Research Article

Paul Ressel*

Functions operating on several multivariate distribution functions

https://doi.org/10.1515/demo-2023-0104 received June 28, 2023; accepted September 22, 2023

Abstract: Functions f on $[0, 1]^m$ such that every composition $f \circ (g_1, ..., g_m)$ with d-dimensional distribution functions $g_1, ..., g_m$ is again a distribution function, turn out to be characterized by a very natural monotonicity condition, which for d = 2 means ultramodularity. For m = 1 (and d = 2), this is equivalent with increasing convexity.

Keywords: multivariate distribution function, ultramodular, Bernstein polynomials, Faà di Bruno's formula, higher order, monotonicity

MSC 2020: 26E05, 26B40, 60E05

1 Introduction

Which functions of distribution functions ("d.f.s") are again d.f.s? – this is a very general question, with an obvious answer only in dimension one. If g_1 and g_2 are both univariate d.f.s, and $f: [0,1]^2 \to \mathbb{R}_+$ is just increasing (i.e., $f(x) \le f(y)$ for $x \le y$), then $[f \circ (g_1, g_2)](t) = f(g_1(t), g_2(t))$ is again a d.f. (disregarding right continuity), but $[f \circ (g_1 \times g_2)](x) = f(g_1(x_1), g_2(x_2))$ need not be a bivariate d.f., as the example $f = 1_{\{(s,t) \in [0,1]^2 \mid s \le t\}}$ and $g_1(t) = g_2(t) = (t \lor 0) \land 1$ shows. In this situation, f itself has to be a two-dimensional d.f. in order to guarantee that $f \circ (g_1 \times g_2)$ is also of this type.

We see already that we are confronted with two related but different questions. The first one: given m multivariate d.f.s $g_1, ..., g_m$ of (possibly different) dimensions $n_1, ..., n_m$, and $f : [0, 1]^m \to \mathbb{R}_+$, under which general conditions at f is then $f \circ (g_1 \times \cdots \times g_m)$ again a d.f.? And the second question: if $n_1 = \cdots = n_m = d$, what are necessary and sufficient conditions for f, such that $f \circ (g_1, ..., g_m)$ is another d-variate d.f.?

The first question was solved some years ago: f has to be "**n**-†" with **n** = $(n_1, ..., n_m)$, a notion to be explained shortly (see [12, Theorem 12]). The second question was posed already in [5] and will be answered in this article. It turns out that the function f then has to fulfill a very natural condition, known for d = 2 as being an "ultramodular aggregation function."

An important role in the proof of the main result will be played by a multivariate generalization of the famous Faà di Bruno formula. In order to apply it, we have to use C^{∞} approximations, in particular multivariate Bernstein polynomials.

Notations:

$$\begin{split} \mathbb{R}_{+} &= [0, \infty[, \mathbb{N} = \{1, 2, 3, ...\}, \mathbb{N}_{0} = \{0, 1, 2, ...\}, \\ &|\mathbf{n}| = \sum_{i=1}^{d} n_{i} \text{ for } \mathbf{n} \in \mathbb{N}_{0}^{d}, \mathbf{r}_{d} = (r, r, ..., r) \in \mathbb{N}_{0}^{d} \text{ for } r \in \mathbb{N}_{0} \text{ (mostly for } r \in \{0, 1\}), [d] = \{1, 2, ..., d\}, \\ &\mathbf{1}_{a}(i) = \begin{cases} 1, i \in \alpha \\ 0, i \in \alpha^{c} \end{cases} \text{ for } \alpha \subseteq [d], x_{a} = (x_{i})_{i \in a}, \end{cases} \end{split}$$

പ്ര

^{*} Corresponding author: Paul Ressel, MGF, Kath. Universität Eichstätt-Ingolstadt, Ostenstr. 26, Eichstätt, Germany, e-mail: paul.ressel@ku.de

³ Open Access. © 2023 the author(s), published by De Gruyter. 🐨 This work is licensed under the Creative Commons Attribution 4.0 International License.

 $(f \times g)(x, y) = (f(x), g(y))$ for mappings f, g, (f, g)(x) = (f(x), g(x)) for mappings with the same domain, $(f \otimes g)(x, y) = f(x) \cdot g(y)$ for real-valued f, g, e_1, \dots, e_d are the usual unit vectors in \mathbb{R}^d , d.f. means distribution function.

2 Some notions of multivariate monotonicity

Let $I_1, ..., I_d \subseteq \mathbb{R}$ be non-degenerate intervals, $I \coloneqq I_1 \times \cdots \times I_d$, and let $f \colon I \to \mathbb{R}$ be any function. For $s \in I$ and $h \in \mathbb{R}^d_+$ such that also $s + h \in I$, put

$$(E_h f)(s) \coloneqq f(s+h)$$

and $\Delta_h = E_h - E_0$, i.e., $(\Delta_h f)(s) = f(s + h) - f(s)$. Since $\{E_h \mid h \in \mathbb{R}^d_+\}$ is commutative (where defined), so is also $\{\Delta_h \mid h \in \mathbb{R}^d_+\}$. In particular, with $e_1, ..., e_d$ denoting standard unit vectors in \mathbb{R}^d , $\Delta_{h_1e_1}, ..., \Delta_{h_de_d}$ commute. As usual, $\Delta_h^0 f = f$ (also for h = 0, but clearly $\Delta_0 f = 0$). For $\mathbf{n} = (n_1, ..., n_d) \in \mathbb{N}^d_0$ and $h = (h_1, ..., h_d) \in \mathbb{R}^d_+$ we put

$$\Delta_h^{\mathbf{n}} \coloneqq \Delta_{h_1 e_1}^{n_1} \Delta_{h_2 e_2}^{n_2} \dots \Delta_{h_d e_d}^{n_d},$$

so that $(\Delta_h^{\mathbf{n}} f)(s)$ is defined for $s, s + \sum_{i=1}^d n_i h_i e_i \in I$.

Definition. $f: I \to \mathbb{R}$ is $\mathbf{n} \to (\text{read "}\mathbf{n}\text{-increasing"})$ iff $(\Delta_{h}^{\mathbf{p}}f)(s) \ge 0 \forall s \in I, \forall h \in \mathbb{R}^{d}_{+}, \forall \mathbf{p} \in \mathbb{N}^{d}_{0} \text{ and } 0 \neq \mathbf{p} \le \mathbf{n}$, such that $s_{i} + p_{i}h_{i} \in I_{i} \forall j \in [d]$.

A specially important case is $\mathbf{n} = \mathbf{1}_d$; being $\mathbf{1}_d \to i$ is the "crucial" property of d.f.s. More precisely, $f : I \to \mathbb{R}_+$ is the d.f. of a (non-negative) measure μ , i.e., $f(s) = \mu([-\infty, s] \cap \overline{I}) \forall s \in I$, if and only if f is $\mathbf{1}_d \to i$ and right-continuous; c.f. [10, Theorem 7].

Let us for a moment consider the case d = 1. Then, $I \subseteq \mathbb{R}$, $\mathbf{n} = n \in \mathbb{N}$, we assume $n \ge 2$, and a famous old result of Boas and Widder [1, Lemma 1] shows that a continuous function $f: I \to \mathbb{R}$ is n- \uparrow (i.e., $\Delta_{h}^{j} f \ge 0 \quad \forall j \in [n], \forall h > 0$) iff

$$(\Delta_{h_1}\Delta_{h_2}\dots\Delta_{h_i}f)(s) \ge 0$$

 $\forall j \in [n], \forall h_1, ..., h_j > 0$ such that $s, s + h_1 + \cdots + h_j \in I$. For n = 2, f is 2- \uparrow iff it is increasing and convex (and automatically continuous on $I \setminus \{\sup I\}$).

The following definition now seems to be natural:

Definition. Let $I_1, ..., I_d \subseteq \mathbb{R}$ be non-degenerate intervals, $I = I_1 \times \cdots \times I_d$, $f : I \to \mathbb{R}$, and $k \in \mathbb{N}$. Then, f is called *k*-increasing ("*k*-1") iff $\forall j \in [k]$, $\forall h^{(1)}, ..., h^{(j)} \in \mathbb{R}^d_+$, $\forall s \in I$ such that $s + h^{(1)} + \cdots + h^{(j)} \in I$

$$(\Delta_{h^{(1)}} \dots \Delta_{h^{(j)}} f)(s) \ge 0.$$

(We do not assume *f* to be continuous.)

We mentioned already that a univariate f is 2- \uparrow iff it is increasing and convex. But also multivariate 2- \uparrow functions are well known: they are called *ultramodular*, mostly ultramodular aggregation functions, the latter meaning they are also increasing, and defined as functions $f : [0, 1]^d \rightarrow [0, 1]$ with $f(\mathbf{0}_d) = 0$ and $f(\mathbf{1}_d) = 1$. The restriction to the standard unit cube $[0, 1]^d$ is not one of course, but sometimes appropriate as we will see. In our terminology, if f is k- \uparrow , it is by definition also j- \uparrow for $1 \le j \le k$, in particular just increasing.

In this connection, also *increasing supermodular* functions should be mentioned: in the bivariate case, they coincide with (1, 1)- \uparrow functions, and in higher dimensions, they are "pairwise (1, 1)- \uparrow " in the obvious meaning; cf. [6].

Already in dimension two increasing convexity and being 2- \uparrow are uncomparable properties: on \mathbb{R}^2_+ the product is 2- \uparrow , but not convex; and the Euclidean norm is convex, however not 2- \uparrow .

Remark 1. Already in 2005, Bronevich [2] introduced k- \uparrow functions, calling them "*k*-monotone." Later on, the name "strongly *k*-monotone" was used [5,8], a terminology usually associated with strict inequalities, therefore not really adequate.

Some simple properties of k- \uparrow functions are shown first.

Lemma 1. Let $f : [0, 1]^d \rightarrow \mathbb{R}$ be 2-1. Then,

- (i) f is continuous iff f is continuous in $\mathbf{1}_d$.
- (ii) f is right-continuous and on $[0, 1]^d$ continuous.
- (iii) If $f(x^0) = f(\mathbf{1}_d)$ for some $x^0 \neq \mathbf{1}_d$, hence $\alpha = \{i \leq d | x_i^0 = 1\} \subseteq [d]$, then for $\alpha \neq \emptyset f$ depends only on $x_\alpha = (x_i)_{i \in \alpha}$. In case, $\alpha = \emptyset f$ is constant.
- (iv) For each $y \in [0, 1]^d \setminus [0, 1]^d$, the limit

$$f_0(y) \coloneqq \lim_{\substack{x \to y \\ x < y}} f(x)$$

exists, $f_0(y) \le f(y)$, f_0 is a 2- \uparrow and continuous extension of f|[0, 1[d]]. If f is k- \uparrow , so is f_0 .

Proof. (i) For $x, h \in [0, 1]^d$ such that also $x \pm h \in [0, 1]^d$, we have (with $\mathbf{1} = \mathbf{1}_d$)

$$0 \le f(x) - f(x - h) \le f(x + h) - f(x) \le f(1) - f(1 - h), \tag{*}$$

from which the claim follows, f being increasing.

(ii) For any $x \in [0, 1[^d, \text{the univariate function } [0, 1] \ni t \mapsto f(tx)$ is convex, hence continuous, also in t = 1 (being defined and convex in a neighborhood of 1). Since f is increasing, f is continuous in x. For $x \in [0, 1]^d \setminus [0, 1[^d, x \neq \mathbf{1}_d, 1]$ let $\alpha \coloneqq \{i \le d \mid x_i = 1\}$. Then, for $y \ge x$, also $y_i = 1 \forall i \in \alpha$, and $[0, 1[^{a^c} \ni z \mapsto f(\mathbf{1}_a, z)$ is continuous, in particular in the point x_{a^c} , implying f to be right-continuous in $x = (\mathbf{1}_a, x_{a^c})$.

(iii) If $\alpha = \emptyset$, then $x^0 = 1 - h^0$ for some $h^0 \in [0, 1]^d$, $f(1) = f(1 - h) \forall 0 \le h \le h^0$, and f is constant by (*). For $\alpha \ne \emptyset$, we define $g : [0, 1]^{\alpha^0} \rightarrow \mathbb{R}_+$ by $g(z) \coloneqq f(\mathbf{1}_{\alpha}, z)$. Also, g is 2-1, and

$$g((x^0)_{\alpha^{\complement}}) = f(x^0) = f(\mathbf{1}_d) = g(\mathbf{1}_{\alpha^{\complement}}),$$

hence *g* is constant. But then, $\forall y \in [0, 1]^{\alpha}$

$$0 \leq f(y, \mathbf{1}_{a^{\varepsilon}}) - f(y, \mathbf{0}_{a^{\varepsilon}}) \leq f(\mathbf{1}_{a}, \mathbf{1}_{a^{\varepsilon}}) - f(\mathbf{1}_{a}, \mathbf{0}_{a^{\varepsilon}}) = g(\mathbf{1}_{a^{\varepsilon}}) - g(\mathbf{0}_{a^{\varepsilon}}) = 0,$$

showing f(y, z) to be independent of z.

(iv) The existence of $f_0(y)$ is clear, f being increasing and bounded. The defining inequalities for f being k- \uparrow prevail for f_0 , for any $k \ge 2$. Since f_0 is continuous in **1**, it is everywhere continuous.

Our first theorem will state some equivalent conditions for f to be k-↑. An essential ingredient will be positive linear (or affine) mappings: a linear function $\psi : \mathbb{R}^m \to \mathbb{R}^d$ is called *positive* iff $\psi(\mathbb{R}^m_+) \subseteq \mathbb{R}^d_+$; and an affine $\varphi : \mathbb{R}^m \to \mathbb{R}^d$ is positive iff its "linear part" $\varphi - \varphi(0)$ is.

Theorem 1. Let $I \subseteq \mathbb{R}^d$ be a non-degenerate interval, $f: I \to \mathbb{R}$, $k, d \in \mathbb{N}$. Then, there are equivalent:

- (i) f is k-1,
- (ii) f is \mathbf{n} - $\uparrow \quad \forall \mathbf{n} \in \mathbb{N}_0^d$ with $0 < |\mathbf{n}| \le k$,
- (iii) $\forall m \in \mathbb{N}, \forall$ non-degenerate interval $J \subseteq \mathbb{R}^m, \forall$ positive affine $\varphi : \mathbb{R}^m \to \mathbb{R}^d$ such that $\varphi(J) \subseteq I$, also $f \circ \varphi$ is k-1,
- (iv) $\forall m, J, \varphi$ as before, and $\forall n \in \mathbb{N}_0^m$ with $0 < |n| \le k$ the function $f \circ \varphi$ is $n-\uparrow$.

(v) $\forall m, J, \varphi$ as before, and $\forall n \in \{0, 1\}^m$ with $0 < |n| \le k$ the function $f \circ \varphi$ is n-1.

Remark 2. For $k \ge d \ge 2$ and $f \ge 0$, the aforementioned function f is not only right-continuous (Lemma 1(ii)), but also $\mathbf{1}_{d}$ - \uparrow , hence a d.f. on I; however, with the extra property that $f \circ \varphi$ is a d.f., too, for any positive affine $\varphi : \mathbb{R}^m \to \mathbb{R}^d$. In other words, if $f(x) = P(X \le x)$ for some d-dimensional random vector X, and $k \ge m$, then also $y \mapsto P(X \le \varphi(y))$ is an m-dimensional d.f.

Proof. We show (i) \Leftrightarrow (ii) and (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (i).

(*i*) \Rightarrow (*ii*) is clear.

 $(ii) \Rightarrow (i)$: We use induction on k, k = 1 being obvious. Let now $k \ge 2$ and suppose the case k - 1 is already known. Fix some $h \in \mathbb{R}^d_+$ and consider $g \coloneqq \Delta_h f$, i.e., g(s) = f(s + h) - f(s). With

$$g_1(s) \coloneqq f(s + h_1e_1) - f(s),$$

$$g_2(s) \equiv f(s + h_1e_1 + h_2e_2) - f(s + h_1e_1),$$

...

we have $g = g_1 + g_2 + \dots + g_d$. Each g_i is \mathbf{n} - \uparrow for any $\mathbf{n} \in \mathbb{N}_0^d$ with $|\mathbf{n}| \le k - 1$; hence, (k - 1)- \uparrow by assumption, and so is then g. Since $h \in \mathbb{R}_+^d$ was arbitrary, f is k- \uparrow .

$$\begin{split} \underbrace{(i) \Rightarrow (iii):}_{} \text{Let } j \in [k], h^{(1)}, \dots, h^{(j)} \in \mathbb{R}^{m}_{+}, x \in J \text{ such that also } x + \sum_{i=1}^{j} h^{(i)} \in J. \text{ Then, with } \psi &= \varphi - \varphi(0), \\ \begin{bmatrix} \Delta_{h^{(1)}} \dots \Delta_{h^{(j)}} (f \circ \varphi) \end{bmatrix}(x) &= f \circ \varphi(x + h^{(1)} + \dots + h^{(j)}) \mp \dots + (-1)^{j} f \circ \varphi(x) \\ &= f(\varphi(0) + \psi(x + h^{(1)} + \dots + h^{(j)})) \mp \dots + (-1)^{j} f(\varphi(0) + \psi(x)) \\ &= f(\varphi(0) + \psi(x) + \psi(h^{(1)}) + \dots + \psi(h^{(j)})) \mp \dots + (-1)^{j} f(\varphi(0) + \psi(x)) \\ &= [\Delta_{\psi(h^{(1)})} \dots \Delta_{\psi(h^{(j)})} f](\varphi(0) + \psi(x)) \\ &= [\Delta_{\psi(h^{(1)})} \dots \Delta_{\psi(h^{(j)})} f](\varphi(x)) \ge 0, \end{split}$$

(note that $\varphi(x) + \sum_{i=1}^{j} \psi(h^{(i)}) = \varphi(x + \sum_{i=1}^{j} h^{(i)}) \in I$).

 $(iii) \Rightarrow (iv) \Rightarrow (v)$ is clear.

 $(\underline{v}) \Rightarrow (\underline{i})$: Let $j \in [k], x \in I, h^{(1)}, ..., h^{(j)} \in \mathbb{R}^d_+$ such that $x + h^{(1)} + ... + h^{(j)} \in I$. Denote by $\psi : \mathbb{R}^j \to \mathbb{R}^d$ the linear map whose matrix with respect to the standard bases is $(h^{(1)}, ..., h^{(j)})$ ($h^{(i)}$ as column vectors), $\varphi = x + \psi$; obviously, ψ (and φ) are positive. For $J = [\mathbf{0}_j, \mathbf{1}_j] \subseteq \mathbb{R}^j$, we have $\varphi(J) \subseteq I$, since $\psi(e_i) = h^{(i)} \quad \forall i \leq j, \varphi(\mathbf{0}_j) = x$ and $\varphi(\mathbf{1}_i) = x + \sum_{i=1}^j h^{(i)}$. By assumption,

$$0 \leq [\Delta_{1_i}^{1_j}(f \circ \varphi)](\mathbf{0}_j) = f(x + h^{(1)} + \dots + h^{(j)}) \mp \dots + (-1)^j f(x) = (\Delta_{h^{(1)}} \dots \Delta_{h^{(j)}} f)(x). \square$$

Corollary 1. Let $I \subseteq \mathbb{R}^d$ and $B \subseteq \mathbb{R}$ be non-degenerate intervals. If $g : I \to B$ and $f : B \to \mathbb{R}$ are both $k \cdot \uparrow$, then so is $f \circ g$.

Proof. We show Condition (iv) in Theorem 1 to hold for $f \circ g$. We know that $g \circ \varphi$ is \mathbf{n} - \uparrow for $|\mathbf{n}| \le k$. A special case of Theorem 12 in [12] implies $f \circ (g \circ \varphi)$ to be also \mathbf{n} - \uparrow , and $f \circ (g \circ \varphi) = (f \circ g) \circ \varphi$.

Theorem 2. Let $I \subseteq \mathbb{R}^{d_1}$ and $J \subseteq \mathbb{R}^{d_2}$ be non-degenerate intervals, $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, both non-negative and k- \uparrow . Then, also $f \otimes g$ is k- \uparrow on $I \times J$, and in case I = J, the product $f \cdot g$ is k- \uparrow , too.

Proof. We first apply (ii) of Theorem 1. For $0 \neq (\mathbf{m}, \mathbf{n}) \in \mathbb{N}_0^{d_1} \times \mathbb{N}_0^{d_2}, (x, y) \in I \times J, h^{(1)} \in \mathbb{R}_+^{d_1}, h^{(2)} \in \mathbb{R}_+^{d_2}$ we have

$$[\Delta_{(h^{(1)},h^{(2)})}^{m,n}(f \otimes g)](x,y) = (\Delta_{h^{(1)}}^{m}f)(x) \cdot (\Delta_{h^{(2)}}^{n}g)(y),$$

and for $|(\mathbf{m}, \mathbf{n})| = |\mathbf{m}| + |\mathbf{n}| \le k$, both factors on the right-hand side are non-negative. Since $\mathbf{m} = 0$ or $\mathbf{n} = 0$ is allowed, only $(\mathbf{m}, \mathbf{n}) \ne 0$ being required, we need in fact $f \ge 0$ and $g \ge 0$.

For I = J (with $d_1 = d_2 = d$), let $\varphi : \mathbb{R}^d \to \mathbb{R}^{2d}$ be given by $\varphi(x) = (x, x)$, a positive linear map. Then, $\varphi(I) \subseteq I \times I$, and by Theorem 1 (iii), $(f \otimes g) \circ \varphi = f \cdot g$ is also $k \cdot 1$.

We see that any monomial $f(x) = \prod_{i=1}^{d} x_i^{n_i}$ $(n_i \in \mathbb{N})$ is $k \to 0 \mathbb{R}^d_+$ for each $k \in \mathbb{N}$. If $c_i \in [0, \infty[$ then $\prod_{i=1}^{d} x_i^{c_i}$ is $k \to 0 \mathbb{R}^d_+$ at least for $c_i \ge k - 1$, i = 1, ..., d.

Examples 1. (a) For a > 0, the function $f(x, y) = (xy - a)_+$ is 2-↑ on \mathbb{R}^2_+ , since $t \mapsto (t - a)_+$ is 2-↑ on \mathbb{R}_+ , by Corollary 1. Its restriction to $[0, \sqrt{1 + a}]^2$ is therefore the d.f. of some random vector. In [12] on page 261, it was shown that f is not (2, 1)-↑ (resp. (1, 2)-↑), but it is of course (1, 1)-↑. The tensor product $g(x, y) = (x - a)_+ \cdot (y - b)_+$ is (2, 2)-↑ $\forall a, b > 0$; hence, certainly 2-↑, but not 3-↑ since $x \mapsto (x - a)_+$ is not.

Similarly, $(xyz - a)_+^2$ is 3- \uparrow on \mathbb{R}^3_+ , for a > 0, and of course, $(xy - a)_+^2$ is 3- \uparrow on \mathbb{R}^2_+ . We will see later on that xy + xz + yz - xyz is 2- \uparrow on $[0, 1]^3$, but not 3- \uparrow .

(b) Consider $f_n(t) = t^n/(1+t)$ for $t \ge 0$. It was shown in [7], Lemma 2.4, that f_n is n- \uparrow (it is not (n + 1)- \uparrow). So for any non-negative n- \uparrow function g on any interval in any dimension, $g^n/(1+g)$ is n- \uparrow , too.

If g is "only" an *n*-dimensional d.f., then so is also $g^n/(1 + g)$ – this follows from [11], Theorem 2, but is also a special case of Theorem 6 below.

3 Approximation by Bernstein polynomials

The proof of our main result relies heavily on these special polynomials, since they inherit the monotonicity properties of interest. To define them, we introduce for $r \in \mathbb{N}$, $i \in \{0, 1, ..., r\}$

$$b_{i,r}(t) \coloneqq \binom{r}{i} t^i (1-t)^{r-i}, \quad t \in \mathbb{R},$$

and for $\mathbf{i} = (i_1, ..., i_d) \in \{0, 1, ..., r\}^d$

$$B_{\mathbf{i},r} \coloneqq b_{i_1,r} \otimes \cdots \otimes b_{i_d,r}$$

For any $f: [0, 1]^d \to \mathbb{R}$, the associated Bernstein polynomials $f^{(1)}, f^{(2)}, \dots$ are defined by:

$$f^{(r)} \coloneqq \sum_{\mathbf{0}_d \leq \mathbf{i} \leq \mathbf{r}_d} f\left(\frac{\mathbf{i}}{r}\right) \cdot B_{\mathbf{i},r}.$$

It is perhaps not so well known, that for each continuity point x of f, we have

$$f^{(r)}(x) \to f(x), \quad r \to \infty.$$

This is shown for ex. in [14, page 296], based on the strong law of large numbers for independent Bernoulli trials. Well known is the uniform convergence of $f^{(r)}$ to f on $[0, 1]^d$ for a continuous function f.

In the following, the "upper right boundary" of $[0, 1]^d$ will play a role. Let for $\alpha \subseteq [d]$

$$T_a \coloneqq \{x \in [0,1]^d \mid x_i < 1 \Leftrightarrow i \in a\}.$$

Then, $[0, 1]^d = \bigcup_{\alpha \subseteq [d]} T_\alpha$ is a disjoint union, $T_{\emptyset} = \{\mathbf{1}_d\}$ and $T_{[d]} = [0, 1[^d]$. The union $\bigcup_{\alpha \subseteq [d]} T_\alpha$ is called the *upper right boundary* of $[0, 1]^d$.

For $f: [0, 1]^d \to \mathbb{R}$ with Bernstein polynomials $f^{(1)}, f^{(2)}, ..., \text{ let } f_{(\alpha)} = f|T_{\alpha}$, where for $\alpha \neq \emptyset$ T_{α} may be identified with $[0, 1]^{\alpha}$. Since for $y \in [0, 1]^{\alpha}$

$$B_{\mathbf{i},r}(y, \mathbf{1}_{\alpha^{c}}) = \begin{cases} B_{\mathbf{i}_{\alpha},r} & \text{if } \mathbf{i}_{\alpha^{c}} = \mathbf{r}_{\alpha^{c}} \\ 0 & \text{else,} \end{cases}$$

we obtain for $\emptyset \neq \alpha \subsetneq [d]$

$$(f_{(\alpha)})^{(r)}(y) = \sum_{\mathbf{i}_{\alpha} \leq \mathbf{r}_{\alpha}} f_{(\alpha)} \left(\frac{\mathbf{i}_{\alpha}}{r}\right) B_{\mathbf{i}_{\alpha}, r}(y),$$

where $f_{(\alpha)}\left(\frac{\mathbf{i}_{\alpha}}{r}\right) = f\left(\frac{\mathbf{i}_{\alpha}}{r}, \mathbf{1}_{\alpha^{\complement}}\right) = f\left(\frac{(\mathbf{i}_{\alpha}, \mathbf{r}_{\alpha^{\circlearrowright}})}{r}\right)$, and then

$$f^{(r)}(\mathbf{y}, \mathbf{1}_{a^{\ell}}) = \sum_{\mathbf{i} \le \mathbf{r}_{a}} f\left(\frac{\mathbf{i}}{r}\right) B_{\mathbf{i},r}(\mathbf{y}, \mathbf{1}_{a^{\ell}})$$
$$= \sum_{\mathbf{i}_{a} \le \mathbf{r}_{a}} f\left(\frac{(\mathbf{i}_{a}, \mathbf{r}_{a^{\ell}})}{r}\right) B_{\mathbf{i}_{a},r}(\mathbf{y})$$
$$= (f_{(a)})^{(r)}(\mathbf{y}).$$

In other words, the restriction of f to one of the parts T_a of the upper right boundary has as its Bernstein polynomials the restrictions of the original ones to T_a . This leads to the following.

Theorem 3. Let $f : [0, 1]^d \to \mathbb{R}$ have the property that each restriction $f|T_\alpha$ for $\emptyset \neq \alpha \subseteq [d]$ is continuous. Then, $\lim_{x \to \infty} f^{(r)}(x) = f(x) \quad \forall x \in [0, 1]^d$

$$\lim_{r \to \infty} f(x) = f(x) \quad \forall x \in [0, 1],$$

i.e., the Bernstein polynomials converge pointwise to f everywhere.

Proof. Each $x \in [0, 1]^d \setminus \{\mathbf{1}_d\}$ lies in exactly one T_a , i.e., $x = (x_a, \mathbf{1}_{a^c})$ with $x_a < \mathbf{1}_a$, where $\emptyset \neq \alpha \subseteq [d]$, and is thus a continuity point of $f_{(\alpha)} \coloneqq f \mid T_a$. As already mentioned, this implies

$$(f_{(\alpha)})^{(r)}(x_{\alpha}) \rightarrow f_{(\alpha)}(x_{\alpha}) = f(x_{\alpha}, \mathbf{1}_{\alpha^{\complement}}) = f(x),$$

and we saw also that

$$(f_{(\alpha)})^{(r)}(x_{\alpha}) = f^{(r)}(x_{\alpha}, \mathbf{1}_{\alpha^{\complement}}) = f^{(r)}(x).$$

Since $f^{(r)}(\mathbf{1}_d) = f(\mathbf{1}_d) \forall r$, the proof is complete.

For a function f of d variables, we will use a short notation for its partial derivatives (if they exist). Let $\mathbf{p} \in \mathbb{N}_{0}^{d} \setminus \{0\}$, then

$$f_{\mathbf{p}} \coloneqq \frac{\partial^{|\mathbf{p}|} f}{\partial x_1^{p_1} \dots \partial x_d^{p_d}}$$

complemented by $f_{\mathbf{0}_d} = f$.

Lemma 2. Let $f : [0, 1]^d \to \mathbb{R}$ be arbitrary, $0 \neq \mathbf{p} \in \mathbb{N}_0^d$. (i) If $\Delta_h^{\mathbf{p}} f \ge 0 \ \forall h \in \mathbb{R}^d_+$ then $(f^{(r)})_{\mathbf{p}} \ge 0 \forall r \in \mathbb{N}$. (ii) If f is in addition C^{∞} , then $f_{\mathbf{p}} \ge 0$.

Proof. (i) Applying the formula for derivatives of one-dimensional Bernstein polynomials [12, p. 273]*d* times, we obtain

$$(f^{(r)})_{\mathbf{p}} = c_{\mathbf{p}} \cdot \sum_{i \le \mathbf{r}_d - \mathbf{p}} \left(\Delta_{\frac{1}{r} \cdot \mathbf{1}_d}^{\mathbf{p}} \right) \left(\frac{\mathbf{i}}{r} \right) b_{i_1, r - p_1} \otimes \cdots \otimes b_{i_d, r - p_d}$$

with $c_{\mathbf{p}} \coloneqq \prod_{i=1}^{d} r(r-1) \cdot \ldots \cdot (r-p_i+1)$. Hence, $(f^{(r)})_{\mathbf{p}} \ge 0$.

(ii) By [14, Theorem 4] $(f^{(r)})_{\mathbf{p}} \rightarrow f_{\mathbf{p}}$, even uniformly, so $f_{\mathbf{p}} \ge 0$, too.

Theorem 4. Let $f : [0, 1]^d \to \mathbb{R}$ be a C^{∞} -function, $\mathbf{n} \in \mathbb{N}^d$, $k \in \mathbb{N}$. Then, (i) f is \mathbf{n} - $\mathbf{1} \Leftrightarrow f_{\mathbf{p}} \ge 0 \ \forall 0 \neq \mathbf{p} \le \mathbf{n}$, $\mathbf{p} \in \mathbb{N}_0^d$. (ii) f is k- $\mathbf{1} \Leftrightarrow f_{\mathbf{p}} \ge 0 \ \forall 0 < |\mathbf{p}| \le k$, $\mathbf{p} \in \mathbb{N}_0^d$.

Proof. (i) " \Rightarrow ": follows from Lemma 2.

"⇐": Let for $m \in \mathbb{N}$ $\sigma_m : \mathbb{R}^m \to \mathbb{R}$ be the sum function, $\sigma_n = \sigma_{n_1} \times \sigma_{n_2} \times \cdots \times \sigma_{n_d}$. By [13, Theorem 5], we have

$$f \text{ is } \mathbf{n} \cdot \uparrow \Leftrightarrow f \circ \sigma_{\mathbf{n}} \text{ is } \mathbf{1}_{|\mathbf{n}|} \cdot \uparrow \text{ on } J \coloneqq \prod_{i=1}^{d} \left[0, \frac{1}{n_i}\right]^{n_i}.$$

The chain rule gives

$$(f \circ \sigma_{\mathbf{n}})_{\mathbf{1}_{|\mathbf{n}|}} = f_{\mathbf{n}} \circ \sigma_{\mathbf{n}} \ge 0,$$

so that for $x, x + h \in J, h \ge 0$ by Fubini's theorem

$$(\Delta_h^{\mathbf{1}_{|\mathbf{n}|}}(f \circ \sigma_{\mathbf{n}}))(x) = \int_{[x,x+h]} (f \circ \sigma_{\mathbf{n}})_{\mathbf{1}_{|\mathbf{n}|}} \mathrm{d}\lambda^{|\mathbf{n}|} \ge 0.$$

The same reasoning can be applied to $0 \leq q \leq \mathbf{1}_{|\mathbf{n}|}$, so that indeed $f \circ \sigma_{\mathbf{n}}$ is $\mathbf{1}_{\mathbf{n}}$, i.e., f is \mathbf{n} .

(ii) This follows immediately from the first equivalence in Theorem 1.

Examples 2.

- (a) $f(x, y) = x^2y ax^2y^2 + y^2$ on $[0, 1]^2$, $0 < a \le \frac{1}{2}$. Since $f_p \ge 0$ for $\mathbf{p} \in \{(1, 0), (0, 1), (1, 1), (2, 0), (0, 2)\}$, f is 2- \uparrow ; but $f_{(1,2)}(x, y) = -4ax$ shows that f is neither 3- \uparrow nor (2, 2)- \uparrow .
- (b) $f: \mathbb{R}^2_+ \to \mathbb{R}$ is defined by f(0, 0) = 0 and else

$$f(x,y) \coloneqq \frac{xy(x^2 - y^2)}{x^2 + y^2} + 13 \cdot (x^2 + y^2) + 3xy,$$

(see [9, p. 321]), where it is given as an example of an ultramodular function on \mathbb{R}^2_+ (which does not automatically include that it is increasing). However, all partial derivatives f_p with $0 < |\mathbf{p}| \le 2$ are ≥ 0 ; hence, f is 2- \uparrow (and not 3- \uparrow).

(c) With the abbreviation $x^{\alpha} = \prod_{i \in a} x_i$ for $\alpha \subseteq [d]$, $x^{\emptyset} = 1$, a polynomial of the form

$$f(x) = \sum_{\alpha \subseteq [d]} c_{\alpha} x^{\alpha}$$

is called *multilinear*. f is affine in each variable; therefore, $f_{\mathbf{p}} = 0$ whenever $p_i > 1$ for some i. Hence, f is k- \uparrow iff $f_{\mathbf{p}} \ge 0 \forall \mathbf{p} \le \mathbf{1}_d$ with $0 < |\mathbf{p}| \le k$, and \mathbf{n} - \uparrow iff f is $(\mathbf{n} \land \mathbf{1}_d)$ - \uparrow . The example (d = 3)

$$f(x) \coloneqq x_1 x_2 + x_1 x_3 + x_2 x_3 - x_1 x_2 x_3$$

is thus 2-↑ on $[0, 1]^3$, but not 3-↑, since $f_{(1,1,1)} = -1$. And *f* is (n, n, 0)-↑ $\forall n$.

Theorem 5. Let $f : [0, 1]^d \to \mathbb{R}$, $\mathbf{2}_d \le \mathbf{n} \in \mathbb{N}_0^d$, $2 \le k \in \mathbb{N}$. The Bernstein polynomials of f are denoted $f^{(1)}, f^{(2)}, \dots$. (i) If f is \mathbf{n} -1, then so is each $f^{(r)}$, and $f^{(r)} \to f$ pointwise.

(ii) If f is k-1, then so is each $f^{(r)}$, and $f^{(r)} \rightarrow f$ pointwise.

Proof. In both cases, f is (at least) 2-1; therefore (by Lemma 1(ii)), the restriction $f|[0, 1[^d \text{ is continuous, and so}]$ are the other restrictions $f|T_\alpha$ for each non-empty $\alpha \subseteq [d]$. By Theorem 3, $f^{(r)}(x) \to f(x) \forall x$.

(i) Lemma 2 implies $(f^{(r)})_{\mathbf{p}} \ge 0 \forall r$ and $\forall 0 \neq \mathbf{p} \le \mathbf{n}$; hence, $f^{(r)}$ is \mathbf{n} - $\uparrow \forall r$.

(ii) Similarly now, $(f^{(r)})_{\mathbf{p}} \ge 0 \forall r$ and $\forall 0 < |\mathbf{p}| \le k$, showing $f^{(r)}$ to be k-1.

Of course, a similar result holds if $[0, 1]^d$ is replaced by any non-degenerate compact interval in \mathbb{R}^d .

4 Main results

The proof of Theorem 6 makes use of a far-reaching simultaneous generalization of the usual multivariate chain rule and Faà di Bruno's formula. This admirable result was shown by Constantine and Savits [3, Theorem 2.1], and we present it here, keeping (almost) their notation.

Let $d, m \in \mathbb{N}$, let $g_1, ..., g_m$ be defined and C^{∞} in a neighborhood of $x^{(0)} \in \mathbb{R}^d$ (real-valued), put $g \coloneqq (g_1, ..., g_m)$, and let f be defined and C^{∞} in a neighborhood of $y^{(0)} \coloneqq g(x^{(0)}) \in \mathbb{R}^m$.

For $\mu, \nu \in \mathbb{N}_0^d$, the relation $\mu < \nu$ holds iff one of the following three assertions is true:

- (i) $|\mu| < |\nu|$,
- (ii) $|\mu| = |\nu|$ and $\mu_1 < \nu_1$,
- (iii) $|\mu| = |\nu|, \mu_1 = \nu_1, \dots, \mu_k = \nu_k, \mu_{k+1} < \nu_{k+1}, \exists k \in [d-1],$

(implying $\mu \neq \nu$).

Examples:

- (a) (1, 3, 0, 4, 1) < (1, 3, 1, 1, 3), here k = 2,
- (b) $e_d < e_{d-1} < \cdots < e_1$,
- (c) For d = 1 we have $\mu < \nu \Leftrightarrow \mu < \nu$.

We need some abbreviations:

$$\begin{split} D_{x}^{\nu} &= \frac{\partial^{|\nu|}}{\partial x_{1}^{\nu_{1}} \dots \partial x_{d}^{\nu_{d}}} \quad \text{for } |\nu| > 0, \quad D_{x}^{0} f = f \\ x^{\nu} &= \prod_{i=1}^{d} x_{i}^{\nu_{i}}, \quad \nu! = \prod_{i=1}^{d} \nu_{i}!, \quad |\nu| = \sum_{i=1}^{d} \nu_{i} \\ g_{\mu}^{(i)} &= (D_{x}^{\mu} g_{i})(x^{(0)}), \quad g_{\mu} = (g_{\mu}^{(1)}, \dots, g_{\mu}^{(m)}) \\ f_{\lambda} &= (D_{y}^{\lambda} f)(y^{(0)}) \\ h &= f \circ g, \quad h_{\nu} = (D_{x}^{\nu} h)(x^{(0)}), \end{split}$$

and, for $v \in \mathbb{N}_0^d$, $\lambda \in \mathbb{N}_0^m$, $s \in \mathbb{N}$, $s \le |v|$

$$P_{s}(\nu,\lambda) \coloneqq \left\{ (k_{1}, \dots, k_{s}; l_{1}, \dots, l_{s}) \mid |k_{j}| > 0, 0 < l_{1} < \dots < l_{s}, \sum_{j=1}^{s} k_{j} = \lambda, \sum_{j=1}^{s} |k_{j}| l_{j} = \nu \right\},\$$

where (of course) $k_i \in \mathbb{N}_0^m$ and $l_i \in \mathbb{N}_0^d$. (For some values of *s*, these sets may be empty.)

The announced formula by Constantine and Savits then reads

$$h_{\nu} = \sum_{1 \le |\lambda| \le |\nu|} f_{\lambda} \cdot \sum_{s=1}^{|\nu|} \sum_{P_{s}(\nu,\lambda)} \nu! \cdot \prod_{j=1}^{s} \frac{(g_{l_{j}})^{k_{j}}}{(k_{j}!) \cdot (l_{j}!)^{|k_{j}|}}.$$
 (**)

This formula reduces for d = 1 to the classical one of Faà di Bruno from 1855 (see [3,4]).

One more result is needed, allowing general d.f.s to be "replaced" by C^{∞} ones:

Lemma 3.

- (i) Let (Ω, A, ρ) be a finite measure space and Ø ≠ B ⊆ A a finite collection of measurable sets. Then, there is another finite measure ρ₀ on A with finite support such that ρ₀|B = ρ|B.
- (ii) Let F on \mathbb{R}^d be the d.f. of some finite measure and $\emptyset \neq B \subseteq \mathbb{R}^d$ a finite subset. Then, there is a C^{∞} d.f. \tilde{F} on \mathbb{R}^d such that $\tilde{F}|B = F|B$.

Proof. (i) The set algebra generated by \mathcal{B} is still finite, and thus generated by a (unique) partition $\{A_1, ..., A_n\}$ of Ω . Choose $x_i \in A_i$ for each $i \le n$, and put $\rho_0 = \sum_{i=1}^n \rho(A_i) \cdot \varepsilon_{x_i}$.

(ii) Let *F* be the d.f. of ρ , i.e., $F(x) = \rho(]-\infty, x]$ $\forall x \in \mathbb{R}^d$. Then, apply (i) to $\mathcal{B} = \{]-\infty, b] \mid b \in B\}$, and denote by F_0 the d.f. of ρ_0 . Since ρ_0 has finite support, Lemma 3 of [11] is applicable, whose (short) proof provides a d.f. \tilde{F} as desired.

Theorem 6. Let $f : [0, 1]^m \to \mathbb{R}_+$ be $d \to (d \ge 2)$ and let $g_1, ..., g_m : \mathbb{R}^d \to [0, 1]$ be d.f.s of (subprobability) measures on \mathbb{R}^d . Then, also $f \circ (g_1, ..., g_m)$ is a d.f. on \mathbb{R}^d .

Proof. Put $g = (g_1, ..., g_m) : \mathbb{R}^d \to [0, 1]^m$, $h = f \circ g$. By Lemma 1, also h is right-continuous, and it remains to show that h is $\mathbf{1}_{d^-\uparrow}$, the crucial property of a d.f. on \mathbb{R}^d .

A consequence of Theorem 5 is that we may assume f to be C^{∞} , and we first let also g_1, \dots, g_m be C^{∞} functions.

Switching to the terminology in connection with the aforementioned generalized Faà di Bruno formula, we have to show $h_{\nu} \ge 0$ for $\nu \le \mathbf{1}_d$. Then, $|\nu| \le d$, and for $\lambda \in \mathbb{N}_0^m$ with $|\lambda| \le |\nu|$, we have $f_{\lambda} \ge 0$, by Theorem 4(ii). The condition

$$\sum_{j=1}^{s} |k_j| \ l_j = v$$

in the set $P_s(v, \lambda)$, together with $|k_j| > 0$ and $l_j \neq 0 \forall j$, reduces to $|k_j| = 1 \forall j$ and

$$\sum_{j=1}^{s} l_j = v,$$

so that the l_j are "disjoint" in an obvious sense, i.e., $l_j \in \{0, 1\}^d \setminus \{\mathbf{0}_d\}$ and $l_i \wedge l_j = \mathbf{0}_d$ for $i \neq j$. In particular, $g_{l_i} \ge 0 \ \forall j$, each g_i being a d.f. Formula (**) now shows $h_{\nu} \ge 0$.

Now to the general case: in order to see that $h = f \circ g$ is $\mathbf{1}_{d}$ - \uparrow , we have to show for given $x \in \mathbb{R}^{d}$ and $\xi \in \mathbb{R}^{d}_{+}$

$$(\Delta_{\xi}^{\mathbf{1}_d}h)(x) = h(x+\xi) \mp \dots + (-1)^d h(x) \ge 0$$

(as well as the analogue for some variables fixed, which is shown similarly).

In Lemma 3, we choose the finite set

$$\left\{x + \sum_{i \in a} \xi_i e_i \mid a \subseteq [d]\right\} = B$$

and find C^{∞} d.f.s $\tilde{g}_1, \dots, \tilde{g}_m$ such that $\tilde{g}_i | B = g_i | B$ for each $i \leq m$. Then,

$$0 \leq (\Delta^{\mathbf{1}_d}_{\xi}(f \circ \tilde{g}))(x) = (\Delta^{\mathbf{1}_d}_{\xi}h)(x),$$

thus finishing the proof.

Remark 3. The aforementioned theorem answers positively a question in the concluding remarks of [5]. For d = 2, this result was shown in [6], Theorem 3.1.

Remark 4. If for a given f the conclusion of Theorem 6 holds for all d.f.s $g_1, ..., g_m$, then f must be d- \uparrow . This follows from Theorem 1(v), since each component of an affine positive function φ is of course $\mathbf{1}_{d}$ - \uparrow .

Examples 3.

- (a) We saw before that $f(x) \coloneqq x_1x_2 + x_1x_3 + x_2x_3 x_1x_2x_3$ is $2 \uparrow 0$ n $[0, 1]^3$. Hence, for arbitrary bivariate d.f.s g_1, g_2 and g_3 also $g_1g_2 + g_1g_3 + g_2g_3 g_1g_2g_3$ is a d.f., while f itself is not a three-dimensional d.f..
- (b) Put f_a(t) = (t − a)₊/(1 − a) for t ∈ [0, 1] and a ∈ [0, 1[, complemented by f₁ = 1_{1}. Then, {fⁿ_a | a ∈ [0, 1]} are the "essential" extreme points for (n + 1)-↑ functions on [0, 1], and {fⁿ₁_{a1} ⊗ …⊗fⁿ_{ad} | a ∈ [0, 1]^d} correspondingly for (n + 1_d)-↑ functions on [0, 1]^d, cf. [12]. In the bivariate case, f_a ⊗ f_b is (2, 2)-↑, in particular 2-↑, so that f_c ∘ (f_a ⊗ f_b) is 2-↑ on [0, 1]². For any bivariate d.f.s g₁ and g₂, we see that

$$\left[\frac{(g_1 - a)_+ (g_2 - b)_+}{(1 - a) (1 - b)} - c\right]_+, \quad (a, b, c) \in [0, 1[^3$$

10 — Paul Ressel

is again a bivariate d.f..

Another important property of k- \uparrow functions is their "universal" compatibility and composability within their class, which is made precise in the following.

Theorem 7. Let $m, d, k \in \mathbb{N}$, $J \subseteq \mathbb{R}^m$ and $I \subseteq \mathbb{R}^d$ be non-degenerate intervals, $g = (g_1, ..., g_m) : I \to J, f : J \to \mathbb{R}$, each g_i and f being k- \uparrow . Then, also $f \circ g$ is k- \uparrow .

Proof. The case k = 1 being obvious, let us assume $k \ge 2$. Since any non-degenerate interval is an increasing union of compact non-degenerate subintervals, we may choose $I = [0, 1]^d$ and $J = [0, 1]^m$.

By Theorem 1, we have to show that $h = f \circ g$ is \mathbf{n} - \uparrow for any $\mathbf{n} \in \mathbb{N}_0^d$ such that $0 < |\mathbf{n}| \le k$. Since the variables i with $n_i = 0$ do not enter, we may and do assume $\mathbf{n} \in \mathbb{N}^d$, in particular $k \ge d$. Then, each g_i is \mathbf{n} - \uparrow , or equivalently, by [13, Theorem 5], $g_i \circ \sigma_{\mathbf{n}}$ is $\mathbf{1}_{|\mathbf{n}|}$ - \uparrow on $\prod_{i \le d} \left[0, \frac{1}{n_i}\right]^{n_i}$. Theorem 6 above now implies that also $f \circ (g_1 \circ \sigma_{\mathbf{n}}, ..., g_m \circ \sigma_{\mathbf{n}}) = h \circ \sigma_{\mathbf{n}}$

is $\mathbf{1}_{|\mathbf{n}|}$, which in turn means that h is \mathbf{n} - \uparrow .

Remark 5. We mentioned earlier that k-1 functions were considered already in [2], where our Theorem 7 is stated as Theorem 2. However, the proof given there is not a real one, in my opinion: the function g disappears more or less after a few lines, the terminology and notation are nearly "chaotic," and I consider the reasoning incomprehensible. Of course, in theory, a completely "elementary" proof might be possible, but then discrete analogues of formula (**) would have to appear, and this might get "out of control." In [5, 8], Bronevich's Theorem 2 is cited, without any comments on the proof. The special case k = 2 is proved in [6].

An open problem

While **n**- \uparrow functions on $[0, 1]^d$, non-negative and normalized, are a Bauer simplex, with "essentially" certain powers of $\{f_{a_1} \otimes \cdots \otimes f_{a_d} \mid a \in [0, 1]^d\}$ as their extreme points (Example 3(b)), not much so far is known for k- \uparrow functions. Let us consider d = k = 2 and

$$K \coloneqq \{f : [0, 1]^2 \to [0, 1] \mid f \text{ is } 2\text{-} \uparrow \text{ and } f(1, 1) = 1\}.$$

K is obviously convex and compact and also stable under (pointwise) multiplication. It is easy to see that each $f_c \circ (f_a \otimes f_b)$ is an extreme point of *K* – but that is it, for the time being.

Acknowledgments: Thanks are due to the two reviewers for their constructive suggestions that certainly improved the presentation.

Funding information: No funding is involved.

Conflict of interest: The author states no conflict of interest.

References

- [1] Boas, R. P., & Widder, D. V. (1940). Functions with positive differences. Duke Mathematical Journal, 7, 496–503.
- [2] Bronevich, A. G. (2005). On the closure of families of fuzzy measures under eventwise aggregations. *Fuzzy Sets and Systems*, 153, 45–70.
- [3] Constantine, G. M., & Savits, T. H. (1996). A multivariate Faa di Bruno formula with applications. *Transactions of the AMS*, 348, 503–520.
- [4] Faà di Bruno, F.. (1855). Sullo sviluppo delle funzioni. Annali di Scienze Mathematiche e Fisiche, 6, 479–480.
- [5] Klement, E. P., Manzi, M., & Mesiar, R. (2010). Aggregation functions with stronger types of monotonicity, (pp. 418–424). In: LNAI 6178. New York: Springer.

- [6] Klement, E. P., Manzi, M., & Mesiar, R. (2011). Ultramodular aggregation functions. Information Sciences, 181, 4101–4111.
- [7] Koumandos, S., & Pedersen, H. L. (2009). Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function. *Journal of Mathematical Analysis and Applications*, 355, 33–40.
- [8] Manzi, M. (2011). New construction methods for copulas and the multivariate case. Tesi (Padova), BN 2013-396T.
- [9] Marinacci, M., & Montrucchio, L. (2005). Ultramodular functions. Mathematics of Operations Research, 30, 311–332.
- [10] Ressel, P. (2011). Monotonicity properties of multivariate distribution and survival functions With an application to Lévy-frailty copulas. *Journal of Multivariate Analysis*, *102*, 393–404.
- [11] Ressel, P. (2012). Functions operating on multivariate distribution and survival functions With applications to classical mean values and to copulas. *Journal of Multivariate Analysis*, 105, 55–67.
- [12] Ressel, P. (2014). Higher order monotonic functions of several variables. *Positivity*, 18, 257–285.
- [13] Ressel, P. (2019). Copulas, stable tail dependence functions, and multivariate monotonicity. Dependence Modeling, 7, 247-258.
- [14] Veretennikov, A. Y., & Veretennikova, E. V. (2016). On partial derivatives of multivariate Bernstein polynomials. Siberian Advances in Mathematics, 26, 294–305.