really adequate.

Some simple properties of $k-\uparrow$ functions are shown first.
Lemma 1. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be $2-\uparrow$. Then,
(i) f is continuous iff f is continuous in $\mathbf{1}_{d}$.
(ii) f is right-continuous and on $\left[0,1\left[{ }^{d}\right.\right.$ continuous.
(iii) If $f\left(x^{0}\right)=f\left(\mathbf{1}_{d}\right)$ for some $x^{0} \neq \mathbf{1}_{d}$, hence $a:=\left\{i \leq d \mid x_{i}^{0}=1\right\} \subsetneq[d]$, then for $\alpha \neq \varnothing f$ depends only on $x_{\alpha}:=\left(x_{i}\right)_{i \in \alpha}$. In case, $\alpha=\varnothing f$ is constant.
(iv) For each $y \in[0,1]^{d} \backslash\left[0,1\left[{ }^{d}\right.\right.$, the limit

$$
f_{0}(y):=\lim _{\substack{x \rightarrow y \\ x<y}} f(x)
$$

exists, $f_{0}(y) \leq f(y), f_{0}$ is a $2-\uparrow$ and continuous extension of $f \mid\left[0,1\left[{ }^{d}\right.\right.$. If f is $k-\uparrow$, so is f_{0}.
Proof. (i) For $x, h \in[0,1]^{d}$ such that also $x \pm h \in[0,1]^{d}$, we have (with $1:=\mathbf{1}_{d}$)

$$
\begin{equation*}
0 \leq f(x)-f(x-h) \leq f(x+h)-f(x) \leq f(1)-f(1-h) \tag{*}
\end{equation*}
$$

from which the claim follows, f being increasing.
(ii) For any $x \in\left[0,1\left[{ }^{d}\right.\right.$, the univariate function $[0,1] \ni t \mapsto f(t x)$ is convex, hence continuous, also in $t=1$ (being defined and convex in a neighborhood of 1). Since f is increasing, f is continuous in x. For $x \in[0,1]^{d} \backslash\left[0,1\left[{ }^{d}, x \neq \mathbf{1}_{d}\right.\right.$, let $\alpha:=\left\{i \leq d \mid x_{i}=1\right\}$. Then, for $y \geq x$, also $y_{i}=1 \forall i \in \alpha$, and $\left[0,1\left[{ }^{a^{\mathrm{c}}} \ni z \mapsto f\left(\mathbf{1}_{\alpha}, z\right)\right.\right.$ is continuous, in particular in the point $x_{a^{\mathrm{c}}}$, implying f to be right-continuous in $x=\left(\mathbf{1}_{\alpha}, x_{a^{\mathrm{c}}}\right)$.
(iii) If $\alpha=\varnothing$, then $x^{0}=1-h^{0}$ for some $\left.\left.h^{0} \in\right] 0,1\right]^{d}, f(\mathbf{1})=f(\mathbf{1}-h) \forall 0 \leq h \leq h^{0}$, and f is constant by (*). For $\alpha \neq \varnothing$, we define $g:[0,1]^{a^{c}} \rightarrow \mathbb{R}_{+}$by $g(z):=f\left(\mathbf{1}_{a}, z\right)$. Also, g is 2-个, and

$$
g\left(\left(x^{0}\right)_{a^{c}}\right)=f\left(x^{0}\right)=f\left(\mathbf{1}_{d}\right)=g\left(\mathbf{1}_{a^{c}}\right)
$$

hence g is constant. But then, $\forall y \in[0,1]^{\alpha}$

$$
0 \leq f\left(y, \mathbf{1}_{a^{c}}\right)-f\left(y, \mathbf{0}_{a^{c}}\right) \leq f\left(\mathbf{1}_{a}, \mathbf{1}_{a^{c}}\right)-f\left(\mathbf{1}_{a}, \mathbf{0}_{a^{c}}\right)=g\left(\mathbf{1}_{a^{c}}\right)-g\left(\mathbf{0}_{a^{c}}\right)=0
$$

showing $f(y, z)$ to be independent of z.
(iv) The existence of $f_{0}(y)$ is clear, f being increasing and bounded. The defining inequalities for f being $k-\uparrow$ prevail for f_{0}, for any $k \geq 2$. Since f_{0} is continuous in 1 , it is everywhere continuous.

Our first theorem will state some equivalent conditions for f to be $k-\uparrow$. An essential ingredient will be positive linear (or affine) mappings: a linear function $\psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is called positive iff $\psi\left(\mathbb{R}_{+}^{m}\right) \subseteq \mathbb{R}_{+}^{d}$; and an affine $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ is positive iff its "linear part" $\varphi-\varphi(0)$ is.

Theorem 1. Let $I \subseteq \mathbb{R}^{d}$ be a non-degenerate interval, $f: I \rightarrow \mathbb{R}, k, d \in \mathbb{N}$. Then, there are equivalent:
(i) f is $k-\uparrow$,
(ii) f is $\mathbf{n}-\uparrow \quad \forall \mathbf{n} \in \mathbb{N}_{0}^{d}$ with $0<|\mathbf{n}| \leq k$,
(iii) $\forall m \in \mathbb{N}, \forall$ non-degenerate interval $J \subseteq \mathbb{R}^{m}, \forall$ positive affine $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is $k-\uparrow$,
(iv) $\forall m, J, \varphi$ as before, and $\forall \mathbf{n} \in \mathbb{N}_{0}^{m}$ with $0<|\mathbf{n}| \leq k$ the function $f \circ \varphi$ is $\mathbf{n}-\uparrow$,
(v) $\forall m, J, \varphi$ as before, and $\forall \mathbf{n} \in\{0,1\}^{m}$ with $0<|\mathbf{n}| \leq k$ the function $f \circ \varphi$ is $\mathbf{n}-\uparrow$.

Remark 2. For $k \geq d \geq 2$ and $f \geq 0$, the aforementioned function f is not only right-continuous (Lemma 1(ii)), but also $\mathbf{1}_{d-\uparrow}$, hence a d.f. on I; however, with the extra property that $f \circ \varphi$ is a d.f., too, for any positive affine $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$. In other words, if $f(x)=P(X \leq x)$ for some d-dimensional random vector X, and $k \geq m$, then also $y \mapsto P(X \leq \varphi(y))$ is an m-dimensional d.f.

Proof. We show (i) \Leftrightarrow (ii) and (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (i).
(i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (i): We use induction on $k, k=1$ being obvious. Let now $k \geq 2$ and suppose the case $k-1$ is already known. Fix some $h \in \mathbb{R}_{+}^{d}$ and consider $g:=\Delta_{h} f$, i.e., $g(s)=f(s+h)-f(s)$. With

$$
\begin{aligned}
& g_{1}(s):=f\left(s+h_{1} e_{1}\right)-f(s) \\
& g_{2}(s):=f\left(s+h_{1} e_{1}+h_{2} e_{2}\right)-f\left(s+h_{1} e_{1}\right)
\end{aligned}
$$

we have $g=g_{1}+g_{2}+\cdots+g_{d}$. Each g_{i} is $\mathbf{n}-\uparrow$ for any $\mathbf{n} \in \mathbb{N}_{0}^{d}$ with $|\mathbf{n}| \leq k-1$; hence, $(k-1)$ - \uparrow by assumption, and so is then g. Since $h \in \mathbb{R}_{+}^{d}$ was arbitrary, f is $k-\uparrow$.
(i) \Rightarrow (iii): Let $j \in[k], h^{(1)}, \ldots, h^{(j)} \in \mathbb{R}_{+}^{m}, x \in J$ such that also $x+\sum_{i=1}^{j} h^{(i)} \in J$. Then, with $\psi:=\varphi-\varphi(0)$,

$$
\begin{aligned}
{\left[\Delta_{h^{(1)}} \ldots \Delta_{h}(j)(f \circ \varphi)\right](x) } & =f \circ \varphi\left(x+h^{(1)}+\cdots+h^{(j)}\right) \mp \cdots+(-1)^{j} f \circ \varphi(x) \\
& =f\left(\varphi(0)+\psi\left(x+h^{(1)}+\cdots+h^{(j)}\right)\right) \mp \cdots+(-1)^{j} f(\varphi(0)+\psi(x)) \\
& =f\left(\varphi(0)+\psi(x)+\psi\left(h^{(1)}\right)+\cdots+\psi\left(h^{(j)}\right)\right) \mp \cdots+(-1)^{j} f(\varphi(0)+\psi(x)) \\
& =\left[\Delta_{\left.\psi\left(h^{(1)}\right) \cdots \Delta_{\psi\left(h^{(j)}\right)} f\right](\varphi(0)+\psi(x))}\right. \\
& =\left[\Delta_{\left.\psi\left(h^{(1)}\right) \cdots \Delta_{\psi\left(h^{(j)}\right)} f\right](\varphi(x)) \geq 0,}\right.
\end{aligned}
$$

(note that $\varphi(x)+\sum_{i=1}^{j} \psi\left(h^{(i)}\right)=\varphi\left(x+\sum_{i=1}^{j} h^{(i)}\right) \in I$).
(iii) \Rightarrow (iv) $\Rightarrow(v)$ is clear.
(v) $\Rightarrow(i)$: Let $j \in[k], x \in I, h^{(1)}, \ldots, h^{(j)} \in \mathbb{R}_{+}^{d}$ such that $x+h^{(1)}+\cdots+h^{(j)} \in I$. Denote by $\psi: \mathbb{R}^{j} \rightarrow \mathbb{R}^{d}$ the linear map whose matrix with respect to the standard bases is $\left(h^{(1)}, \ldots, h^{(j)}\right)\left(h^{(i)}\right.$ as column vectors), $\varphi:=x+\psi$; obviously, ψ (and φ) are positive. For $J:=\left[\mathbf{0}_{j}, \mathbf{1}_{j}\right] \subseteq \mathbb{R}^{j}$, we have $\varphi(J) \subseteq I$, since $\psi\left(e_{i}\right)=h^{(i)} \quad \forall i \leq j, \varphi\left(\mathbf{0}_{j}\right)=x$ and $\varphi\left(\mathbf{1}_{j}\right)=x+\sum_{i=1}^{j} h^{(i)}$. By assumption,

$$
0 \leq\left[\Delta_{1_{j}}^{\mathbf{1}_{j}}(f \circ \varphi)\right]\left(\mathbf{0}_{j}\right)=f\left(x+h^{(1)}+\cdots h^{(j)}\right)^{\mp} \cdots+(-1)^{j} f(x)=\left(\Delta_{h^{(1)}} \ldots \Delta_{h^{(j)}} f\right)(x) . \square
$$

Corollary 1. Let $I \subseteq \mathbb{R}^{d}$ and $B \subseteq \mathbb{R}$ be non-degenerate intervals. If $g: I \rightarrow B$ and $f: B \rightarrow \mathbb{R}$ are both $k-\uparrow$, then so is $f \circ g$.

Proof. We show Condition (iv) in Theorem 1 to hold for $f \circ g$. We know that $g \circ \varphi$ is $\mathbf{n}-\uparrow$ for $|\mathbf{n}| \leq k$. A special case of Theorem 12 in [12] implies $f \circ(g \circ \varphi)$ to be also $\mathbf{n}-\uparrow$, and $f \circ(g \circ \varphi)=(f \circ g) \circ \varphi$.

Theorem 2. Let $I \subseteq \mathbb{R}^{d_{1}}$ and $J \subseteq \mathbb{R}^{d_{2}}$ be non-degenerate intervals, $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$, both non-negative and $k-\uparrow$. Then, also $f \otimes g$ is $k-\uparrow$ on $I \times J$, and in case $I=J$, the product $f \cdot g$ is $k-\uparrow$, too.

Proof. We first apply (ii) of Theorem 1. For $0 \neq(\mathbf{m}, \mathbf{n}) \in \mathbb{N}_{0}^{d_{1}} \times \mathbb{N}_{0}^{d_{2}},(x, y) \in I \times J, h^{(1)} \in \mathbb{R}_{+}^{d_{1}}, h^{(2)} \in \mathbb{R}_{+}^{d_{2}}$ we have

$$
\left[\Delta_{\left(h^{(1)}, h^{(2)}\right)}^{\mathbf{m}, \mathbf{n}}(f \otimes g)\right](x, y)=\left(\Delta_{h^{(1)}}^{\mathrm{m}} f\right)(x) \cdot\left(\Delta_{h^{(2)}}^{\mathbf{n}} g\right)(y)
$$

and for $|(\mathbf{m}, \mathbf{n})|=|\mathbf{m}|+|\mathbf{n}| \leq k$, both factors on the right-hand side are non-negative. Since $\mathbf{m}=0$ or $\mathbf{n}=0$ is allowed, only $(\mathbf{m}, \mathbf{n}) \neq 0$ being required, we need in fact $f \geq 0$ and $g \geq 0$.

For $I=J$ (with $d_{1}=d_{2}=: d$), let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{2 d}$ be given by $\varphi(x):=(x, x)$, a positive linear map. Then, $\varphi(I) \subseteq I \times I$, and by Theorem 1 (iii), $(f \otimes g) \circ \varphi=f \cdot g$ is also $k-\uparrow$.

We see that any monomial $f(x)=\prod_{i=1}^{d} x_{i}^{n_{i}}\left(n_{i} \in \mathbb{N}\right)$ is $k-\uparrow$ on \mathbb{R}_{+}^{d} for each $k \in \mathbb{N}$. If $\left.c_{i} \in\right] 0, \infty\left[\right.$ then $\prod_{i=1}^{d} x_{i}^{c_{i}}$ is $k-\uparrow$ on \mathbb{R}_{+}^{d} at least for $c_{i} \geq k-1, i=1, \ldots, d$.

Examples 1. (a) For $a>0$, the function $f(x, y):=(x y-a)_{+}$is $2-\uparrow$ on \mathbb{R}_{+}^{2}, since $t \mapsto(t-a)_{+}$is $2-\uparrow$ on \mathbb{R}_{+}, by Corollary 1. Its restriction to $[0, \sqrt{1+a}]^{2}$ is therefore the d.f. of some random vector. In [12] on page 261 , it was shown that f is not $(2,1)-\uparrow$ (resp. $(1,2)-\uparrow)$, but it is of course $(1,1)-\uparrow$. The tensor product $g(x, y):=(x-a)_{+} \cdot(y-b)_{+}$ is $(2,2)-\uparrow \forall a, b>0$; hence, certainly $2-\uparrow$, but not $3-\uparrow$ since $x \mapsto(x-a)_{+}$is not.

Similarly, $(x y z-a)_{+}^{2}$ is $3-\uparrow$ on \mathbb{R}_{+}^{3}, for $a>0$, and of course, $(x y-a)_{+}^{2}$ is $3-\uparrow$ on \mathbb{R}_{+}^{2}. We will see later on that $x y+x z+y z-x y z$ is $2-\uparrow$ on $[0,1]^{3}$, but not $3-\uparrow$.
(b) Consider $f_{n}(t):=t^{n} /(1+t)$ for $t \geq 0$. It was shown in [7], Lemma 2.4, that f_{n} is $n-\uparrow$ (it is not $\left.(n+1)-\uparrow\right)$. So for any non-negative $n-\uparrow$ function g on any interval in any dimension, $g^{n} /(1+g)$ is $n-\uparrow$, too.

If g is "only" an n-dimensional d.f., then so is also $g^{n} /(1+g)$ - this follows from [11], Theorem 2, but is also a special case of Theorem 6 below.

3 Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polynomials, since they inherit the monotonicity properties of interest. To define them, we introduce for $r \in \mathbb{N}, i \in\{0,1, \ldots, r\}$

$$
b_{i, r}(t):=\binom{r}{i}^{i}(1-t)^{r-i}, \quad t \in \mathbb{R},
$$

and for $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right) \in\{0,1, \ldots, r\}^{d}$

$$
B_{i, r}:=b_{i_{1}, r} \otimes \cdots \otimes b_{i_{d}, r} .
$$

For any $f:[0,1]^{d} \rightarrow \mathbb{R}$, the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$ are defined by:

$$
f^{(r)}:=\sum_{\mathbf{0}_{d} \leq \mathbf{i} \leq \mathbf{x}_{d}} f\left(\frac{\mathbf{i}}{r}\right) \cdot B_{\mathbf{i}, r} .
$$

It is perhaps not so well known, that for each continuity point x of f, we have

$$
f^{(r)}(x) \rightarrow f(x), \quad r \rightarrow \infty .
$$

This is shown for ex. in [14, page 296], based on the strong law of large numbers for independent Bernoulli trials. Well known is the uniform convergence of $f^{(r)}$ to f on $[0,1]^{d}$ for a continuous function f.

In the following, the "upper right boundary" of $[0,1]^{d}$ will play a role. Let for $\alpha \subseteq[d]$

$$
T_{a}:=\left\{x \in[0,1]^{d} \mid x_{i}<1 \Leftrightarrow i \in a\right\} .
$$

Then, $[0,1]^{d}=\cup_{a \subseteq[d]} T_{\alpha}$ is a disjoint union, $T_{\varnothing}=\left\{1_{d}\right\}$ and $T_{[d]}=\left[0,1\left[{ }^{d}\right.\right.$. The union $\cup_{a \subseteq[d]} T_{\alpha}$ is called the upper right boundary of $[0,1]^{d}$.

For $f:[0,1]^{d} \rightarrow \mathbb{R}$ with Bernstein polynomials $f^{(1)}, f^{(2)}, \ldots$, let $f_{(a)}:=f \mid T_{a}$, where for $\alpha \neq \varnothing T_{a}$ may be identified with $\left[0,1\left[{ }^{\alpha}\right.\right.$. Since for $y \in\left[0,1\left[{ }^{a}\right.\right.$

$$
B_{\mathrm{i}, r}\left(y, \mathbf{1}_{a^{c}}\right)= \begin{cases}B_{\mathbf{i}_{a} r} & \text { if } \mathbf{i}_{a^{c}}=\mathbf{r}_{a^{c}} \\ 0 & \text { else, }\end{cases}
$$

we obtain for $\varnothing \neq \alpha \subsetneq[d]$

$$
\left(f_{(a)}\right)^{(r)}(y)=\sum_{\mathbf{i}_{a} \leq \mathbf{r}_{a}} f_{(\alpha)}\left(\frac{\mathbf{i}_{a}}{r}\right) B_{\mathbf{i}_{a} r}(y),
$$

where $f_{(a)}\left(\frac{\mathbf{i}_{a}}{r}\right)=f\left(\frac{\hat{\mathbf{i}}_{a}}{r}, \mathbf{1}_{a^{c}}\right)=f\left(\frac{\left(\mathbf{i}_{\boldsymbol{i}_{a} \mathbf{r}_{a^{c}}}\right)}{r}\right)$, and then

$$
\begin{aligned}
f^{(r)}\left(y, \mathbf{1}_{a^{c}}\right) & =\sum_{\mathbf{i} \leq \mathbf{r}_{d}} f\left(\frac{\mathbf{i}}{r}\right) B_{\mathbf{i}, r}\left(y, \mathbf{1}_{a^{c}}\right) \\
& =\sum_{\mathbf{i}_{a} \leq \mathbf{r}_{a}} f\left(\frac{\left(\mathbf{i}_{a}, \mathbf{r}_{a^{c}}\right)}{r}\right) B_{\mathbf{i}_{a}, r}(y) \\
& =\left(f_{(\alpha)}\right)^{(r)}(y) .
\end{aligned}
$$

In other words, the restriction of f to one of the parts T_{α} of the upper right boundary has as its Bernstein polynomials the restrictions of the original ones to T_{α}. This leads to the following.

Theorem 3. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ have the property that each restriction $f \mid T_{a}$ for $\varnothing \neq \alpha \subseteq[d]$ is continuous. Then,

$$
\lim _{r \rightarrow \infty} f^{(r)}(x)=f(x) \quad \forall x \in[0,1]^{d},
$$

i.e., the Bernstein polynomials converge pointwise to f everywhere.

Proof. Each $x \in[0,1]^{d} \backslash\left\{\mathbf{1}_{d}\right\}$ lies in exactly one T_{α}, i.e., $x=\left(x_{\alpha}, \mathbf{1}_{\alpha}\right.$ c) with $x_{\alpha}<\mathbf{1}_{\alpha}$, where $\varnothing \neq \alpha \subseteq[d]$, and is thus a continuity point of $f_{(\alpha)}:=f \mid T_{\alpha}$. As already mentioned, this implies

$$
\left(f_{(\alpha)}\right)^{(r)}\left(x_{\alpha}\right) \rightarrow f_{(\alpha)}\left(x_{\alpha}\right)=f\left(x_{\alpha}, \mathbf{1}_{a^{c}}\right)=f(x),
$$

and we saw also that

$$
\left(f_{(\alpha)}\right)^{(r)}\left(x_{\alpha}\right)=f^{(r)}\left(x_{\alpha}, \mathbf{1}_{a}{ }^{c}\right)=f^{(r)}(x)
$$

Since $f^{(r)}\left(\mathbf{1}_{d}\right)=f\left(\mathbf{1}_{d}\right) \forall r$, the proof is complete.
For a function f of d variables, we will use a short notation for its partial derivatives (if they exist). Let $\mathbf{p} \in \mathbb{N}_{0}^{d} \backslash\{0\}$, then

$$
f_{\mathbf{p}}:=\frac{\partial^{|\mathbf{p}| f}}{\partial x_{1}^{p_{1}} \ldots \partial x_{d}^{p_{d}}},
$$

complemented by $f_{0_{d}}:=f$.
Lemma 2. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be arbitrary, $0 \neq \mathbf{p} \in \mathbb{N}_{0}^{d}$.
(i) If $\Delta_{h}^{\mathrm{p}} f \geq 0 \forall h \in \mathbb{R}_{+}^{d}$ then $\left(f^{(r)}\right)_{\mathbf{p}} \geq 0 \forall r \in \mathbb{N}$.
(ii) If f is in addition C^{∞}, then $f_{\mathrm{p}} \geq 0$.

Proof. (i) Applying the formula for derivatives of one-dimensional Bernstein polynomials [12, p. 273]d times, we obtain

$$
\left(f^{(r)}\right)_{\mathbf{p}}=c_{\mathbf{p}} \cdot \sum_{\mathbf{i} \leq \mathbf{r}_{d}-\mathbf{p}}\left(\Delta_{\frac{1}{r} \cdot \mathbf{1}_{d}}^{\mathbf{p}} f\right)\left(\frac{\mathbf{i}}{r}\right) b_{\dot{i}_{1}, r-p_{1}} \otimes \cdots \otimes b_{\dot{d}_{d}, r-p_{d}}
$$

with $c_{\mathbf{p}}:=\prod_{i=1}^{d} r(r-1) \cdot \ldots \cdot\left(r-p_{i}+1\right)$. Hence, $\left(f^{(r)}\right)_{\mathbf{p}} \geq 0$.
(ii) By [14, Theorem 4] $\left(f^{(r)}\right)_{\mathbf{p}} \rightarrow f_{\mathbf{p}}$, even uniformly, so $f_{\mathbf{p}} \geq 0$, too.

Theorem 4. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be a C^{∞}-function, $\mathbf{n} \in \mathbb{N}^{d}, k \in \mathbb{N}$. Then,
(i) f is $\mathbf{n}-\uparrow \Leftrightarrow f_{\mathbf{p}} \geq 0 \forall 0 \neq \mathbf{p} \leq \mathbf{n}, \mathbf{p} \in \mathbb{N}_{0}^{d}$.
(ii) f is $k-\uparrow \Leftrightarrow f_{\mathbf{p}} \geq 0 \forall 0<|\mathbf{p}| \leq k, \mathbf{p} \in \mathbb{N}_{0}^{d}$.

Proof. (i) " \Rightarrow ": follows from Lemma 2.
" \Leftarrow : Let for $m \in \mathbb{N} \sigma_{m}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the sum function, $\sigma_{\mathbf{n}}:=\sigma_{n_{1}} \times \sigma_{n_{2}} \times \cdots \times \sigma_{n_{d}}$. By [13, Theorem 5], we have

$$
f \text { is } \mathbf{n}-\uparrow \Leftrightarrow f \circ \sigma_{\mathbf{n}} \text { is }\left.\mathbf{1}_{|\mathbf{n}|}\right|^{\uparrow} \text { on } J:=\prod_{i=1}^{d}\left[0, \frac{1}{n_{i}}\right]^{n_{i}}
$$

The chain rule gives

$$
\left(f \circ \sigma_{\mathbf{n}}\right)_{1_{|\mathbf{n}|}}=f_{\mathbf{n}} \circ \sigma_{\mathbf{n}} \geq 0
$$

so that for $x, x+h \in J, h \geq 0$ by Fubini's theorem

$$
\left(\Delta_{h}^{1_{n} \mid}\left(f \circ \sigma_{\mathbf{n}}\right)\right)(x)=\int_{[x, x+h]}\left(f \circ \sigma_{\mathbf{n}}\right)_{1_{\mathbf{n} \mid}} \mathrm{d} \lambda^{|\mathbf{n}|} \geq 0
$$

The same reasoning can be applied to $0 \leqq \mathbf{q} \leq \mathbf{1}_{|\mathbf{n}|}$, so that indeed $f \circ \sigma_{\mathbf{n}}$ is $\mathbf{1}_{\mathbf{n}}-\uparrow$, i.e., f is $\mathbf{n}-\uparrow$.
(ii) This follows immediately from the first equivalence in Theorem 1.

Examples 2.

(a) $f(x, y):=x^{2} y-a x^{2} y^{2}+y^{2}$ on $[0,1]^{2}, 0<a \leq \frac{1}{2}$. Since $f_{\mathbf{p}} \geq 0$ for $\mathbf{p} \in\{(1,0),(0,1),(1,1),(2,0),(0,2)\}, f$ is $2-\uparrow$; but $f_{(1,2)}(x, y)=-4 a x$ shows that f is neither $3-\uparrow$ nor $(2,2)-\uparrow$.
(b) $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ is defined by $f(0,0):=0$ and else

$$
f(x, y):=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}+13 \cdot\left(x^{2}+y^{2}\right)+3 x y
$$

(see [9, p. 321]), where it is given as an example of an ultramodular function on \mathbb{R}_{+}^{2} (which does not automatically include that it is increasing). However, all partial derivatives $f_{\mathbf{p}}$ with $0<|\mathbf{p}| \leq 2$ are ≥ 0; hence, f is $2-\uparrow$ (and not $3-\uparrow$).
(c) With the abbreviation $x^{\alpha}:=\prod_{i \in \alpha} x_{i}$ for $\alpha \subseteq[d], x^{\varnothing}:=1$, a polynomial of the form

$$
f(x)=\sum_{\alpha \subseteq[d]} c_{\alpha} x^{\alpha}
$$

is called multilinear. f is affine in each variable; therefore, $f_{\mathbf{p}}=0$ whenever $p_{i}>1$ for some i. Hence, f is $k-\uparrow$ iff $f_{\mathbf{p}} \geq 0 \forall \mathbf{p} \leq \mathbf{1}_{d}$ with $0<|\mathbf{p}| \leq k$, and $\mathbf{n}-\uparrow$ iff f is $\left(\mathbf{n} \wedge \mathbf{1}_{d}\right)-\uparrow$. The example $(d=3)$

$$
f(x):=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{2} x_{3}
$$

is thus 2- \uparrow on $[0,1]^{3}$, but not $3-\uparrow$, since $f_{(1,1,1)}=-1$. And f is $(n, n, 0)-\uparrow \forall n$.
Theorem 5. Let $f:[0,1]^{d} \rightarrow \mathbb{R}, 2_{d} \leq \mathbf{n} \in \mathbb{N}_{0}^{d}, 2 \leq k \in \mathbb{N}$. The Bernstein polynomials off are denoted $f^{(1)}, f^{(2)}, \ldots$.
(i) If f is $\mathbf{n}-\uparrow$, then so is each $f^{(r)}$, and $f^{(r)} \rightarrow f$ pointwise.
(ii) If f is $k-\uparrow$, then so is each $f^{(r)}$, and $f^{(r)} \rightarrow f$ pointwise.

Proof. In both cases, f is (at least) $2-\uparrow$; therefore (by Lemma 1(ii)), the restriction $f \mid\left[0,1\left[{ }^{d}\right.\right.$ is continuous, and so are the other restrictions $f \mid T_{\alpha}$ for each non-empty $\alpha \subseteq[d]$. By Theorem 3, $f^{(r)}(x) \rightarrow f(x) \forall x$.
(i) Lemma 2 implies $\left(f^{(r)}\right)_{\mathbf{p}} \geq 0 \forall r$ and $\forall 0 \neq \mathbf{p} \leq \mathbf{n}$; hence, $f^{(r)}$ is $\mathbf{n}-\uparrow \forall r$.
(ii) Similarly now, $\left(f^{(r)}\right)_{\mathbf{p}} \geq 0 \forall r$ and $\forall 0<|\mathbf{p}| \leq k$, showing $f^{(r)}$ to be $k-\uparrow$.

Of course, a similar result holds if $[0,1]^{d}$ is replaced by any non-degenerate compact interval in \mathbb{R}^{d}.

4 Main results

The proof of Theorem 6 makes use of a far-reaching simultaneous generalization of the usual multivariate chain rule and Faà di Bruno's formula. This admirable result was shown by Constantine and Savits [3, Theorem 2.1], and we present it here, keeping (almost) their notation.

Let $d, m \in \mathbb{N}$, let g_{1}, \ldots, g_{m} be defined and C^{∞} in a neighborhood of $x^{(0)} \in \mathbb{R}^{d}$ (real-valued), put $g:=\left(g_{1}, \ldots, g_{m}\right)$, and let f be defined and C^{∞} in a neighborhood of $y^{(0)}:=g\left(x^{(0)}\right) \in \mathbb{R}^{m}$.

For $\mu, v \in \mathbb{N}_{0}^{d}$, the relation $\mu<v$ holds iff one of the following three assertions is true:
(i) $|\mu|<|\nu|$,
(ii) $|\mu|=|\nu|$ and $\mu_{1}<v_{1}$,
(iii) $|\mu|=|v|, \mu_{1}=v_{1}, \ldots, \mu_{k}=v_{k}, \mu_{k+1}<v_{k+1}, \exists k \in[d-1]$,
(implying $\mu \neq v$).
Examples:
(a) $\overline{(1,3,0,4,1)}<(1,3,1,1,3)$, here $k=2$,
(b) $e_{d}<e_{d-1}<\cdots<e_{1}$,
(c) For $d=1$ we have $\mu<v \Leftrightarrow \mu<\nu$.

We need some abbreviations:

$$
\begin{aligned}
D_{x}^{v} & :=\frac{\partial^{|v|}}{\partial x_{1}^{v_{1}} \ldots \partial x_{d}^{v_{d}}} \quad \text { for }|v|>0, \quad D_{x}^{0} f:=f \\
x^{v} & :=\prod_{i=1}^{d} x_{i}^{v_{i}}, \quad v!:=\prod_{i=1}^{d} v_{i}!, \quad|v|:=\sum_{i=1}^{d} v_{i} \\
g_{\mu}^{(i)} & :=\left(D_{x}^{\mu} g_{i}\right)\left(x^{(0)}\right), \quad g_{\mu}:=\left(g_{\mu}^{(1)}, \ldots, g_{\mu}^{(m)}\right) \\
f_{\lambda} & :=\left(D_{y}^{\lambda} f\right)\left(y^{(0)}\right) \\
h & :=f \circ g, \quad h_{v}:=\left(D_{x}^{v} h\right)\left(x^{(0)}\right),
\end{aligned}
$$

and, for $v \in \mathbb{N}_{0}^{d}, \lambda \in \mathbb{N}_{0}^{m}, s \in \mathbb{N}, s \leq|v|$

$$
P_{s}(v, \lambda):=\left\{\left(k_{1}, \ldots, k_{s} ; l_{1}, \ldots, l_{s}\right)| | k_{j}\left|>0,0<l_{1}<\cdots<l_{s}, \sum_{j=1}^{s} k_{j}=\lambda, \sum_{j=1}^{s}\right| k_{j} \mid l_{j}=v\right\}
$$

where (of course) $k_{j} \in \mathbb{N}_{0}^{m}$ and $l_{j} \in \mathbb{N}_{0}^{d}$. (For some values of s, these sets may be empty.)
The announced formula by Constantine and Savits then reads

$$
\begin{equation*}
h_{v}=\sum_{1 \leq|\lambda| \leq|v|} f_{\lambda} \cdot \sum_{s=1}^{|v|} \sum_{P_{s}(v, \lambda)} v!\cdot \prod_{j=1}^{s} \frac{\left(g_{l j}\right)^{k_{j}}}{\left(k_{j}!\right) \cdot\left(l_{j}!\right)^{\left|k_{j}\right|}} . \tag{}
\end{equation*}
$$

This formula reduces for $d=1$ to the classical one of Faà di Bruno from 1855 (see [3,4]).
One more result is needed, allowing general d.f.s to be "replaced" by C^{∞} ones:

Lemma 3.

(i) Let $(\Omega, \mathcal{A}, \rho)$ be a finite measure space and $\varnothing \neq \mathcal{B} \subseteq \mathcal{A}$ a finite collection of measurable sets. Then, there is another finite measure ρ_{0} on \mathcal{A} with finite support such that $\rho_{0}|\mathcal{B}=\rho| \mathcal{B}$.
(ii) Let F on \mathbb{R}^{d} be the d.f. of some finite measure and $\varnothing \neq B \subseteq \mathbb{R}^{d}$ a finite subset. Then, there is a C^{∞} d.f. \tilde{F} on \mathbb{R}^{d} such that $\tilde{F}|B=F| B$.

Proof. (i) The set algebra generated by \mathcal{B} is still finite, and thus generated by a (unique) partition $\left\{A_{1}, \ldots, A_{n}\right\}$ of Ω. Choose $x_{i} \in A_{i}$ for each $i \leq n$, and put $\rho_{0}:=\sum_{i=1}^{n} \rho\left(A_{i}\right) \cdot \varepsilon_{x_{i}}$.
(ii) Let F be the d.f. of ρ, i.e., $F(x)=\rho(]-\infty, x]) \forall x \in \mathbb{R}^{d}$. Then, apply (i) to $\left.\left.\mathcal{B}:=\{]-\infty, b\right] \mid b \in B\right\}$, and denote by F_{0} the d.f. of ρ_{0}. Since ρ_{0} has finite support, Lemma 3 of [11] is applicable, whose (short) proof provides a d.f. \tilde{F} as desired.

Theorem 6. Let $f:[0,1]^{m} \rightarrow \mathbb{R}_{+}$be $d-\uparrow(d \geq 2)$ and let $g_{1}, \ldots, g_{m}: \mathbb{R}^{d} \rightarrow[0,1]$ be d.f.s of (subprobability) measures on \mathbb{R}^{d}. Then, also $f \circ\left(g_{1}, \ldots, g_{m}\right)$ is a d.f. on \mathbb{R}^{d}.

Proof. Put $g:=\left(g_{1}, \ldots, g_{m}\right): \mathbb{R}^{d} \rightarrow[0,1]^{m}, h:=f \circ g$. By Lemma 1, also h is right-continuous, and it remains to

A consequence of Theorem 5 is that we may assume f to be C^{∞}, and we first let also g_{1}, \ldots, g_{m} be C^{∞} functions.

Switching to the terminology in connection with the aforementioned generalized Faà di Bruno formula, we have to show $h_{\nu} \geq 0$ for $v \leq \mathbf{1}_{d}$. Then, $|v| \leq d$, and for $\lambda \in \mathbb{N}_{0}^{m}$ with $|\lambda| \leq|v|$, we have $f_{\lambda} \geq 0$, by Theorem 4(ii). The condition

$$
\sum_{j=1}^{s}\left|k_{j}\right| l_{j}=v
$$

in the set $P_{s}(v, \lambda)$, together with $\left|k_{j}\right|>0$ and $l_{j} \neq 0 \forall j$, reduces to $\left|k_{j}\right|=1 \forall j$ and

$$
\sum_{j=1}^{s} l_{j}=v
$$

so that the l_{j} are "disjoint" in an obvious sense, i.e., $l_{j} \in\{0,1\}^{d} \backslash\left\{\mathbf{0}_{d}\right\}$ and $l_{i} \wedge l_{j}=\mathbf{0}_{d}$ for $i \neq j$. In particular, $g_{l_{j}} \geq 0 \forall j$, each g_{i} being a d.f. Formula $\left({ }^{* *}\right)$ now shows $h_{v} \geq 0$.

Now to the general case: in order to see that $h=f \circ g$ is $\mathbf{1}_{d^{-} \uparrow}$, we have to show for given $x \in \mathbb{R}^{d}$ and $\xi \in \mathbb{R}_{+}^{d}$

$$
\left(\Delta_{\xi}^{1_{d}} h\right)(x)=h(x+\xi) \mp \cdots+(-1)^{d} h(x) \geq 0
$$

(as well as the analogue for some variables fixed, which is shown similarly).
In Lemma 3, we choose the finite set

$$
\left\{x+\sum_{i \in \alpha} \xi_{i} e_{i} \mid \alpha \subseteq[d]\right\}=: B
$$

and find C^{∞} d.f.s $\tilde{g}_{1}, \ldots, \tilde{g}_{m}$ such that $\tilde{g}_{i}\left|B=g_{i}\right| B$ for each $i \leq m$. Then,

$$
0 \leq\left(\Delta_{\xi}^{1_{d}}(f \circ \tilde{g})\right)(x)=\left(\Delta_{\xi}^{1_{d}} h\right)(x),
$$

thus finishing the proof.
Remark 3. The aforementioned theorem answers positively a question in the concluding remarks of [5]. For $d=2$, this result was shown in [6], Theorem 3.1.

Remark 4. If for a given f the conclusion of Theorem 6 holds for all d.f.s g_{1}, \ldots, g_{m}, then f must be $d-\uparrow$. This follows from Theorem 1(v), since each component of an affine positive function φ is of course $\mathbf{1}_{d^{-} \uparrow}$.

Examples 3.

(a) We saw before that $f(x):=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{2} x_{3}$ is 2- \uparrow on $[0,1]^{3}$. Hence, for arbitrary bivariate d.f.s g_{1}, g_{2} and g_{3} also $g_{1} g_{2}+g_{1} g_{3}+g_{2} g_{3}-g_{1} g_{2} g_{3}$ is a d.f., while f itself is not a three-dimensional d.f..
(b) Put $f_{a}(t):=(t-a)_{+} /(1-a)$ for $t \in[0,1]$ and $a \in\left[0,1\left[\right.\right.$, complemented by $f_{1}:=1_{\{1\}}$. Then, $\left\{f_{a}^{n} \mid a \in[0,1]\right\}$ are the "essential" extreme points for ($n+1$)- \uparrow functions on $[0,1]$, and $\left\{f_{a_{1}}^{n_{1}} \otimes \cdots \otimes f_{a_{d}}^{n_{d}} \mid a \in[0,1]^{d}\right\}$ correspondingly for $\left(\mathbf{n}+\mathbf{1}_{d}\right)-\uparrow$ functions on $[0,1]^{d}$, cf. [12]. In the bivariate case, $f_{a} \otimes f_{b}$ is (2,2)- \uparrow, in particular $2-\uparrow$, so that $f_{c} \circ\left(f_{a} \otimes f_{b}\right)$ is 2- \uparrow on $[0,1]^{2}$. For any bivariate d.f.s g_{1} and g_{2}, we see that

$$
\left[\frac{\left(g_{1}-a\right)_{+} \cdot\left(g_{2}-b\right)_{+}}{(1-a) \cdot(1-b)}-c\right]_{+}, \quad(a, b, c) \in\left[0,1\left[^{3}\right.\right.
$$

is again a bivariate d.f..

Another important property of $k-\uparrow$ functions is their "universal" compatibility and composability within their class, which is made precise in the following.

Theorem 7. Let $m, d, k \in \mathbb{N}, J \subseteq \mathbb{R}^{m}$ and $I \subseteq \mathbb{R}^{d}$ be non-degenerate intervals, $g=\left(g_{1}, \ldots, g_{m}\right): I \rightarrow J, f: J \rightarrow \mathbb{R}$, each g_{i} and f being $k-\uparrow$. Then, also $f \circ g$ is $k-\uparrow$.

Proof. The case $k=1$ being obvious, let us assume $k \geq 2$. Since any non-degenerate interval is an increasing union of compact non-degenerate subintervals, we may choose $I=[0,1]^{d}$ and $J=[0,1]^{m}$.

By Theorem 1, we have to show that $h:=f \circ g$ is $\mathbf{n}-\uparrow$ for any $\mathbf{n} \in \mathbb{N}_{0}^{d}$ such that $0<|\mathbf{n}| \leq k$. Since the variables i with $n_{i}=0$ do not enter, we may and do assume $\mathbf{n} \in \mathbb{N}^{d}$, in particular $k \geq d$. Then, each g_{i} is $\mathbf{n}-\uparrow$, or equivalently, by [13, Theorem 5], $g_{i} \circ \sigma_{\mathbf{n}}$ is $\left.\mathbf{1}_{|\mathbf{n}|}\right|^{\uparrow}$ on $\prod_{i \leq d}\left[0, \frac{1}{n_{i}}\right]^{n_{i}}$. Theorem 6 above now implies that also

$$
f \circ\left(g_{1} \circ \sigma_{\mathbf{n}}, \ldots, g_{m} \circ \sigma_{\mathbf{n}}\right)=h \circ \sigma_{\mathbf{n}}
$$

is $\mathbf{1}_{|\mathbf{n}|}-\uparrow$, which in turn means that h is $\mathbf{n}-\uparrow$.

Remark 5. We mentioned earlier that $k-\uparrow$ functions were considered already in [2], where our Theorem 7 is stated as Theorem 2. However, the proof given there is not a real one, in my opinion: the function g disappears more or less after a few lines, the terminology and notation are nearly "chaotic," and I consider the reasoning incomprehensible. Of course, in theory, a completely "elementary" proof might be possible, but then discrete analogues of formula (${ }^{* *}$) would have to appear, and this might get "out of control." In [5, 8], Bronevich's Theorem 2 is cited, without any comments on the proof. The special case $k=2$ is proved in [6].

An open problem

While $\mathbf{n}-\uparrow$ functions on $[0,1]^{d}$, non-negative and normalized, are a Bauer simplex, with "essentially" certain powers of $\left\{f_{a_{1}} \otimes \cdots \otimes f_{a_{d}} \mid a \in[0,1]^{d}\right\}$ as their extreme points (Example 3(b)), not much so far is known for $k-\uparrow$ functions. Let us consider $d=k=2$ and

$$
K:=\left\{f:[0,1]^{2} \rightarrow[0,1] \mid f \text { is } 2-\uparrow \text { and } f(1,1)=1\right\} .
$$

K is obviously convex and compact and also stable under (pointwise) multiplication. It is easy to see that each $f_{c} \circ\left(f_{a} \otimes f_{b}\right)$ is an extreme point of $K-$ but that is it, for the time being.

Acknowledgments: Thanks are due to the two reviewers for their constructive suggestions that certainly improved the presentation.

Funding information: No funding is involved.

Conflict of interest: The author states no conflict of interest.

References

[1] Boas, R. P., \& Widder, D. V. (1940). Functions with positive differences. Duke Mathematical Journal, 7, 496-503.
[2] Bronevich, A. G. (2005). On the closure of families of fuzzy measures under eventwise aggregations. Fuzzy Sets and Systems, 153, 45-70.
[3] Constantine, G. M., \& Savits, T. H. (1996). A multivariate Faa di Bruno formula with applications. Transactions of the AMS, 348, 503-520.
[4] Faà di Bruno, F.. (1855). Sullo sviluppo delle funzioni. Annali di Scienze Mathematiche e Fisiche, 6, 479-480.
[5] Klement, E. P., Manzi, M., \& Mesiar, R. (2010). Aggregation functions with stronger types of monotonicity, (pp. 418-424). In: LNAI 6178. New York: Springer.
[6] Klement, E. P., Manzi, M., \& Mesiar, R. (2011). Ultramodular aggregation functions. Information Sciences, 181, 4101-4111.
[7] Koumandos, S., \& Pedersen, H. L. (2009). Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function. Journal of Mathematical Analysis and Applications, 355, 33-40.
[8] Manzi, M. (2011). New construction methods for copulas and the multivariate case. Tesi (Padova), BN 2013-396T.
[9] Marinacci, M., \& Montrucchio, L. (2005). Ultramodular functions. Mathematics of Operations Research, 30, 311-332.
[10] Ressel, P. (2011). Monotonicity properties of multivariate distribution and survival functions - With an application to Lévy-frailty copulas. Journal of Multivariate Analysis, 102, 393-404.
[11] Ressel, P. (2012). Functions operating on multivariate distribution and survival functions - With applications to classical mean values and to copulas. Journal of Multivariate Analysis, 105, 55-67.
[12] Ressel, P. (2014). Higher order monotonic functions of several variables. Positivity, 18, 257-285.
[13] Ressel, P. (2019). Copulas, stable tail dependence functions, and multivariate monotonicity. Dependence Modeling, 7, 247-258.
[14] Veretennikov, A. Y., \& Veretennikova, E. V. (2016). On partial derivatives of multivariate Bernstein polynomials. Siberian Advances in Mathematics, 26, 294-305.

[^0]: * Corresponding author: Paul Ressel, MGF, Kath. Universität Eichstätt-Ingolstadt, Ostenstr. 26, Eichstätt, Germany, e-mail: paul.ressel@ku.de

