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Abstract
Compounding submodular monotone (i.e. 2-alternating) set functions on a finite set
preserves this property, as shown in 2010. A natural generalization to k-alternating
functions was presented in 2018, however hardly readable because of page long for-
mulas. We give an easier proof of a more general result, exploiting known properties
of higher order monotonic functions.
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1 Introduction

Let V be a finite non-empty set. A function ϕ : P(V ) −→ R on P(V ), the set of all
subsets of V , i.e. a socalled pseudo-Boolean function, is submodular if

ϕ(A ∪ {v}) − ϕ(A) ≥ ϕ(B ∪ {v}) − ϕ(B) (1)

for all A ⊆ B and all v ∈ V \B. And ϕ is increasing if ϕ(A) ≤ ϕ(B) whenever
A ⊆ B ⊆ V . Condition (1) has in many applications the interpretation that the
marginal effect expressed by ϕ decreases for larger subsets (the property of “diminish-
ing returns”). It is not surprising that submodular increasing functions are modelling
many situations, both technical and social, for example the influence in social net-
works. In this connection an interesting aggregation problem had been posed in [1]:
does “local” submodularity imply the corresponding property “globally”? This was
confirmed 10 years later in [2]. Now, in another “language”, an increasing submod-
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ular function ϕ on P(V ) is “2-alternating” on {0, 1}V ∼= P(V ), and it seems natural
to consider the more general case of “k-alternating” functions. For example, ϕ is 3-
alternating if, in addition to being increasing and submodular, the difference between
the left and right hand side in (1) is further diminished if one more element is added.
This idea is suggested in the recent work [3], whose central mathematical result (Theo-
rem 4) however is given a very complicated and hardly readable proof, with page-long
formulas. We shall give a much more transparent proof, based on existing theorems
about higher order monotonic functions. Our result is also considerably more general.

Notations
N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . . , }, R+ = [0,∞[, P(V ) = set of all subsets

of V ,

1A(x) :=
{
1, x ∈ A
0, x /∈ A

, [d] := {1, 2, . . . , d} for d ∈ N, 1d := (1, 1, . . . , 1) ∈ N
d ,

|n| := ∑d
i=1 ni for n ∈ N

d
0 , |α| := cardinality of a finite set α.

These two uses of the same symbol can hardly be mixed up; in fact, for a = 1α ∈
{0, 1}d we have |a| = |α|.

( f × g)(x, y) := ( f (x), g(y)) for mappings f , g,
( f , g)(x) := ( f (x), g(x)) for mappings f , g with the same domain
〈σ, τ 〉 := {γ |σ ⊆ γ ⊆ τ } a set-interval where (usually) σ ⊆ τ

〈σ, σ 〉 = {σ } is a special case
A∪· B,

⋃·
j A j for disjoint unions, d.f. = distribution function (of some measure),

x � y := (x1y1, x2y2, . . .) and x ∨ y := (x1 ∨ y1, x2 ∨ y2, . . .) for two vectors x, y
of equal dimension.

2 Multivariate higher order monotonicity

Let I1, . . . , Id ⊆ Rbenon-degenerate intervals, I := I1×· · ·×Id , and let f : I −→ R

be any function. For s ∈ I , h ∈ R
d+ such that also s + h ∈ I put

(Eh f )(s) := f (s + h)

and �h := Eh − E0, i.e. (�h f )(s) := f (s + h) − f (s), and ∇h := −�h .
Since {Eh} is commutative (where defined), so are {�h} and {∇h}. In particular,

with e1, . . . , ed denoting the standard unit vectors inR
d ,�h1e1, . . . ,�hded commute.

As usual �0
h f := f =: ∇0

h f . For n = (n1, . . . , nd) ∈ N
d
0 and h ∈ R

d+ we put

�n
h := �

n1
h1e1

�
n2
h2e2

. . . �
nd
hded

and similarly ∇n
h . The multinomial theorem gives

(
�n

h f
)
(s) =

∑
0≤q≤n

(−1)|n|−|q|
(
n
q

)
f (s + q � h). (2)
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Note that �
1d
h �= �h for d > 1 and h �= 0. Also, �n

h = 0 if hi = 0 < ni for some
i ≤ d .

Definition f : I −→ R is called

(i) n-increasing (“n -↑”) if

(�
p
h f )(s) ≥ 0

for all s ∈ I , h ∈ R
d+, p ∈ N

d
0 , 0 �= p ≤ n such that s + p � h ∈ I

(ii) n-decreasing (“n -↓”) if instead
(∇ p

h f
)
(s) ≥ 0

(iii) n-alternating (“n -�”) if instead
(∇ p

h f
)
(s) ≤ 0.

It is easy to see that, using the notation ( f (−·))(s) := f (−s),

f is n -↓ on I ⇐⇒ f (−·) is n -↑ on − I

f is n -� on I ⇐⇒ − f (−·) is n -↑ on − I .

For n ∈ {0, 1}d the I j considered here need not be intervals, just non-empty subsets
of R, or even R. Right-continuous bounded non-negative 1d - ↑ functions on I are

precisely the distribution functions (“d.f.s”) of finitemeasures on I (closure inR
d
), see

[4] Theorem 7, a result which will be used later on. Functions which are 1d -↑ (↓,�)

are also called fully d-increasing (-decreasing, -alternating), and this notion will now
be extended:

Definition Let I1, . . . , Id ⊆ R be any non-empty subsets, I := I1 × · · · × Id , 1 ≤
k ≤ d. Then f : I −→ R is fully k-increasing (“1k -↑”) iff

(�
p
h f )(s) ≥ 0 for each 0 � p ≤ 1d with |p| ≤ k

and for each s ∈ I and h ∈ R
d+ such that s + p � h ∈ I .

If instead (∇ p
h f )(s) ≥ 0 we call f fully k-decreasing (“1k -↓”) and if (∇ p

h f )(s) ≤
0 , f is by definition fully k-alternating (“1k -�”).

For the important special case where I j = {0, 1} ∀ j ≤ d, i.e. for (“pseudo-
Boolean”) functions on {0, 1}d , it is sometimes useful to identify {0, 1}d with
P([d]) := {α|α ⊆ [d]}. Since �1

0 = 0 and �0
1 = id = �0

0, only �
p
h with

h = p ∈ {0, 1}d\{0} have to be considered. It is then reasonable to use the sim-
plified notation
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�α := �a
a for a = 1α ∈ {0, 1}d\{0}

(complemented by �∅ = id).
We write likewise Eα := Ea . Both �α f and Eα f have the domain {γ ⊆ [d]|γ ⊆

αc}, and for γ ⊆ αc

(�α f )(γ ) = ((Eγ �α)( f ))(∅) = ((�αEγ )( f ))(∅).

Clearly �α ◦ �β = �α∪β for disjoint α, β. Note that

(�α f )(∅) = f (α) −
∑
γ⊆α

|γ |=|α|−1

f (γ ) +
∑
γ⊆α

|γ |=|α|−2

f (γ ) ∓ · · · + (−1)|α| f (∅).

The following identity (for x1, . . . , xd ∈ R)

d∏
i=1

xi =
d∏

i=1

[(xi − 1) + 1] =
∑

α⊆[d]

∏
i∈α

(xi − 1)

(∏
∅

:= 1

)

holds of course also within the commutative algebra generated by {E{i}|i ∈ [d]}, and
leads to

∑
α⊆[d]

�α =
d∏

i=1

E{i} = E[d],

i.e. to
∑

α⊆[d](�α f )(∅) = f ([d]).
Slightly more general, and of importance later on, for β ⊆ γ ⊆ [d]

∑
α∈〈β,γ 〉

�α = �β

∑
α⊆γ \β

�α = �βEγ \β. (3)

We mention that fully k-alternating pseudo-Boolean functions are called “AD−k”
in [3].

3 Multilinear polynomials

Any (pseudo-Boolean) function f : {0, 1}d −→ R has an extension f̃ to a socalled
multilinear polynomial

f̃ (x) :=
∑

α⊆[d]
f (α)xα(1 − x)α

c
, x ∈ R

d (4)

where we use the abbreviations xα := ∏
i∈α xi , x∅ := 1 and 1 := 1d . “Multilinear”

means here that no variable appears in a power > 1 in f̃ ; f̃ is therefore an affine
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function of each variable xi . Note that f̃ (1α) = f (α)∀ α ⊆ [d], so f̃ is uniquely
determined; or in other words, each multilinear polynomial is the extension of its
restriction to {0, 1}d , where we freely identify α ⊆ [d] with 1α ∈ {0, 1}d . It is
immediate that f ≥ 0 iff f̃ | [0, 1]d ≥ 0.

Let for ∅ �= β ⊆ [d] the partial derivative of f̃ w.r. to xi , i ∈ β be ∂β f̃ (every other
partial derivative of f̃ is obviously 0). Then for any p ∈ [d]

(∂{p} f̃ )(x) =
∑

α⊆[d]\{p}
(�{p} f )(α)xα(1 − x)[d]\(α∪{p})

by an application of the product role, i.e. ∂{p} f̃ is multilinear in xi for i ∈ [d]\{p}.
By iteration we obtain for any ∅ �= β ⊆ [d]

(∂β f̃ )(x) =
∑

α⊆[d]\β
(�β f )(α)xα(1 − x)[d]\(α∪β) (5)

including finally

(∂ [d] f̃ )(x) = (�[d] f )(∅), a constant.

That is, ∂β f̃ is the multilinear extension of �β f on {0, 1}βc
.

Now (5) implies
(∂β f̃ )(0) = (�β f )(∅), β ⊆ [d], (6)

and in the likewise “canonical” representation

f̃ (x) =
∑

α⊆[d]
cαx

α

we have obviously cα = (∂α f̃ )(0). Combining this with (6) we get

f̃ (x) =
∑
α

(�α f )(∅)xα. (7)

We’ll need later on the following result:

Lemma 1 For f : {0, 1}d −→ R and its multilinear extension f̃ we have

f is 1k -↑⇐⇒ f̃ i s 1k -↑ on [0, 1]d .

Proof f̃ is a polynomial, in particular C∞. Therefore f̃ is 1k - ↑ (on [0, 1]d) if and
only if

(∂β f̃ )(x) ≥ 0 ∀ |β| ≤ k, ∀ x ∈ [0, 1]d
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3 Page 6 of 13 P. Ressel

which, as we just saw, is equivalent with

(�β f )(α) ≥ 0 ∀ |β| ≤ k, ∀α ⊆ βc,

the defining property of f being 1k -↑. ��
Example 1 For d = 3, k = 2 consider f : P([3]) −→ R given by f (α) := |α| ∨ 1.
Then

f̃ (x) = 1 + x1x2 + x1x3 + x2x3 − x1x2x3

and

(∂{1} f̃ )(x) = x2 + x3 − x2x3 etc.

(∂{1,2} f̃ )(x) = 1 − x3 etc.

are all non-negative on [0, 1]3; however

∂{1,2,3} f̃ = −1,

showing f to be 12 -↑, but not 13 -↑. Slightly more general, f (α) := |α| ∨ 1 is for
any d ≥ 3 12 -↑ and not 13 -↑: we have

f̃ (x) =
d∑

i=1

xi +
d∏

i=1

(1 − xi ),

whence

(∂{i} f̃ )(x) = 1 −
∏

 �=i

(1 − x
),

(∂{i, j} f̃ )(x) =
∏


 �=i, j

(1 − x
) for i �= j,

and

∂α f̃ (0) = −1 for |α| = 3.

4 A combinatorial intermezzo

The following Lemma (of combinatorial nature) will play a crucial role in the proof
of the main result. We shall use set-intervals in P([d]) of the form

〈σ, τ 〉 := {γ | σ ⊆ γ ⊆ τ },
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including as a special case singletons

〈σ 〉 := 〈σ, σ 〉 = {σ }.

Note that 〈σ, τ 〉 �= ∅ iff σ ⊆ τ, and that

〈σ1, τ1〉 ∩ 〈σ2, τ2〉 = 〈σ1 ∪ σ2, τ1 ∩ τ2〉.

Lemma 2 Let k, d ∈ N, k ≤ d, and x1, . . . , xd ∈ R
k . For non-empty α, β ⊆ [d]

define

α ∼ β :⇐⇒ max
i∈α

xi = max
i∈β

xi (∈ R
k).

Then {γ ⊆ [d] | |γ | ≥ k} is the disjoint union of set-intervals 〈σ j , τ j 〉 with |σ j | =
k, σ j ⊆ τ j and σ j ∼ τ j for each j .

Proof For k = 1 we may assume x1 ≤ x2 ≤ · · · ≤ xd , and then

{γ ⊆ [d] | |γ | ≥ 1} = 〈{d}, [d]〉∪· 〈{d − 1}, [d − 1]〉∪· · · · ∪· 〈{2}, [2]〉∪· 〈{1}〉

has the required properties.
For k ≥ 2 and d = k + 1 choose α ⊆ [d] of size k such that α ∼ [d] (which is

evidently possible for any d > k ). Then

{γ ⊆ [d] | |γ | ≥ k} = 〈α, [d]〉∪· ⋃·
a∈α 〈[d]\{a}〉.

We now proceed by induction and suppose the result to be true for some d ≥ 3 and
each k ≤ d. Let x1, . . . , xd+1 ∈ R

k be given, k ≥ 2. It is no restriction to assume
k < d and

xd+1(k) = max
i≤d+1

xi (k).

By assumption,

{γ ⊆ [d] | |γ | ≥ k} = ⋃·
j 〈ξ j , η j 〉

is the disjoint union of set-intervals, with ξ j ⊆ η j ⊆ [d], |ξ j | = k and ξ j ∼ η j for
each j . Let yi := (xi (1), . . . , xi (k−1)) ∈ R

k−1 be the projection of xi , i = 1, . . . , d.
Making use once more of the induction hypothesis we have

{γ ⊆ [d] | |γ | ≥ k − 1} = ⋃·
p 〈αp, βp〉

with αp ⊆ βp ⊆ [d], |αp| = k − 1, αp ≈ βp for all p, where α ≈ β means
max
i∈α

yi = max
i∈β

yi (∈ R
k−1).
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We now put

α p := αp ∪ {d + 1}, β p := βp ∪ {d + 1},

then |α p| = k, α p ⊆ β p ⊆ [d + 1], and α p ∼ β p, since for 
 < k

max
i∈α p

xi (
) =
(
max
i∈αp

xi (
)

)
∨ xd+1(
)

=
(
max
i∈αp

yi (
)

)
∨ xd+1(
)

=
(
max
i∈βp

yi (
)

)
∨ xd+1(
)

= max
i∈β p

xi (
)

and

max
i∈α p

xi (k) = xd+1(k) = max
i∈β p

xi (k).

For any j and p we have

〈ξ j , η j 〉 ∩ 〈α p, β p〉 = 〈ξ j ∪ α p, η j ∩ β p〉 = ∅

since d + 1 ∈ α p, but d + 1 /∈ η j .
For p �= q likewise

〈α p, β p〉 ∩ 〈αq , βq〉 = ∅

because otherwise αp ∪ αq ⊆ βp ∩ βq , contradicting the choice of αp, βp .
So, finally

{γ ⊆ [d + 1]| |γ | ≥ k} = ⋃·
j 〈ξ j , η j 〉∪· ⋃·

p〈α p, β p〉

is a partition into disjoint set-intervals as claimed. ��

5 Themain result

In [3], Theorem 4 the following is shown: let f : {0, 1}d −→ [0, 1] and g1, . . . , gd :
{0, 1}k −→ [0, 1] be all fully k-alternating (“1k -�”), then also their “compounding”
h : {0, 1}k −→ R, defined by

h(x) :=
∑

α⊆[d]
f (α)

∏
i∈α

gi (x)
∏
j∈αc

(1 − g j (x))
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has this property. The proof there is based on the multilinear extensions of f , {gi } and
h, but it is hardly readable, with formulas longer than a page. Since the result is true
(see below), I believe their proof is, too, although I didn’t check it in detail—by lack
of patience.

We will prove a more general result, allowing g1, . . . , gd to be any 1k -� functions

on an arbitrary product subset ofR
k
. Only f has to remain a pseudo-Boolean function.

We shall first deal with 1k -↑ functions (generalizing increasing supermodular func-
tions), and then deduce from it the statement about 1k -� functions in a straightforward
way.

We shall need the following approximation result.

Lemma 3 Let A = A1 × · · · × Ak be a product of non-empty subsets A j ⊆ R, and
let g : A −→ [0, 1] be 1k - ↑ and such that sup g(A) = 1. Then there is a net (gα)

of distribution functions of probability measures with finite support contained in A,

which converges pointwise to g.

Proof Let α j ⊆ A j be finite and non-empty, 1 ≤ j ≤ k, and α := α1 × · · · × αk;
we may assume the α j so large that g(max α) > 0. The restriction g | α is 1k - ↑,

(automatically right-continuous on α(!) ), and so there exists by [4], Theorem 7 a
finite measure να on α with d.f. g | α. We have να(α) = g(max α) > 0, hence
μα := να/g(max α) is a probability measure on α, which is extended trivially to a
probability measure on A, with μα(A\α) := 0. By gα : A −→ [0, 1] we denote the
d.f. of this extended μα .

In order to see that gα converges pointwise to g, let 0 < ε < 1/2 and some (finite,
non-empty) product set α0 ⊆ A be given. Choose α ⊇ α0 (a product set, too) so large,
such that g(max α) ≥ 1 − ε. Then for any a ∈ α

|gα(a) − g(a)| =
∣∣∣∣ g(a)

g(max α)
− g(a)

∣∣∣∣ = g(a) · 1 − g(max α)

g(max α)

≤ g(a)
ε

1 − ε
≤ 2ε.

Noting that the family of finite product sets in A is upwards filtering, the proof is
complete. ��
Theorem 1 Let k, d ∈ N, k ≤ d,∅ �= A j ⊆ R for j = 1, . . . , k, A := A1 ×· · ·× Ak.
Let gi : A −→ [0, 1] for i = 1, . . . , d and f : {0, 1}d −→ R be given. Define
h : A −→ R by

h(x) :=
∑

α⊆[d]
f (α)

∏
i∈α

gi (x)
∏
j∈αc

[1 − g j (x)].

Then, if g1, . . . gd and f are all 1k -↑, so is h.

Proof With f̃ as the multilinear extension of f , and g := (g1, . . . , gd) : A −→
[0, 1]d , we have h = f̃ ◦ g, and by Lemma 1 f̃ is also 1k -↑ on [0, 1]d .
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We first consider the case that gi is the d.f. of some one-point measure εai , where
ai ∈ A. Then

gi = 1[ai ,∞]∩A

and for ∅ �= α ⊆ [d]
∏
i∈α

gi = 1[max
i∈α

ai ,∞]∩A,

and then by (7)

f̃ ◦ g =
∑

α⊆[d]
(�α f )(∅) ·

∏
i∈α

gi

=
∑

α⊆[d]
(�α f )(∅) · 1[maxi∈α ai ,∞]∩A.

For k = d we have (�α f )(∅) ≥ 0 for each α ⊆ [d], implying directly that f̃ ◦ g
is 1k -↑, too. For k < d we apply Lemma 2, i.e.

{γ ⊆ [d] | |γ | ≥ k} = ⋃·
j 〈σ j , τ j 〉

is a disjoint union of set intervals, where σ j ⊆ τ j , σ j ∼ τ j and |σ j | = k for each j .
Remember that σ ∼ τ means max

σ
xi = max

τ
xi (in R

k ). Since by (3)

∑
α∈〈σ j ,τ j 〉

(�α f )(∅) = (�σ j ◦ Eτ j\σ j )( f )(∅) = (�σ j f )(τ j\σ j ) ≥ 0

(because of |σ j | = k), we get

f̃ ◦ g =
∑

α⊆[d]
|α|<k

(�α f )(∅) · 1[max
α

xi ,∞]∩A

+
∑
j

(�σ j f )(τ j\σ j ) · 1[max
σ j

xi ,∞]∩A

which is 1k -↑.
In the next step we let g1 be the d.f. of some probability measure with finite support

in A, say
∑n


=1 λ
εa1,
 with λ
 ≥ 0,
∑


 λ
 = 1 and a1,
 ∈ A. Since f̃ is affine as a
function of x1,

f̃ ◦ g =
∑




λ
 f̃ ◦ (g1,
, g2, . . . , gd)
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is again 1k -↑. This procedure is then repeated for g2, g3, . . . , gd , showing our result
to be true if each gi is the d.f. of some probability measure with finite support in A.

Invoking Lemma 3 we may extend the validity to 1k - ↑ functions g1, . . . , gd for
which ci := sup gi (A) = 1 for each i, making use also of the continuity of f̃ .

In general we have ci ∈ [0, 1], where we may assume ci > 0 for each i . Then
ϕ(x) := f̃ (c � x) is still multilinear and 1k -↑, so that

ϕ ◦ (g1/c1, . . . gd/cd) = f̃ ◦ g

is 1k -↑, thereby finishing our proof. ��
Theorem 1 deals with fully k-increasing functions, generalizing the case k = 2 of

increasing super-modular functions. In [3] fully k-alternating functions are dealt with,
for which we offer the following general result:

Theorem 2 If in the situation of Theorem the functions g1, . . . , gd and f are 1k -�,

then so is h.

Proof Wemakeuseof the very close direct connectionbetweenn -↑ andn -� functions
in full generality — see [5], Remark (d):

ϕ : A −→ R is n - � ⇐⇒ −ϕ(−·) is n -↑ on − A

⇐⇒ c − ϕ(−·) is n -↑ on − A ∀ c ∈ R

where in our situation (i.e. n j ∈ {0, 1} ∀ j ) A = ∏k
j=1 A j with arbitrary non-empty

subsets A j ⊆ R. We apply this to g1, . . . , gd and to f :

g1, . . . , gd : A −→ [0, 1] are 1k -� and f : {0, 1}d −→ [0, 1] is 1k -�
⇐⇒ 1 − gi (−·) : −A −→ [0, 1] is 1k -↑ ∀ i

and 1 − f (−·) : {−1, 0}d −→ [0, 1] is 1k -↑,

where the last statement is equivalent with 1 − f (1d − ·) being 1k -↑ on {0, 1}d . By
Theorem 1

1 − f (1d − (1d − g(−·))) = 1 − f ◦ g(−·) is 1k -↑,

or, equivalently, f ◦ g is 1k -�. ��
Remark 1 In [3] the functions gi may be defined on {0, 1}
 for 
 ≥ k. This is of course
only superficially more general, since by the very definition, being fully k-increasing
or alternating, only k variables are considered simultaneously.

Remark 2 For k = d the polynomial f̃ has but non-negative coefficients (cf. (7)
above), hence not only f̃ ◦ (g1, . . . , gd) is 1d -↑, but even f̃ ◦ (g1×· · ·×gd) is 1d2 -↑
on Ad . For k < d this cannot be expected: take k = 1, d = 2, f : {0, 1}2 −→ R

defined by f (0, 0) = 0, f (1, 0) = f (0, 1) = 1 = f (1, 1). Then f (and f̃ ) is
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increasing, but not 12 - ↑, we have f̃ (x1, x2) = x1 + x2 − x1x2. For increasing
functions g1, g2 : [0, 1] −→ [0, 1] the composed, map f̃ ◦ (g1, g2) = g1 + g2 − g1g2
is still increasing, however the bivariate

( f̃ ◦ (g1 × g2))(s, t) = g1(s) + g2(t) − g1(s)g2(t)

is not in general 12 -↑, for ex. in the case g1 = g2 = id, with ( f̃ ◦ (g1 × g2))(s, t) =
s + t − st .

Example 2 In Example 1 we considered the case k = 2, d = 3 and f (α) := |α| ∨ 1,
with

f̃ (x) = 1 + x1x2 + x1x3 + x2x3 − x1x2x3

f and f̃ are 12 -↑.
If now g1, g2, g3 are 12 -↑, with values in [0, 1], then by Theorem 1

f̃ ◦ (g1, g2, g3) = 1 + g1g2 + g1g3 + g2g3 − g1g2g3

is also 12 -↑, hence a distribution function in case g1, g2, g3 are of this type. Proving
this directly, say for differentiable gi , should be possible, but is certainly cumbersome.

Example 3 Again k = 2, d = 3. Let f : P([3]) −→ R be given by f (∅) =
0, f ({i}) = 2 (i = 1, 2, 3), f ({i, j}) = 4 (i �= j) and f ([3]) = 5. Then f is
easily seen to be 12 -�, but not 13 -�. Here

f̃ (x) = 2(x1 + x2 + x3) − x1x2x3,

and for increasing submodular g1, g2, g3 with values in [0, 1] also f̃ ◦ (g1, g2, g3) is
again increasing and submodular by Theorem 2.

Remark 3 A natural question is to know which (univariate) functions ϕ “operate”
on fully k-increasing (resp. alternating) functions, i.e. have the property that ϕ ◦ f
is 1k - ↑ (�) whenever f is 1k - ↑ (�), supposing of course ϕ ◦ f to be defined.
The answer is provided by Theorem 12 in [6], later (in [5], p. 250) called Monotone
Composition Theorem: if ϕ is k -↑ (�) and f is 1k -↑ (�) then also ϕ ◦ f is 1k -↑ (�).
For a pseudo-Boolean function f on {0, 1}d we saw in Lemma 1 that f is 1k -↑ iff f̃
is (on [0, 1]d), and this is likewise true for fully k-alternating f . Hence for k -↑ (�) ϕ

also ϕ ◦ f , ϕ ◦ f̃ and (ϕ ◦ f )∼ are 1k -↑ (�), the latter two being different in general.
In Example 3 above, with ϕ(t) := √

t (k -� ∀ k ∈ N), we have

(
√

f )∼(x) = √
2(x1 + x2 + x3) − 2(

√
2 − 1)(x1x2 + x1x3 + x2x3)

+(3
√
2 + √

5 − 6) x1x2x3,

which is 12 -� on [0, 1]3, as is also
√

f̃ (x).

123



On the compounding of higher order monotonic pseudo… Page 13 of 13 3

Note that ϕ : R+ −→ R+ is 2 - � iff ϕ is increasing and concave. And ϕ is
k -� ∀ k ∈ N iff it is a socalled Bernstein function.

Remark 4 When looking at Theorem 1 one might believe that perhaps each 1k - ↑
function on [0, 1]d has the property shown there for multilinear polynomials f̃ arising
from a 1k -↑ pseudo-Boolean function f . This is not the case:

Let again k = 2, d = 3 and a := ( 12 ,
1
2 ,

1
2 ); the d.f. ϕ of εa (on [0, 1]3) is given

by ϕ = 1[a,1], it is (even) 13 -↑. Let further g1 = g2 = g3 be the d.f. of the uniform
distribution of [0, 1]2, i.e. gi (s, t) = st . Then ϕ ◦ (g1, g2, g3) = 1A with

A :=
{
{(s, t) ∈ [0, 1]2 | st ≥ 1

2

}

and this function is not 12 -↑ because

(
�

(1,1)
( 12 , 12 )

1A

)(
1

2
,
1

2

)
= −1.
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