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Abstract
We present sufficient conditions for a family of positive definite kernels on a compact
two-point homogeneous space to be strictly positive definite based on their expansion
in eigenfunctions of the Laplace–Beltrami operator.We also present a characterisation
of this kernel class. The family analyzed is a generalization of the isotropic kernels
and the case of a real sphere is analyzed in details.
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1 Introduction

During the last five years, there has been a tremendous number of publications stating
new results on positive definite kernels on spheres, see for example [1, 2] and reference
therein and a smaller number studying other manifolds [3–10] including two-point
homogeneous manifolds, tori, Euclidean spaces and products of these. Most of the
results focus on isotropic positive definite kernels, which are kernels that only depend
on thegeodesic distanceof their arguments. Isotropic kernels are used in approximation
theory, where they are often referred to as spherical or radial basis functions [2] and
are for example applied in geostatistics [11]. They are also of importance in statistics
where they occur as correlation functions of Gaussian random fields [12].
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There are few results on non-isotropic kernels among them the axially-symmetric
kernels discussed in [13].

This publication will characterize (strictly) positive definite kernels with a specific
series representation, which are not necessary isotropic but include the isotropic ker-
nels as special case. We prove the result for all two-point homogeneous manifolds but
study the specific implications in detail for the case of the d-dimensional sphere. The
results are the first, known to the authors, that show that strict positivity definiteness
can be obtained with significantly less positive coefficients in the series expansion
compared to the isotropic case.

We will briefly summarize necessary definitions in the first section and prove the
abstract result for kernels on two-point homogeneous spaces in the second section.
For the d-sphere we derive explicit conditions for the strict positive definiteness of
convolutional kernels and in the process prove a new estimate for the absolute value
of spherical harmonics, these result are given in section three.

1.1 Definitions and notation

We assume that the manifoldM is two-point homogeneous. Therefore it is isomorphic
to one of the following five cases as proven in [14],

M = S
d−1, M = Pd−1(R), M = Pd−1(C), M = Pd−1(H), M = P16(Cay).

From [15] we take the following well established results. There exists an
orthonormal base of L2(M) such that each function in the basis f j,k is smooth and

� f j,k = λk f j,k, k ∈ N, j = 1, . . . ,mk

where

0 = λ1 < λ2 < λ3 < . . . < λ� ≤, . . . , lim
�→∞λ� = +∞,

are the distinct eigenvalues of the Laplace-Beltrami operator onM, denoted by�, and
mk is the dimension of the eigenspace Hk corresponding to λk .

Themetric inM is d(ξ, ζ ) = arccos 〈ξ, ζ 〉whenM is a sphere, otherwise d(ξ, ζ ) =
2 arccos |〈 ξ̃

|ξ̃ | ,
ζ̃

|ζ̃ | 〉|, where ξ̃ , ζ̃ are arbitrary class representatives. The famous addition

formula reads

mk∑

j=1

f j,k(ξ) f j,k(ζ ) = ck P
(α,β)
k (cos (d(ξ, ζ ))) , ξ, ζ ∈ M, (1)

where

ck = �(β + 1)(2k + α + β + 1)�(k + α + β + 1)

�(α + β + 2)�(k + β + 1)
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and throughout P(α,β)
k , denotes the Jacobi polynomials normalized by

P(α,β)
k (1) = �(k + α + 1)

�(k + 1)�(α + 1)
. (2)

The coefficients satisfy α = d−3
2 , β takes one of the values (d − 3)/2, −1/2, 0, 1, 3,

in the order of the five manifolds being studied.

Definition 1 A kernel K : M×M → C is called positive definite onM if the matrix

K	 = {K (ξ, ζ )}ξ,ζ∈	

is positive semi-definite on C|	| for arbitrary finite sets of distinct points 	 ⊂ M.
The kernel is strictly positive definite if K	 is a positive definite matrix on C|	| for

arbitrary finite sets of distinct points 	.

Note that if K is positive definite then it must be Hermitian, that is, K (ξ, ζ ) =
K (ζ, ξ) for every ξ, ζ ∈ M.

For this paper we focus on kernels possessing a series representation

K (ξ, ζ ) =
∞∑

k=0

mk∑

j=1

d j,k f j,k(ξ) f j,k(ζ ), d j,k ∈ C, (3)

with the prior defined basis. This kernel class was for example studied in [16] and [17],
where error estimates were discussed for kernels where all coefficients are positive.
The above defined kernel class include the real valued isotropic kernels having the
form

K (ξ, ζ ) =
∞∑

k=0

bk

mk∑

j=1

f j,k(ξ) f j,k(ζ ), bk ∈ R, (4)

for the case whereM = S
d−1 this expansion is referred to as d-Schoenberg series and

well studied for example in [18], but also non-isotropic kernels.

2 Characterizing strict positive definiteness

We note that a kernel of the form (3) is positive definite on M if and only if d j,k ≥ 0
for all k ∈ N, j = 1, . . . ,mk as proven in [17] Theorem 2.1 and assume positive
definiteness of the kernel throughout the rest of the paper. We define for any such
kernel the set of positive coefficients as

F := {( j, k) : d j,k > 0}

and additionally the sets

Ak := { j : ( j, k) ∈ F}, N := {k : k ∈ Z+ ∧ ∃d j,k 
= 0}.
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Theorem 1 For a continuous positive definite kernel of the form (3) the following
properties are equivalent:

1. K is strictly positive definite on M.
2. For any finite set of distinct points 	,

∑
ξ∈	 cξ f j,k(ξ) = 0, for all ( j, k) ∈ F

implies cξ = 0 for all ξ ∈ 	.
3. For any finite set of distinct points 	 ⊂ M,

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ζ ) f j,k(ζ ) = 0, ∀k ∈ N , ζ ∈ M,

implies cξ = 0, ∀ξ ∈ 	.

Proof We start with the implication from (1) to (2) and prove by contradiction. Assume
(2) does not hold and there exists a set 	 and coefficients cξ ∈ C for which

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) = 0, ∀k ∈ N , ζ ∈ M.

Then we immediately deduce

∑

ξ,ζ∈	

cξ cζ K (ξ, ζ ) = 0,

which contradicts (1).
We prove that (2) implies (1) by contradiction and assume that K is continuous

positive definite but not strictly positive definite. If K is not strictly positive definite
there exists a nonempty set of distinct point 	 and coefficients cξ ∈ C not all zero
with

∑

ξ,ζ∈	

cξ cζ K (ξ, ζ ) = 0.

This is equivalent to
∞∑

k=0

∑

j∈Ak

d j,k f j,k f j,k = 0, (5)

where f j,k = ∑
ξ∈	 cξ f j,k (ξ) and the sums are interchangeable because of the

continuity of K .
Since we know that all the summands are non negative since the d j,k are non-

negative, the overall sum can only be zero if all summands are. For the indices ( j, k) ∈
F this implies f j,k = 0. We have proven that (2) can not hold because at least one cξ

was non zero.
Now we prove the equivalence of (2) and (3). We note that

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) =
∑

j∈Ak

⎛

⎝
∑

ξ∈	

cξ f j,k(ξ)

⎞

⎠ f j,k(ζ ), ∀ζ ∈ M.
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Since the eigenfunctions are linearly independent the last is zero if and only if

∑

ξ∈	

cξ f j,k(ξ) = 0

for all j ∈ Ak , and all k ∈ N . ��
The last theorem proves that strict positive definiteness is independent of the pre-

cise value of the d j,k but is only depending on the set F . This justifies that we will
distinguish between sets which induce strict positive definiteness and sets that do not.

The existing results for isotropic kernels on compact two point homogeneous man-
ifolds allow us to derive the following conditions for sets that induce strict positive
definiteness:

Corollary 2 LetM 
= S
d−1, with α > β be a two-point homogeneous manifold and K

a continuous kernel of the form (3)

• For K to be strictly positive definite it is necessary that N includes infinitely many
integers.

• For K to be strictly positive definite it is sufficient that

L = {k : d j,k > 0, ∀ j = 1, . . . ,mk}

includes infinitely many integers.

Proof The statements follow from Theorem 1 together with the characterisation
of strictly positive definite isotropic kernels on two-point homogeneous spaces in
Theorem 3.1 and Theorem 3.3 of [3]. ��
The matching result for the case of the d-sphere has already been established in [19]
Theorem 4. Since the original proofs of the results for isotropic kernels used only the
limiting behaviour of the Jacobi-polynomials for k → ∞, it is easy to deduce that
removing a finite number of coefficients from F will not change whether F induces
strictly positive definite. In the next section we prove that removing infinite numbers
of coefficients is also possible under certain conditions.

3 The asymptotic approach

To establish condition which require less positive coefficients, we summarize these
known properties of the Jacobi-polynomials from Lemma 2.2 of [3].

Lemma 3 1. Pα,β
k (−t) = (−1)k Pβ,α

k (t),

2. limk→∞ Pα,β
k (t)[Pα,β

k (1)]−1 = 0, ∀t ∈ (−1, 1),

3. limk→∞ Pβ,α
k (1)[Pα,β

k (1)]−1 = 0 if α > β.
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Theorem 4 Let N ⊂ Z+ be an infinite set and Ak ⊂ {1, . . . ,mk}, k ∈ N, such that

lim
k∈N

c−1
k

∑
j∈Ac

k
f j,k(ξ) f j,k(ζ )

Pα,β
k (1)

= 0, ∀ξ, ζ ∈ M, (6)

where Ac
k := {1, . . . ,mk}\Ak. Then F := {( j, k) : k ∈ N , j ∈ Ak} induces strict

positive definiteness wheneverM 
= S
d−1. In the caseM = S

d−1 the same relation is
valid under the additional requirement that E := N ∩ 2Z+ and O := N ∩ (2Z+ + 1)
are infinite.

Proof We consider the kernel

K (ξ, ζ ) =
∞∑

k=0

ak
∑

j∈Ak

f j,k(ξ) f j,k(ζ ), ak > 0. (7)

By Theorem 1, proving that K is strictly positive definite is sufficient for the proof of
the theorem. We see that K is not strictly positive definite if and only if there exists a
set of distinct points 	 ∈ M and coefficients cξ ∈ C such that

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) = 0, ∀k ∈ N , j ∈ Ak, ζ ∈ M (8)

and at least one cξ 
= 0, this follows from (3) of Theorem 1. IfM 
= S
d−1, by Theorem

3 we obtain that for ξ, ζ ∈ M

lim
k∈N

c−1
k

Pα,β
k (1)

∑

j∈Ak

f j,k(ξ) f j,k(ζ )

= lim
k∈N = c−1

k

Pα,β
k (1)

⎛

⎝Pα,β
k (cos(d(ξ, ζ )) −

∑

j∈Ac
k

f j,k(ξ) f j,k(ζ )

⎞

⎠ = δξ,ζ .

Hence, if we apply this relation to Eq.8, we conclude that

0 = lim
k∈N

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ )cζ , ζ ∈ 	.

For the case of the sphere, the same arguments hold for all points ξ ∈ 	with−ξ /∈ 	.
We assume without loss of generalization that a point ξ ∈ 	 if and only if −ξ ∈ 	,
as it does not affect the result we aim to prove and simplifies the terminology.

Again, by Theorem 3 we obtain that for ξ, ζ ∈ S
d−1
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lim
k∈E

c−1
k

Pα,β
k (1)

∑

j∈Ak

f j,k(ξ) f j,k(ζ )

= lim
k∈E

c−1
k

Pα,β
k (1)

⎛

⎝Pα,β
k (cos(d(ξ, ζ )) −

∑

j∈Ac
k

f j,k(ξ) f j,k(ζ )

⎞

⎠ = δξ,ζ + δξ,−ζ .

Similarly,

lim
k∈O

c−1
k

Pα,β
k (1)

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) = δξ,ζ − δξ,−ζ .

If we apply both relations to Eq.8, we conclude that for every ζ ∈ 	

0 = lim
k∈E

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) = cζ + c−ζ ,

0 = lim
k∈O

∑

ξ∈	

cξ

∑

j∈Ak

f j,k(ξ) f j,k(ζ ) = cζ − c−ζ ,

which implies that cζ = c−ζ = 0. ��
The theorem shows that precise implications for the structure of Ak will depend on
the eigenfunctions of the manifold. The derivation of practical conditions is non trivial
but possible, as will be evident from the discussion of the sphere.

4 The asymptotic approach for the d-sphere

Now we focus on the d-sphere, which is the case where α = β = (d − 3)/2 and we
present sufficient conditions for which the key assumptions of Theorem 4 are valid.
The sufficient condition will be given in terms of the asymptotic behaviour of |Ac

k | for
k ∈ E and O .

Therefore the main challenge of this section is to derive and estimates for

| f j,k(ξ) f j,k(ζ )|, ∀ξ, ζ ∈ S
d−1

which holds for all ( j, k) ∈ Ac
k .

4.1 The eigenfunctions on the sphere

On the sphere the eigenfunctions corresponding to the eigenvalues λk = k (k + d − 1)
are spherical harmonics and the number of eigenfunctions corresponding to the
eigenvalue λk is denoted by Nk,d . The numbers are given by N0,d = 1,

Nk,d = (2k + d − 2) (k + d − 3)!
k! (d − 2)! .
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For ξ ∈ S
d−1, with polar coordinate representation (θ1, . . . , θd−1)

T satisfying

ξ1 = cos(θd−1)

ξ2 = sin(θd−1) cos(θd−2)

...

ξd−1 = sin(θd−1) sin(θd−2) · · · cos(θ1)
ξd = sin(θd−1) sin(θd−2) · · · sin(θ1),

where θ1 ∈ [0, 2π) and the others θ j ∈ [0, π ]. The spherical harmonics of degree
αd−1 can explicitly be given by

Yα1,...,αd−1(ξ) = 1√
2π

eiα1θ1
d−1∏

j=2

j P̃
α j−1
α j

(
θ j

)
, (9)

where α1, . . . , αd−1 are integers satisfying

αd−1 ≥ · · · ≥ |α1|

and

j P̃�
L(θ) =

(
π�( j/2)

�(( j + 1)/2)

)1/2

j c
�
L (sin (θ))−(2− j)/2 P−(�+( j−2)/2)

L+( j−2)/2 (cos (θ)) , (10)

where Pμ
ν are the associated Legendre functions and

j c
�
L :=

(
2L + j − 1

2

(L + � + j − 2)!
(L − �)!

)1/2

.

The formula is taken from [20], Equation (2.5) and αd−1 is the degree of the spherical
harmonic, also, it is after a reparametrization a consequence of Theorem 1.5.1 in [21].
A small difference is that we use

1

Vol(Sd−1)

∫

Sd−1
Yα(x)Yβ(x)dσ(x) = δα,β

while [20] uses 1/2π instead of 1/Vol(Sd−1), which is solved by adding the first
constant in the definition of j P̃�

L . The spherical harmonic is an eigenfunction corre-
sponding to eigenvalue λαd−1 . We define the index set corresponding to the order k
as

τ d−1
k := {α = (α1, . . . , αd−1) ∈ Z

d−1, |α1| ≤ α2 ≤ · · · ≤ αd−1 = k}.

The spherical harmonics Yα with α ∈ τ d−1
k form an orthonormal basis of Hk and

therefore |τ d−1
k | = Nk,d .
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Since j P̃�
L(0) = j P̃�

L(π) = 0 whenever � > 0, we have that if x ∈ S
d− j−2 where

1 ≤ j ≤ d − 2

Yα((x, 0)) = 0, α ∈ τ d−1
k ,when α j 
= 0.

The complement of the set {α j 
= 0} in the case j = d − 2 only includes the index
α = (0, . . . , 0, k). More generally, we define

jτ
d−1
k := {α ∈ τ d−1

k , α j = 0}.

4.2 Estimating the absolute value of the eigenfunctions

In order to use |Ac
k | in (6) we will derive an estimate of

|Yα(ξ)Yα(ζ )|, ∀α ∈ τ d−1
k \ jτ

d−1
k

which only depends on k and j but as a first step we will prove a new estimate of

|Yα(ξ)|, ∀ξ ∈ S
d−1, ∀α ∈ τ d−1

k \ jτ
d−1
k .

To determine an upper bound for (10) we note that in Theorem 2 in [22] it is proved
the following inequality

|Pnm(cos θ)| ≤ �(1/4)(sin(θ))−1/4

π

√
�(n + m + 1)

�(n − m + 1)

1

m1/4 , m ≥ |n|. (11)

We further need an inequality for the case of half integer coefficients,
|Pn+1/2

m+1/2(cos θ)|. For this we use an estimate for Jacobi polynomials obtained in [23].
We recall the relation between Legendre polynomials and Gegenbauer polynomials
(Equation 14.3.21 in [24])

Pμ
ν (x) = 2μ�(1 − 2μ)�(ν + μ + 1)

�(ν − μ + 1)�(1 − μ)(1 − x2)μ/2C
( 12−μ)

ν+μ (x) (12)

and the relation between Gegenbauer polynomials and Jacobi polynomials (Equa-
tion 18.7.1 in [24])

Cλ
n (x) = �(2λ + n)�(λ + 1/2)

�(2λ)�(λ + 1/2 + n)
P

(λ− 1
2 ,λ− 1

2 )
n (x). (13)

Thus obtaining that for ν ≥ μ ≥ 0 with ν − μ ∈ N:

P−μ
ν (x) = 2−μ�(1 + 2μ)�(ν − μ + 1)

�(ν + μ + 1)�(1 + μ)(1 − x2)−μ/2C
( 12+μ)

ν−μ (x)
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= 2−μ�(1 + 2μ)�(ν − μ + 1)

�(ν + μ + 1)�(1 + μ)(1 − x2)−μ/2

�(1 + μ + ν)�(μ + 1)

�(2μ + 1)�(ν + 1)
P(μ,μ)

ν−μ (x)

= (1 − x2)μ/2�(ν − μ + 1)

2μ�(ν + 1)
P(μ,μ)

ν−μ (x).

By settling α = β in Theorem 1.1 in [23], we have that there exists a constant C ≤ 12
for which

(1 − x2)α/2+1/4|Pα,α
n (x)| ≤ C

2α�(n + α + 1)

�(n + 1)1/2�(n + 2α + 1)1/2
(2n + 2α + 1)−1/4.

Combining the last equations we find

|P−μ
ν (x)| ≤ C(1 − x2)−1/4�(ν − μ + 1)1/2

�(ν + μ + 1)1/2
(2ν + 1)−1/4. (14)

Note that this estimate implies an almost similar inequality to the one in Eq.11 when
ν = m and μ = n. Now, we estimate j P̃�

L(θ) defined in (10) based on P−n
m and

P−(n+1/2)
m+1/2 , where j ≥ 2 and L ≥ � ≥ 0. When j = 2, we also include the cases
L ≥ |�|.
Corollary 5 For each j ≥ 2 there exists a function C j : (0, π) → R such that

| j P̃�
L(cos(θ))| ≤ C j (θ)(2L + j − 1)1/4, L ≥ � ≥ 0.

Further, we can include the points 0 and π if � > 0.

Proof Indeed, by equation (14) we have that

�(( j + 1)/2)1/2

π1/2�( j/2)1/2
| j P̃�

L(cos(θ))|

≤
(
2L + j − 1

2

)1/2

(sin(θ))−( j−2)/2C sin(θ)−1/2(2L + j − 1)−1/4

= C(sin(θ))−( j−1)/2

√
2

(2L + j − 1)1/4.

Assume � > 0, by (12) we have that the function j P̃�
L(cos(θ)) is a multiple of

(sin(θ))�C�+( j−1)/2
L−� (cos(θ)), hence j P̃�

L(±1) = 0. ��

Lemma 6 Let α ∈ τ d−1
k \ jτ

d−1
k and j ∈ {1, . . . , d − 2}, then there exist a function

D : Sd−1 → R independent of α such that for any ξ ∈ S
d−1:

|Yα(ξ)| ≤ D(ξ)
√
Nα j , j+1

d−1∏

�= j+1

(2α� + � − 1)1/4.
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Proof As a result of the representation of the spherical harmonics in Eq.9, we find
that

Yα1,...,αd−1(ξ) = Yα1,...,α j (ξ
′)

d−1∏

�= j+1

� P̃
α�−1
α� (θ�) , (15)

and ξ ′ is the point on S j with polar coordinates (θ1, . . . , θ j ) and Yα1,...,α j is a spherical
harmonic in S j of degree α j . By applying the universal estimate

|Yα1,...,α j (ξ
′)| ≤

√
Nα j , j+1

to the first part, the estimate is a consequence of the summation formula of spherical
harmonics [21] Equation 1.2.8 and applying Theorem 5 to the second part of the
spherical harmonics we conclude that

|Yα(x)| ≤
√
Nα j , j+1

d−1∏

�= j+1

C�(θ�)(2α� + � − 1)1/4.

��
We can restate the last theorem to include all indices and expressing the restrictions

in terms of the point.

Proposition 7 Let ξ ∈ S
d−1 and jξ ∈ {2, . . . , d − 1} defined as jξ = max({2} ∪ { j |

θ j ∈ {0, π}}), then there exist a function D : Sd−1 → R independent of α such that
for any ξ ∈ S

d−1:

|Yα(ξ)| ≤ D(ξ)
√
Nα jξ , jξ +1

d−1∏

�= jξ +1

(2α� + � − 1)1/4.

4.3 The condition for strict positive definiteness

Nowwe use the result of Theorem 6 together with Theorem 4.We assume jτ
d−1
k ⊂ Ak

for all k ∈ E ∪ O and deduce

|Yα(ξ)Yα(ζ )| ≤ D(ξ)D(ζ )Nα j , j+1

d−1∏

�= j+1

(2α� + � − 1)1/2, ∀α ∈ Ac
k . (16)

Thereby we find that Theorem 4 is satisfied if

lim
k∈E

∑

α∈Ac
k

Nα j , j+1
∏d−1

�= j+1(2α� + � − 1)1/2

ck P
(d−3)/2,(d−3)/2
k (1)

= 0
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lim
k∈O

∑

α∈Ac
k

Nα j , j+1
∏d−1

�= j+1(2α� + � − 1)1/2

ck P
(d−3)/2,(d−3)/2
k (1)

= 0.

For a precise description we use

Nk, j+1 = (2k + j − 1)(k + j − 2)!
k!( j − 1)! ,

ck = �( d−3
2 + 1)(2k + d − 2)�(k + d − 2)

�(d − 1)�(k + d−1
2 )

and

P(d−3)/2,(d−3)/2
k (1) = �((d − 3)/2 + k + 1)

�((d − 3)/2 + 1)k!

where the last equation is taken from [24], 18.6.1. Combining these definitions and
using Nα j , j+1 ≤ Nk, j+1 we can show that

Nk, j+1

ck P
(d−3)/2,(d−3)/2
k (1)

= �(d − 1)(2k + j − 1)�(k + j − 1)

�( j)(2k + d − 2)�(k + d − 2)

≤ �(d − 1)

�( j)
3d− j−1 �(2k + j)

�(2k + d − 1)

= 3d− j−1�(d − 1)

�( j)

d−1∏

�= j+1

(2k + � − 1)−1.

Hence, the conditions of the Theorem 4 are satisfied when

lim
k∈E

∑

α∈Ac
k

d−1∏

�= j+1

(2α� + � − 1)1/2

2k + � − 1
= 0

lim
k∈O

∑

α∈Ac
k

d−1∏

�= j+1

(2α� + � − 1)1/2

2k + � − 1
= 0.

We have proven that:

Corollary 8 Any continuous kernel

K (ξ, ζ ) =
∞∑

k∈E∪O

∑

α∈Ak

dαYα(ξ)Yα(ζ ), dα > 0
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where E ⊂ 2Z+, O ⊂ 2Z+ + 1 are infinite sets and jτ
d−1
k ⊂ Ak ⊂ τ d−1

k for a
j ∈ 1, . . . , d − 1 is strictly positive definite when

lim
k∈O

|Ac
k |

k(d− j−1)/2
= lim

k∈E
|Ac

k |
k(d− j−1)/2

= 0. (17)

It is obvious that a smaller value of j allows for a larger number of indices to be
left out of the set Ak . One should note that, on the other hand, the number of fixed
indices that need to be included in Ak , | jτ d−1

k |, is larger for small j . For example

|1τ d−1
k | = (k+d−3)!

(d−3)!k! , |d−3τ
d−1
k | = k + 1 and |d−2τ

d−1
k | = 1.
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