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Abstract
A key aspect of metacognition is metacognitive accuracy, i.e., the degree to which confi-
dence judgments differentiate between correct and incorrect trials. To quantify metacogni-
tive accuracy, researchers are faced with an increasing number of different methods. The 
present study investigated false positive rates associated with various measures of meta-
cognitive accuracy by hierarchical resampling from the confidence database to accurately 
represent the statistical properties of confidence judgements. We found that most measures 
based on the computation of summary-statistics separately for each participant and subse-
quent group-level analysis performed adequately in terms of false positive rate, including 
gamma correlations, meta-d′, and the area under type 2 ROC curves. Meta-d′/d′ is associ-
ated with a false positive rate even below 5%, but log-transformed meta-d′/d′ performs ade-
quately. The false positive rate of HMeta-d depends on the study design and on prior speci-
fication: For group designs, the false positive rate is above 5% when independent priors are 
placed on both groups, but the false positive rate is adequate when a prior was placed on 
the difference between groups. For continuous predictor variables, default priors resulted in 
a false positive rate below 5%, but the false positive rate was not distinguishable from 5% 
when close-to-flat priors were used. Logistic mixed model regression analysis is associated 
with dramatically inflated false positive rates when random slopes are omitted from model 
specification. In general, we argue that no measure of metacognitive accuracy should be 
used unless the false positive rate has been demonstrated to be adequate.
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Introduction

Metacognition is traditionally defined as knowledge or cognition about cognitive phenom-
ena (Flavell, 1979). A key aspect of metacognition is metacognitive accuracy, defined as 
the degree to which confidence judgments separate between correct and incorrect trials 
(Fleming & Lau, 2014). Sometimes metacognitive accuracy is also referred to as metacog-
nitive sensitivity (Maniscalco & Lau, 2012), resolution of confidence (Baranski & Petrusic, 
1994), or type 2 sensitivity (Galvin et  al., 2003). To measure metacognitive accuracy, a 
plethora of different methodological options have been proposed, including but not limited 
to

• gamma correlation coefficients (Nelson, 1984),
• confidence slopes (Yates, 1990),
• logistic mixed model regression (Sandberg et al., 2010),
• area under type 2 receiver operating characteristics (Fleming et al., 2010),
• meta-d′ and meta-d′/d′ (Maniscalco & Lau, 2014),
• HMeta-d (Fleming, 2017),
• Meta-SDT-regression (Kristensen et al., 2020),
• σmeta (Shekhar & Rahnev, 2021),
• confidence efficiency (Mamassian & de Gardelle, 2021),
• metacognitive noise (Guggenmos, 2022), and
• meta-uncertainty (Boundy-Singer et al., 2022).

Unfortunately, such a vast number of methodological options may be harmful to pro-
gress in the field: If different measures do not converge to the same results, it is unclear 
which measure of metacognitive accuracy researchers should trust. Moreover, if there is a 
large number of analysis options, some researchers may be tempted to run multiple analy-
sis and report only those analyses that ‘worked′, thus publishing effects that in fact do not 
exist (Gelman & Loken, 2014; Simmons et al., 2011; Steegen et al., 2016). Many research-
ers have recently accepted meta-d′/d′ as the gold standard to measure metacognitive accu-
racy (e.g. Alkan et  al., 2020; Barrientos et  al., 2022; Davies et  al., 2018). Meta-d′/d′ is 
widely believed to allow for a more straightforward interpretation of the results than other 
methods because meta-d′/d′ was designed to control for task performance, choice bias, and 
confidence criteria (Maniscalco & Lau, 2012, 2014). Unfortunately, it has recently been 
demonstrated that the control meta-d′/d′ provides is not necessarily effective (Boundy-
Singer et al., 2022; Guggenmos, 2021; Rahnev, 2023; Rausch et al., 2023; Shekhar & Rah-
nev, 2021; Zhu et al., 2023). While controlling for theoretically irrelevant variables is an 
important consideration when choosing an adequate measure of metacognitive accuracy, 
the statistical properties of measures of metacognitive accuracy have not yet received the 
same amount of attention from the field. The present study examined one criterial statisti-
cal property of previously proposed measures of metacognitive accuracy: the false positive 
rate, i.e., the probability that a measure of metacognitive accuracy will lead to the detection 
of an effect that does in fact not exist.
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Summary‑statistics vs. hierarchical measures of metacognitive accuracy

Measures of metacognitive accuracy fall into two categories depending on how the method 
deals with the clustered statistical structure of data typical of studies of metacognition. Par-
ticipants in studies measuring metacognitive accuracy typically perform multiple trials of a 
perceptual, memory, or cognitive task and report their confidence in being correct in each 
single trial. At a consequence, datasets in metacognition research consist of many observa-
tions which are clustered within subjects and conditions. We refer to the two approaches to 
deal with the clustered nature of the data as summary-statistics and hierarchical analysis. 
Summary-statistics are by far the most common analysis approach in Psychology (Judd 
et  al., 2017) and can be used with gamma correlation, confidence slopes, type 2 ROCs, 
meta-d′, and meta-d′/d′. For the summary-statistics approach, two levels of analysis are 
required (McNabb & Murayama, 2021): For the first level of analysis, a coefficient quan-
tifying metacognitive accuracy is computed separately for each participant in each condi-
tion. For the second level of analysis, the coefficients of metacognitive accuracy obtained 
during the first analysis step are subjected to a standard statistical test, such as a t-test or 
an ANOVA. However, when the data deviate substantially from normal distributions, it is 
possible for standard statistical tests to produce false positive rates other than the nominal 
alpha level. In particular for meta-d′/d′ and meta-da/da, two ratio-based measures, the distri-
bution is expected to be non-normal, hence log transformation is recommended (Fleming 
& Lau,   2014). To our knowledge, it has not been investigated whether the various sum-
mary statistic-based measures of metacognitive accuracy tend to produce normal distribu-
tions and, if not, whether the deviations are such that the false positive rates are no longer 
at the nominal alpha level.

For hierarchical analysis, the statistical test is performed on the level of single obser-
vations, not on the summary statistics. The clusters in the data caused by different par-
ticipants are accounted for by specifying fixed and random effects in the regression model: 
Fixed effects are factors whose levels are experimentally determined or whose interest lies 
in the specific effects of each level. Fixed effects are represented by parameters that are 
assumed to be constant within one condition. In contrast, random effects are factors whose 
levels are assumed to be sampled from a larger population, or whose interest lies in the 
variation among them rather than the specific effects of each level. Random effects are rep-
resented by parameters that assess the variability associated with the random effect (Bolker 
et al., 2008).

In principle, hierarchical analysis seems to be well-suited to account for the statisti-
cal properties of common data sets in metacognition studies (Fleming, 2017; Kristensen 
et al., 2020; Murayama et al., 2014; Paulewicz & Blaut, 2020). In line with this intuition, 
simulations showed that when there was a random effect of item, the false positive rate of 
mixed-model logistic regression is robust, but the false positive rate of gamma correlation 
coefficients is inflated (Murayama et al., 2014). In general, hierarchical analyses is more 
powerful to detect true effects because they seperate between trial-to-trial variance and 
between-subject-variance, whereas analyses based on summary-statistics misinterpret trial-
to-trial variance as between-subject variance and as a consequence are biased against the 
alternative hypothesis (Boehm et al., 2018). However, hierarchical models are only able to 
maintain an acceptable false positive rate if the random effect structure is correctly speci-
fied (Barr et al., 2013; Hesselmann, 2018). Specifically, there is a risk of increased false 
positive rates if random slopes are omitted from model specification (Oberauer, 2022). 
Unfortunately, there is no consensus on how complex the random effect structure needs 
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to be (Barr et al., 2013; Matuschek et al., 2017; McNabb & Murayama, 2021). However, 
while model misspecification in hierarchical models is associated with a risk of false posi-
tives in general, to our knowledge, it is not known if this risk applies to data sets with 
statistical properties characteristic for the study of metacognition. In addition, for many 
previously proposed hierarchical and summary-statistic based measures of metacognitive 
accuracy, it has never been empirically investigated if these measures maintain an accept-
able false positive rate or not.

Rationale of the present study

The aim of the present study is to investigate empirically the false positive rates associated 
with summary-statistics and hierarchical measures of metacognitive accuracy. To assess 
the false positive rate associated with each measure of metacognitive accuracy, we per-
formed simulations where a grouping variable and a continuous predictor variable were 
randomly sampled independently from confidence and responses. A previous study used 
a mathematical model to randomly to generate data to investigate false positive rates of 
gamma correlations and logistic mixed model regression (Murayama et  al., 2014), but 
there are many different proposals how to model confidence judgments (Aitchison et al., 
2015; Boundy-Singer et al., 2022; Guggenmos, 2022; Hellmann et al., 2023; Mamassian 
& de Gardelle, 2021; Moran et al., 2015; Pereira et al., 2021; Peters et al., 2017; Pleskac 
& Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Rausch et al., 2018, 2020; Reynolds 
et al., 2020; Shekhar & Rahnev, 2021, 2022) and a clear consensus is still pending (Rahnev 
et al., 2022). In addition, the statistical properties of confidence judgments may vary heav-
ily across different datasets (Rahnev et al., 2020). Therefore, the present study used hierar-
chical bootstrapping (Saravanan et al., 2020) based on the confidence database, an online 
collection of datasets (Rahnev et  al., 2020), to simulate datasets with realistic statistical 
properties. Thus, each simulated dataset represents a justified guess what kind of data may 
be expected in new experiments without subscribing to a specific mathematical model of 
confidence.

We estimated the false positive rate for those measures that can be computed in an 
experimental design with a binary stimulus, a binary response, and a confidence judg-
ment and for which computation is sufficiently robust and efficient to perform a large 
number of simulations: gamma correlation coefficients (Nelson, 1984), confidence slopes 
(Yates, 1990), type 2 receiver operating characteristics (Fleming et al., 2010), meta-d′ and 
meta-d′/d′ (Maniscalco & Lau, 2014), meta-da and meta-da/da (Maniscalco & Lau, 2012), 
HMeta-d (Fleming, 2017) and logistic mixed model regression (Sandberg et al., 2010). It 
should be noted that the authors of the meta-d′ and meta-da method argued later on that 
meta-d′ should be preferred over meta-da (Maniscalco & Lau, 2014); nevertheless, meta-da 
was included into our analysis as well because the false positive rate is a crucial piece of 
information for the interpretation of already published studies using meta-da. For logistic 
mixed-model regression, we tested two different model specifications, one with a random 
effect of participant on the intercept (Sandberg et al., 2010) and one with random slopes 
(Wierzchoń et al., 2019).
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Methods

The confidence database

The confidence database is a collection of openly available datasets with a broad range of 
experimental paradigms, participant populations, and fields of study (Rahnev et al., 2020). 
All data sets from the confidence database include a measurement of participants’ confi-
dence in their response to a task. To compare the false positive rate of different measures of 
metacognitive accuracy based on identical datasets, we restricted our simulations to a sub-
set of datasets because not all datasets of the confidence database allow the computation 
of all measures of metacognitive accuracy. Specifically, we used only those datasets where 
stimulus and task response can be classified into two categories, because binary stimulus 
and response categories are required to compute meta-d′, meta-da, and HMeta-d. Finally, 
we included only those datasets where there were at least 20 participants with at least 20 
trials each, because we considered 20 observations to be the bare minimum to represent 
the variance between subjects as well as within-subjects. Overall, 46 datasets of the data-
base met the inclusion criteria and were used for our simulations. The majority of these 46 
studies involved a perceptual task (e.g. a masked orientation discrimination task; Rausch 
et  al., 2018), but there were also cognitive (e.g. a general knowledge task; Mazancieux 
et al., 2020), and memory tasks (e.g. old vs. new word recognition task; Kantner & Lind-
say, 2012).

Hierarchical resampling

The 46 datasets from the confidence database were used to simulate 5000 experiments. 
In each simulation, we first randomly selected one of the datasets. Second, if the study 
included multiple experimental manipulations or difficulty, we randomly selected only one 
of these conditions. Then, we created two groups of simulated participants: For each group, 
we sampled from the participants of the original study as many subjects as in the original 
study with replacement. For each simulated participant, we sampled as many trials as there 
were in the original study from the data of the corresponding participant in the original 
study. To keep computation time manageable, we capped the number of subjects per simu-
lated study at 200 and the number of trials per subject at 500. In addition, we simulated a 
continuous between-subject predictor variable by randomly sampling one value for each 
participant from an identical Gaussian distribution. Then, we computed measures of meta-
cognitive accuracy (see below) and performed two analyses per simulated data set. First, 
we tested if there was a difference between the two simulated groups with respect to each 
measure of metacognitive accuracy. Second, we tested if the continuous predictor variable 
was associated with metacognitive accuracy.

Measures of metacognitive accuracy

Gamma correlation

The gamma correlation coefficient, which was proposed by Nelson (1984) as a measure 
of metacognitive accuracy, is a nonparametric measurement of association between two 
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binary or ordered variables. To compute the gamma coefficient, it is necessary to catego-
rize all possible pairs of trials as concordant pair, disconcordant pair, or tied pair. A pair is 
concordant if the ordering between the two trials with respect to accuracy of the primary 
task response is consistent with the ordering of the same two trials with respect to confi-
dence. A pair is disconcordant if the ordering between the two trials with respect to accu-
racy of the primary task response is inconsistent with the ordering of the same two trials 
with respect to confidence. Finally, a pair is tied if the two trials have the same value either 
in terms of accuracy or in terms of confidence. Then, the frequency  Ns of concordant pairs 
and the frequency  Nd of disconcordant pairs are counted, and Gamma is computed as

 
G, like a standard correlation coefficient, takes on values between -1 and 1, with values 
larger than zero indicating a positive association between confidence and accuracy.

Confidence slopes

The confidence slope proposed by Yates (1990) assumes a linear regression to predict con-
fidence rating with dichotomous variable of correct/incorrect as a predictor. It is calculated 
according to the expression

with �S=R the mean of all confidence ratings when the task response was correct, and �S≠R 
the mean of all confidence ratings when the task response was incorrect.

Area under the type 2 ROC curve

The area under type II ROC curve is a measure derived from type II signal detection theory 
(Clarke et al., 1959; Galvin et al., 2003; Pollack, 1959), an extension of signal detection 
theory (Green & Swets, 1966; Peterson et al., 1954; Tanner & Swets, 1954). The aim of 
type II ROC curves is to quantify participants’ ability to differentiate between correct and 
incorrect trials irrespective of rating criteria (Fleming et al., 2010; Fleming & Lau, 2014; 
but see Shekhar & Rahnev, 2021). To construct a type II ROC curve, it is necessary to 
determine type II hit rates and type II false alarm rates associated with multiple criteria. 
Type II hit rate is defined the proportion of high confidence trials when the participants 
is correct, and type II false alarm rate is the proportion of high confidence trials when the 
participants is incorrect. Type II hit rates and false alarm rates based on multiple criteria 
are obtained by means of rating scales with multiple confidence levels: It is assumed that 
there is a criterion that separates each confidence level from the adjacent confidence levels 
on the rating scale. For example, for a four-level confidence scale, there is a liberal crite-
rion that assigns low confidence only to the first confidence level and high confidence to 
the other three confidence levels, then a higher criterion that assigns low confidence to the 
first and the second confidence level, and so on. For each criterion, type II hit rate and type 
II false alarm rate are plotted as individual points with type II hit rate plotted on the y-axis 
and type II false alarm rate on the x-axis. The curve that passes through these different 
points is referred to as type II ROC curve. The area under the type 2 ROC curve is a meas-
ure of the ability to differentiate between correct and incorrect trials; it is 1 if confidence 

(1)G =
Ns − Nd

Ns + Nd

.

(2)slope = �S=R − �S≠R
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ratings differentiate perfectly between correct and incorrect trials and 0.5 if confidence rat-
ings do not differentiate between correct and incorrect trials at all. The area under the type 
II ROC curve AROC can be calculated based on the formula

with hi the type II hit rate associated with confidence level i, fi the type II false alarm rate 
associated with confidence level i, and n the number of confidence levels measured by the 
confidence rating scale (Song et al., 2011).

Meta‑d′, meta‑d′/d′, meta‑da and meta‑da/da

The conceptual idea of meta-d′ and meta-da is to quantify metacognitive accuracy in terms 
of discrimination sensitivity in a hypothetical signal detection model inferred from confi-
dence judgments assuming participants had perfect access to the sensory evidence under-
lying the discrimination choice and were perfectly consistent in placing their confidence 
criteria (Maniscalco & Lau, 2012, 2014). Meta-d′ and meta-da can therefore be directly 
compared to d′ and  da respectively, the corresponding measures of task performance: If 
meta-d′ equals d′ or meta-da equals  da, it means that metacognitive accuracy is exactly as 
good as expected from task performance. If meta-d′ is lower than d′, it means that meta-
cognitive accuracy is worse than expected from task performance. The computation meta-
d′ and meta-da is based on a hypothetical signal detection model of confidence judgments 
(Maniscalco & Lau, 2014). The underlying model assumes that observers select a binary 
response R ∈ {0, 1} about a stimulus characterized by two classes S ∈ {0, 1} and as well 
as a confidence rating out of an ordered set of confidence categories C ∈

{
1, 2,… ,Cmax

}
 . 

To estimate meta-d′ and meta-da, we used an R implementation of matlab code pro-
vided by Brian Maniscalco (http:// www. colum bia. edu/ ~bsm21 05/ type2 sdt, last accessed 
2021–09-20).

Meta‑d‘ The algorithm to compute meta-d′ involved the following computational steps: 
First, frequency of each confidence category was determined depending on the stimulus 
class and the accuracy of the response. To correct for extreme proportions, 1∕(2Cmax) was 
added to each cell of the frequency table. Second, discrimination sensitivity d′ and dis-
crimination criterion c were calculated using standard formulae

with nS1 the number of trials when S = 1 , nS0 the number of trials when S = 0 , nS1R1 the 
number of trials when S = 1 and R = 1 , nS0 the number of trials when S = 0 , nS0R1 the num-
ber of trials when S = 0 and R = 1, and Φ−1 the quantile function of the standard normal 
distribution. For this purpose, a maximum likelihood optimization procedure was used 
with respect to the confidence data given stimulus, and response as well as the parameters 
determined at previous steps, i.e. d′ and c . The model included a free parameter for meta-d′ 

(3)AROC = 0.5 +
1

4
×
∑n

i=1

[(
hi+1 − fi

)2
−
(
hi − fi+1

)2]

(4)d� = Φ−1(
nS1R1

nS1
) − Φ−1(

nS0R1

nS0
)

(5)c = −
1

2
×

(
Φ−1(

nS1R1

nS1
) + Φ−1(

nS0R1

nS0
)

)

http://www.columbia.edu/~bsm2105/type2sdt
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dmeta as well as the rating criteria �1 , �2 , …, �Cmax−1
 , �Cmax+1

 , �Cmax+2
 , …, �2Cmax−1

 . �Cmax
 was 

fixed at  dmeta × c ÷ d′. To enforce that the criteria were ordered, all free criteria were para-
metrized as the log of the distance to the adjacent criterion. The probability for a specific 
confidence rating given stimulus and response can be computed as

where Φ indicates the cumulative gaussian density function with mean � variance of 1, �0 
is −∞ and �2Cmax is ∞ . Finally, meta-d′ is equal to the parameter dmeta.

Meta‑da The computation of meta-da was similar to the computation of meta-d′ but with 
the following differences: First, to determine the parameter a , which quantifies the ratio 
of the standard deviations of the signal associated with the two classes of the stimulus, an 
auxiliary signal detection rating model was fitted to the binary response and confidence 
data using a maximum likelihood maximation procedure. The signal detection rating 
model included the parameters d , a , and a set of criteria �1 , �2 , …, �2Cmax−1

 as free param-
eters. The probability of the data according to the auxiliary signal detection rating model 
was calculated as

where Φ indicates the cumulative gaussian density function with mean � and the standard 
deviation � , �0 is −∞ and �2Cmax is ∞. To enforce that the criteria were ordered, all criteria 
except for �1 were parametrized as the log distance to the adjacent more negative criterion 
during the fitting procedure. Having obtained a , we computed discrimination sensitivity da,

as well as the discrimination criterion c1,

(6a)
p(C|S,R = 0) =

Φ
(
�(Cmax−C+1)|� = (S −

1

2
) × dmeta

)
−

Φ
(
�(Cmax−C)

|� = (S −
1

2
) × dmeta

)

Φ
(
�Cmax

|||� = (S −
1

2
) × dmeta)

(6b)
p(C|S,R = 1) =

Φ
(
�(C+Cmax)|� = (S −

1

2
) × dmeta

)
−

Φ
(
�(C+Cmax−1)

|� = (S −
1

2
) × dmeta

)

1 − Φ
(
�Cmax

|||� = (S −
1

2
) × dmeta)

(7a)
p(C,R = 0|S) = Φ

(
�(Cmax−C+1)|� = (S −

1

2
) × d, � = a−S

)

−Φ
(
�(Cmax−C)|� = (S −

1

2
) × d, � = a−S

)

(7b)p(C,R = 1|S) = Φ
(
�(C+Cmax)|� = (S −

1

2
) × d, � = a−S

)
− Φ

(
�(C+Cmax−1)

|� = (S −
1

2
) × d, � = a−S

)

(8)d1 =
1

a
× Φ−1(

nS1R1

nS1
) − Φ−1(

nS0R1

nS0
)

(9)da = d1 × a ×
√
2∕(1 + a2)
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The next step included fitting the meta-da model, which included the same parameters as 
the meta-d′ model, but �Cmax

 was fixed at dmeta × c1 ÷ d1 . According to the meta-da-model, 
the probability for a specific confidence rating given stimulus and response is calculated as

Finally, meta-da can be calculated from dmeta and a as follows:

HMeta‑d

HMeta-d provides an estimate of the meta-d′/d′ ratio based on a hierarchical Bayesian 
model (Fleming, 2017) and thus its computation is closely related to the computation of 
meta-d′. To estimate HMeta-d, we used R code provided by Steve Fleming (https:// github. 
com/ metac oglab/ HMeta-d, last accessed 2020–08-04), which relies on the free software 
jags to sample from the posterior distribution (Plummer, 2003). Sampling was performed 
in three separate Markov Chains to allow computation of Gelman and Rubin’s convergence 
diagnostic R̂ (Gelman & Rubin, 1992). When R̂ ≥ 1.1, the corresponding data set was dis-
carded from the analysis.

According to the HMeta-d method, just as for standard meta-d′, discrimination perfor-
mance d′ and discrimination criterion c were computed first using formulae (4) and (5) 
separately for each participant and then submitted to Jags as constants. The hierarchical 
estimation procedure was used only for the meta-d′/d′ and confidence criteria. For this pur-
pose, the absolute frequency of each confidence rating of participant j given stimulus and 
response f (C|S,R) was modelled as a multinomial distribution M,

where nSR is the number of trials with stimulus S and response R, and p(C|S,R) calculated 
using formula (6). However, for HMeta-d, unlike meta-d′, �Cmax

 is fixed at c . p
(
Ci|S,R

)
 

depends on the free parameters dmeta and a set of criteria � . The priors placed on the param-
eters depended on whether we examined the false positive rare associated with a grouping 
variable or with a continuous predictor variable.

(10)c1 =
−1

1 + a
×

(
Φ−1

(
nS1R1

nS1

)
+ Φ−1

(
nS0R1

nS0

))
.

(11a)
p(C|S,R = 0) =

Φ
(
�(Cmax−C+1)|� = (S −

1

2
) × dmeta, � = a−S

)
−

Φ
(
�(Cmax−C)

|� = (S −
1

2
) × dmeta, � = a−S

)

Φ
(
�Cmax

|||� = (S −
1

2
) × dmeta, � = a−S)

(11b)
p(C|S,R = 1) =

Φ
(
�(C+Cmax)|� = (S −

1

2
) × dmeta, � = a−S

)
−

Φ
(
�(C+Cmax−1)

|� = (S −
1

2
) × dmeta, � = a−S

)

1 − Φ
(
�Cmax

|||� = (S −
1

2
) × dmeta, � = a−S)

(12)meta − da = dmeta × a ×

√
2∕

(
1 + a2

)

(13)f
(
Ci|S,R

)
∼ M(n = nSR, p = p(C|S,R))

https://github.com/metacoglab/HMeta-d
https://github.com/metacoglab/HMeta-d
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HMeta‑d with a grouping variable According to the computer code published by Flem-
ing, the effect of group on HMeta-d can be assessed by using the HMeta-d algorithm to 
sample from the posterior for the average meta-d′/d′ separately for each group. Then, each 
sample of the posterior of group 2 is subtracted  from the corresponding sample of the pos-
terior of group 1 to obtain a posterior of the group difference in terms of mean meta-d′/d′. 
For this purpose, on the level of a single participant j, the priors of the parameters were 
specified as follows:

where �jR0 indicates the confidence criteria of participant j when the response was 0, �jR1 
indicates the confidence criteria of participant j when the response was 1, trN  indicates a 
truncated Gaussian distribution with the location parameter � and the scale parameter �, 
lower bound a, and upper bound b, �� , and �� are the parameters of the prior distribution of 
criteria on the group level, �M is the mean of the prior distribution of log

(
dmeta∕d

�
)
 on the 

group level, �� controls the variability of log
(
dmeta∕d

�
)
 on the group level, and �M and �j are 

redundant multiplicative parameters to facilitate sampling from the posterior via parameter 
expansion. On the group level, priors were specified as follows:

Placing independent prior distributions on both groups may not be considered a valid 
approach because the prior biases estimates of single participants towards the group aver-
age and thus the difference between the two groups is increased artificially. Therefore, 
we repeated this analysis using a prior placed on the difference between groups. For this 
purpose, we recoded the two groups as -0.5 and 0.5 and used the computer code (includ-
ing default priors) Fleming proposed for continuous predictor variables (see below): The 
regression coefficients obtained in this way can therefore be interpreted as the difference 
between the groups in terms of the logarithm of meta-d′/d′.

HMeta‑d with a continuous predictor variable According to the default implementation 
of HMeta-d for continuous predictor variables, on the level of a single participant j, the 
priors of the parameters were specified as follows:

where again �jR0 indicates the confidence criteria of participant j when the response was 
0, �jR1 indicates ´the confidence criteria of participant j when the response was 1, trN  

(14)

�jR0 ∼ trN
(
� = −�� , � = �� , a = −∞, b = cj

)

�jR1 ∼ trN
(
� = �� , � = �� , a = cj, b = ∞ ,

)

log
(
dmeta∕d

�
)
j
= �M + �M × �j

�j ∼ N(0, ��)

(15)

�� ∼ N
(
� = 0, � = 10

)

�� ∼ trN
(
� = 0, � = 10, a = 0, b = ∞

)

�M ∼ N
(
� = 0, � = 1

)

�M ∼ Beta(� = 1, � = 1)

�� ∼ trN(� = 0, � = 1, a = 0, b = ∞)

(16)

�jR0 ∼ trN
(
� = −��, � = �� , a = −∞ b = cj

)

�jR1 ∼ trN
(
� = �� , � = �� , a = cj, b = ∞,

)

log
(
dmeta∕d

�
)
j
= xj × �j +M

j
,

Mj ∼ N(� = �M , � = �M)

�j ∼ N
(
� = �� , � = ��

)
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indicates the truncated gaussian distribution with location parameter �, scale parameter �, 
lower bound a, and upper bound b; xj is the continuous predictor variable, �j is the subject-
specific effect of the continuous predictor variable on log

(
dmeta∕d

�
)
 , Mj is the subject-spe-

cific intercept, �M and �M are the parameters of the distribution of Mj on the group level, 
�� quantifies the overall effect of the continuous predictor variable on log

(
dmeta∕d

�
)
 , and �� 

quantifies the variability of the effect across subjects.

On the group level, we used three different sets of hyperpriors. First, we used the stand-
ard priors for HMeta-d as specified in the computer code provided by Fleming, which uses 
informative priors for �M and �� and relatively flat priors for all other parameters.

Second, we used close-to-flat prior for all parameters.

Finally, we examined the false positive rate with a set of more narrow prior distributions:

Logistic mixed‑model regression

Logistic regression is a specific case of a generalized linear regression model (Bolker et al., 
2008). In general, it is a method to quantify the relationship between a binary outcome 
variable and one or several dichotomous or continuous predictors. There is quite a vari-
ety of different logistic regression models to measure metacognitive accuracy (Barthelmé 
& Mamassian, 2009; Murayama et al., 2014; Rahnev et al., 2020; Sandberg et al., 2010; 
Wierzchoń et al., 2019), which is why we selected two logistic regression models for the 
present study with wider applicability (Sandberg et  al., 2010; Wierzchoń et  al., 2019). 
In both models, the probability of being correct in the primary task p(T) is modelled as 

(17)

�� ∼ N
(
� = 0, � = 10

)

�� ∼ trN
(
� = 0, � = 10, a = 0, b = ∞

)

�M ∼ N
(
� = 0, � = 1

)

�M ∼ trN
(
� = 0, � = 10, a = 0, b = ∞

)

�� ∼ N
(
� = 0, � = 1,

)

�� ∼ trN
(
� = 0, � = 10, a = 0, b = ∞

)

(18)

�� ∼ N

�
� = 0, � =

√
1000

�

��
−2 ∼ Γ(� = 0.001, � = 0.001)

�M ∼ N

�
� = 0, � =

√
1000

�

�M
−2 ∼ Γ(� = 0.001, � = 0.001)

�� ∼ N

�
� = 0, � =

√
1000

�

��
−2 ∼ Γ(� = 0.001, � = 0.001)

(19)

�� ∼ N
(
� = 0, � = 1

)

��
−2 ∼ Γ(� = 1, � = 1)

�M ∼ N
(
� = 0, � = 1

)

�M
−2 ∼ Γ(� = 1, � = 1)

�� ∼ N
(
� = 0, � = 1

)

��
−2 ∼ Γ(� = 1, � = 1)
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a linear function of a confidence rating C . A linear relationship between confidence and 
accuracy is obtained by transforming the probability of being correct into the logarithm of 
the odds of the primary response being correct to being incorrect. The two logistic regres-
sion models used in the present study differed in terms of the random effect structure: 
According to the regression model proposed by Sandberg et al. (2010), the clustered nature 
of the data is modelled by a random effect of participant on the intercept:

where �0 is the overall intercept, �j is the random intercept, and �1 is the slope of the effect 
of confidence and considered to be fixed across participants. In contract, according to the 
regression model by Wierzchoń et al. (2019), there is not only a random effect on the inter-
cept, but also on the slope:

where �0 is the overall intercept, �0j is the random intercept, �1 is the overall slope of the 
effect of confidence, and �1j is the random slope of participant. All logistic regression mod-
els were fit using the lme4 library in R (Bates et al., 2015).

Statistical analysis

All analyses were conducted using the free software R (R Core Team, 2020).
For each simulated data set, we first excluded simulated subjects whose performance 

was below chance level. Summary-statistics to measure metacognitive accuracy were com-
puted separately for each participant. We tested whether the summary-statistics were nor-
mally distributed using a series of Kolmogorov–Smirnov tests. Then we compared the two 
simulated groups using two-sample t-tests. For meta-d′/d′ and meta-da/da, we performed 
two additional tests because ratio distributions are often non-gaussian, a non-parametric 
Mann–Whitney-U-test as well as t-tests on log-transformed meta-d′/d′ and meta-da/da. For 
the logistic regression models, we used Wald z-tests to test the interaction effect between 
the fixed effect of group and the fixed effect of confidence. For all measures except for 
HMeta-d, the false positive rate was estimated by dividing the number of simulations with 
a significant effect of group by the total number of simulations. For HMeta-d, a false posi-
tive was defined as a simulated experiment where the 95% CI interval of the difference 
between the two simulated groups in terms of mean meta-d′/d′ excluded zero.

For each simulation, we also tested if the Pearson correlation between the measure of 
metacognitive accuracy and the continuous predictor variable was significant. For meta-
d′/d′ and meta-da/da, we also tested Spearman’s � as well as Pearson’s r with log-trans-
formed meta-d′/d′ and meta-da/da. For the logistic regression models, we again used Wald 
z-tests to test the interaction effect between the fixed effect of predictor and the fixed effect 
of confidence. For all measures except for HMeta-d, the estimated false positive rate was 
obtained by dividing the number of simulations with a significant effect of predictor by the 
number of simulations after exclusion of convergence errors. For HMeta-d, a false positive 
was defined as a simulated experiment where the 95% CI interval of the regression coef-
ficient excluded zero.

(20)log

(
p(T)

1 − p(T)

)
= �0 + �j + �1 × C

(21)log

(
p(T)

1 − p(T)

)
= �0 + �0j +

(
�1 + �1j

)
× C
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Statistical evidence if the false positive rate was different from the nominal alpha level 
of 0.05 was quantified using Bayes factors using default priors and the BayesFactor pack-
age (Morey & Rouder, 2015). Bayes factors were interpreted according to standard guide-
lines (Lee & Wagenmakers, 2013). We assumed a logistic prior distribution of logit-trans-
formed false positive error rate with a location parameter corresponding to a false positive 
rate of 0.05 and a scale parameter of 0.5. The prior distribution implied a 95% prior prob-
ability that the empirical false positive rate would fall between 0.8% and 25.0%. This prior 
distribution represents the belief that false positive error rates close to the nominal alpha 
level of 0.05 are more likely a priori than more extreme false positive error rates. The same 
prior distribution was used to construct posterior distributions of the false positive rate for 
each measure of metacognitive accuracy. As explanatory analysis, we assessed the relation-
ship between false positives and trial number as well as between false positives and subject 
number using logistic regression, which we converted into Bayes factors using the BFpack 
package (Mulder et al., 2021).

Fig. 1  P-values of Kolmogorov–Smirnov tests for normality of summary-statistic based measures of meta-
cognitive accuracy. Note. The expected null distribution was simulated by sampling from a Gaussian distri-
butions using the same sample sizes as in the other simulations
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Results

Testing summary‑statistic based measures for normality

The distributions of meta-d′/d′ and meta-da/da were often heavily leptokurtic (Kurtosis 
for meta-d′/d′ Mdn = 8.53 and for meta-da/da Mdn = 8.89) but only slightly skewed (skew-
ness for meta-d′/d′ Mdn = 0.68 and for meta-da/da Mdn = 0.58, see Supplementary Fig. 1 
for example distributions). We detected a significant deviation from the normal distribu-
tions in 47.54% of simulations for meta-d′/d′ and 51.46% for meta-da/da (see Fig.  1). 
Log-transforming meta-d′/d′ and meta-da/da reduced the kurtosis to Mdn = 5.63 for meta-
d′/d′ and Mdn = 5.87 for meta-da/da, without strongly affecting skewness (meta-d′/d′ 
Mdn = -1.01; meta-da/da Mdn = -0.92), resulting in a reduced number of significant devia-
tions from normality (28.24% for meta-d′/d′ and 30.06% for meta-da/da; see Supplemen-
tary Fig. 2). Gamma correlations also frequently deviated from normality (18.84%). The 
deviations appeared to be related to the fact that Gamma is bounded between -1 and 1 (see 

Fig. 2  Posterior distributions of false positive rate in comparisons between with two groups associated with 
different summary-statistics and hierarchical measures of metacognitive accuracy. Note. Colours indicate 
Bayes factors quantifying the strength of evidence that the false positive rate is different from 5%
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Supplementary Fig. 3). For the other measures, kurtosis ranged between Mdn = 2.67 and 
Mdn = 3.12 and skewness between Mdn = 0.00 and Mdn = 0.31, resulting in between 1.26% 
(meta-da) and 5.66% (slopes) significant deviations from normality.

Grouping variable

Figure 2 shows the posterior distribution of the false positive rate associated with different 
summary-statistics and hierarchical measures of metacognitive accuracy, assuming com-
parisons between two independent groups.

Table 1 provides Bayes factors quantifying the evidence if the observed false positive 
rate of different measures of metacognitive accuracy is consistent with an alpha frequency 
of 5%. There was moderate evidence that the empirical false positive rate is identical to 5% 
for gamma correlations, type 2 ROC curves, meta-d′, and meta-da. For confidence slopes 
the evidence was not conclusive.

Concerning meta-d′/d′, there was moderate evidence that the empirical false positive 
rate is below 5% when significance testing was performed using t-tests. There was moder-
ate evidence that the false positive rate is 5% when meta-d′/d′ was log-transformed before 

Table 1  Estimated false positive rates for different measures of metacognitive accuracy in comparisons 
between two separate groups

BF10 is a Bayes factor quantifying the evidence that the empirical false positive rate is different from 5%, 
assuming a logistic prior distribution of the logit-transformed false positive error rate with a location 
parameter that corresponded to a false positive rate of 5%, as well as a scale parameter of 0.5. 95% credible 
intervals were based on the same prior. p

(
H0|Data

)
 is the posterior probability that the false positive rate is 

5% given the data, assuming that the prior probability that the false positive rate is 5% is equal to 0.5

Method Estimated false 
positive rate [%]

95% CI BF10 p
(
H0|Data

)

Lower Upper

Area under the Type-II ROC curve 4.70 4.14 5.30 0.13 0.885
Confidence slope 4.40 3.86 4.99 0.61 0.621
Gamma 4.68 4.12 5.28 0.14 0.877
HMeta-d

  - independent priors, 95% CI 6.68 5.94 7.42 8.29 ×  103  < 0.001
  - priors on the group difference, 95% CI 4.54 3.96 5.16 0.25 0.80

Logistic mixed model regression
  - fixed slopes 29.52 28.23 30.75 4.74 ×  10678  < 0.001
  - random slopes 4.74 4.17 5.35 0.12 0.893

meta-d′ 4.56 4.01 5.16 0.24 0.807
meta-d′/d′

  - t-Test 4.14 3.62 4.72 5.27 0.160
  - log-transformed, t-Test 5.32 4.72 5.96 0.13 0.885
  - U-Test 5.00 4.42 5.62 0.08 0.926

meta-da 4.62 4.06 5.22 0.18 0.848
meta-da/  da

  - t-Test 4.08 3.56 4.65 9.76 0.091
  - log-transformed, t-Test 4.54 3.99 5.14 0.26 0.794
  - U-Test 4.56 4.01 5.16 0.24 0.807
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using t-tests and strong evidence that the false positive rate is 5% when significance testing 
was based on the Mann–Whitney-U-test. Likewise, for meta-da/da, there was moderate evi-
dence that the empirical false positive rate is lower than 5% when t-tests were used. How-
ever, there was moderate evidence that the empirical false positive rate is 5% when meta-
da/da was log-transformed before using t-tests and when Mann–Whitney-U-tests were used.

For hierarchical measures, there was extremely strong evidence that the false positive 
rate of logistic mixed model regression with a random effect on intercepts is larger than 
5%, but there was also moderate evidence that the false positive rate is 5% when logistic 
mixed model regression included random slopes. There was extremely strong evidence that 
the false positive rate is larger than 5% for HMeta-d when independent priors were placed 
on both groups. However, when a prior was placed on the difference between groups in 
terms of meta-d′/d′, there was a moderate amount of evidence that the false positive rate is 
5%.

An exploratory analysis investigated if false positives are associated with mean accu-
racy in a simulated experiment, the number of trials and the number of participants. Sup-
plementary Table S1 shows that the correlation with mean accuracy, the number of trials 
and the number of subjects was negligibly small for all measures, but with one exception: 

Fig. 3  Posterior distributions of false positive rate associated with different summary-statistics and hierar-
chical measures of metacognitive accuracy in in simulations with a continuous predictor variable. Note. 
Colours indicate Bayes factors quantifying the strength of evidence that the false positive rate is different 
from 5%
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For logistic mixed model regression with fixed slopes, there was very strong evidence that 
the probability for a false positive increased with average accuracy and with trial number.

Continuous predictor variables

Figure 3 shows the posterior distribution of the false positive rate associated with different 
summary-statistics and hierarchical measures of metacognitive accuracy when assessing 
the relationship to a continuous predictor variable.

Table 2 provides Bayes factors quantifying the evidence that the observed false posi-
tive rate of different measures of metacognitive accuracy is consistent with 5%. Concern-
ing summary-statistic based measures, there was moderate evidence that the empirical 
false positive rate is 5% for type 2 ROC curves, confidence slopes, gamma correlations, 
meta-d′, meta-d′/d′ (tested using Pearson’s r), and log-transformed meta-da/da. For meta-da, 
log-transformed meta-d′/d′, meta-d′/d′ (tested using Spearman’s ρ), and meta-da/da (both 
when tested using Pearson’s r and Spearman’s ρ), there was even strong evidence that the 
observed false positive rate is 5%.

Table 2  Estimated false positive rates for different measures of metacognitive accuracy in in simulations 
with a continuous predictor

BF10 is a Bayes factor quantifying the evidence that the empirical false positive rate is different from 5%, 
assuming a logistic prior distribution of the logit-transformed false positive error rate with a location 
parameter that corresponded to a false positive rate of 5%, as well as a scale parameter of 0.5. 95% credible 
intervals were based on the same prior. p

(
H0|Data

)
 is the posterior probability that the false positive rate is 

5% given the data, assuming that the prior probability that the false positive rate is 5% is equal to 0.5

Method Estimated false 
positive rate [%]

95% CI BF10 p
(
H0|Data

)

Lower Upper

Area under the Type-II ROC curve 5.34 4.73 5.97 0.14 0.877
Confidence slope 5.46 4.85 6.10 0.23 0.813
Gamma 4.74 4.17 5.35 0.12 0.893
HMeta-d

  - Original standard prior 3.83 3.29 4.44 68.62 0.010
  - Weak priors 4.31 3.73 4.94 0.85 0.541
  - Strong priors 1.85 1.51 2.29 3.92 ×  1026  < 0.001

Logistic mixed model regression
  - fixed slopes 29.86 28.56 31.09 1.08 ×  10694  < 0.001
  - random slopes 5.40 4.79 6.04 0.18 0.848

meta-d′ 4.76 4.19 5.37 0.11 0.901
meta-d′/d′

  - Pearson’s r 4.58 4.02 5.18 0.22 0.820
  - Log-transformed, Pearson’s r 5.04 4.45 5.66 0.08 0.926
  - Spearman’s ρ 5.00 4.42 5.62 0.08 0.926

meta-da 4.86 4.28 5.47 0.09 0.917
meta-da/  da

  - Pearson’s r 4.90 4.32 5.51 0.09 0.917
  - Log-transformed, Pearson’s r 5.50 4.88 6.14 0.27 0.787
  - Spearman’s ρ 5.08 4.49 5.7 0.08 0.926
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Concerning hierarchical measures, there was extremely strong evidence that the false 
positive rate of logistic mixed model regression with a random effect on intercepts is larger 
than 5%, but there was also moderate evidence that the false positive rate of logistic mixed 
model regression with random slopes is identical to 5%. We also found strong evidence 
that HMeta-d using default priors is associated with a false positive rate below 5%. HMeta-
d with stronger priors on the parameters of HMeta-d resulted an even smaller false positive 

Fig. 4  Phi-correlations between 
the outcome of the statistical test 
between each pair possible pair 
of metacognitive accuracy. Note. 
The outcome of the statistical 
test was coded as 1 if the 95% 
CI excluded zero (HMetad) or if 
the test was significant (all other 
measures) and zero otherwise. 
(A) Correlation between the 
outcome of statistical tests with 
respect to the grouping variable. 
(B) Correlation between the 
outcome of statistical tests with 
respect to the continuous predict-
ing variable
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rate. In contrast, the evidence was not conclusive if the false positive rate was different 
from 5% when we tested a variant of HMeta-d with close-to-flat priors.

Again, we performed an exploratory analysis to see if false positives are associated with 
mean accuracy, the number of trials or the number of participants. Supplementary Table S2 
shows that only for logistic mixed model regression with fixed slopes, the probability of a 
false positive increased with mean accuracy and with trial number. For all other measures, 
we detected no association with the probability of a false positive.

P‑hacking by selecting measures of metacognitive accuracy

Next, we examined if it is possible to p-hack results by computing several measures of 
metacognitive accuracy and select the measure of metacognitive accuracy based on the 
outcome of the statistical test without correction of the alpha level for multiple compari-
sons. P-hacking by post-hoc selection of a measure of metacognitive accuracy is possible if 
the results of the corresponding statistical tests are not perfectly correlated. Figure 4 shows 
that for most pairs of measures of metacognitive accuracy, the correlations between the 
outcomes of statistical tests is only moderate.

Finally, we examined the false positive rate if researchers compute n different measures 
of metacognitive accuracy and report only those that yielded a significant result without 
correction for multiple comparisons. Because the purpose of the analysis was specifically 
the impact of switching between different measures of metacognitive accuracy and not 
switching between statistical methods, we did not include all variants of testing meta-d′/d′ 
and meta-da/da for this specific analysis; instead, we assumed for this specific analysis that 
meta-d′/d′ and meta-da/da were tested using Mann–Whitney-U-tests or Spearman’s rho, 
respectively. We also excluded measures for which we had evidence that the false posi-
tive rate is not 5%. Figure 5 shows that the false positive rate is close to 5% when only 
one measure is randomly selected. However, randomly selecting two different measures 

Fig. 5  Frequency of false positive results if researchers compute n measures of metacognitive accuracy and 
report only favorable outcomes
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of metacognitive accuracy without correction is sufficient to increase the false positive to 
approximately 8%. When all nine different measures are computed, the false positive rate 
increases to 16.6% and 17.9%, respectively. Figure 5 also shows that unreported changes 
of the measure of metacognition do not increase the false positive rate to any lesser extent 
when the sample size is at least 100 subjects.

Discussion

We found that the false positive rates associated with most summary-statistic based meas-
ures of metacognitive accuracy were not distinguishable from 5%, including gamma corre-
lations, type 2 ROC curves, meta-d′, and meta-da. For group comparisons using meta-d′/d′ 
or meta-da/da, the false positive rate is too low when meta-d′/d′ or meta-da/da is directly 
subjected to a t-test. However, the problem can be solved by either log transformation or 
by using the Mann–Whitney-U-test. In contrast, hierarchical measures of metacognitive 
accuracy did not perform consistently well: For logistic mixed model regression, the false 
positive rates are dramatically inflated when random slopes are omitted from the model 
specification. For HMeta-d, the false positive rate is slightly increased for group compari-
sons with independent priors on both groups, but the false positive rate is adequate when 
the prior is placed on the difference between groups. When the standard priors of HMeta-d 
are used with a continuous predictor variable, the false positive rate is below 5%; the false 
positive rate cannot be distinguished from 5% if close-to-flat priors are used. We also found 
that false positive rates increase dramatically when researchers choose a measure of meta-
cognitive accuracy based on the results of statistical tests without correction of the alpha 
level for multiple corrections. In general, the present study demonstrates that it should not 
be assumed a priori that the false positive rate associated with a measure of metacognitive 
accuracy is acceptable; we strongly recommend that only measures for which it has been 
demonstrated that the false positive rate is appropriate should be used.

Robustness of measures of metacognitive accuracy

In the present study, none of the summary-statistic based measures of metacognitive accu-
racy were associated with an increased false positive rate. Thus, we did not replicate the 
increased false positive rate of gamma correlations reported in a previous simulation study 
(Murayama et  al., 2014). In the present study, only hierarchical measures were found to 
have an increased false positive rate. First, the error rates associated with logistic mixed 
model regression with fixed slopes are extremely high. Previous studies have already 
shown that omitting random slopes from the model specification carries the risk of an 
increased false positive rate (Oberauer, 2022). Our study shows that such a high false posi-
tive rate not only occurs in ad-hoc simulations, but is also found in simulations with very 
similar characteristics to real datasets.

The error rate associated with HMeta-d in simulations with two groups and independ-
ent priors is slightly above 5%, which is within the range of empirical false positive rates 
that are considered to be robust (Bradley, 1978). Nevertheless, from the perspective of the 
ongoing reproducibility crisis in psychology (Nelson et al., 2018; Nosek et al., 2022; Pash-
ler & Harris, 2012), it seems to us that even such a small excess in empirical false positive 
rate is too large: If the true false positive rate is 6.7% instead of 5%, the risk of published 
studies reporting statistical evidence for a non-existent effect increases by about 25%. For 
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this reason, we recommend placing a prior on the between-group difference, which in our 
stimulation is sufficient to avoid an increased false positive rate.

Considerations beyond false positive rates

The false-positive rate is only one factor that researchers need to consider when choosing 
a measure of metacognitive accuracy. A more commonly discussed factor is the validity of 
different measures of metacognitive accuracy: Measures of metacognitive accuracy should 
not be confounded by other theoretically important variables. Specifically, previous stud-
ies have examined whether measures of metacognitive accuracy are contaminated by task 
performance, task criteria, and confidence criteria (Barrett et al., 2013; Guggenmos, 2021; 
Masson & Rotello, 2009; Rahnev, 2023; Rausch & Zehetleitner, 2017; Rausch et al., 2023; 
Shekhar & Rahnev, 2021). Measures based on type II signal detection theory have become 
very popular because it was promised that type 2 signal detection theory isolates meas-
ures of metacognitive accuracy from some of these confounds (Fleming & Lau, 2014). For 
example, type 2 ROC curves have been designed to control for the criteria that participants 
apply when reporting their level of confidence (Fleming et al., 2010). Unfortunately, type 2 
ROC curves do not control for task performance and task criteria (Fleming & Lau, 2014), 
and even the control for confidence criteria is not necessarily robust (Shekhar & Rahnev, 
2021). A reanalysis of seven experiments showed a medium-sized correlation between 
type 2 ROC curves and task performance and only a very small correlation between type 
2 ROC curves with task criteria and with confidence criteria (Rahnev, 2023). Meta-d′/d′ 
was designed to explicitly control task performance, task criterion, and confidence crite-
ria simultaneously without assuming a specific generative model underlying confidence 
judgments (Maniscalco & Lau, 2014). Unfortunately, it has been repeatedly shown that 
the control provided by meta-d′/d′ is not necessarily effective (Guggenmos, 2021; Rahnev, 
2023; Shekhar & Rahnev, 2021) and depends on the generative model underlying confi-
dence judgments (Boundy-Singer et  al., 2022; Rausch et  al., 2023; Zhu et  al., 2023). In 
addition, meta-d′/d′ is influenced by the dynamics of the decision process (Desender et al., 
2022). However, a recent study showed that the correlation between meta-d′/d′ and task 
performance and between meta-d′/d′ and task criteria is very small, although there is a 
medium-sized correlation between meta-d′/d′ and confidence criteria (Rahnev, 2023). Oth-
ers have proposed measures of metacognitive accuracy that depend on a specific genera-
tive model of confidence (Boundy-Singer et al., 2022; Desender et al., 2022; Guggenmos, 
2022; Mamassian & de Gardelle, 2021; Shekhar & Rahnev, 2021, 2022); however, there is 
currently no consensus on which model best describes human confidence for the maximum 
number of data sets (Rahnev et al., 2022). Overall, the appropriate choice for a measure 
of metacognitive accuracy depends on the theoretical variables necessary to control for a 
specific research question, as well as the statistical properties of confidence judgments in a 
specific experiment.

A second factor that researchers need to consider is statistical power. Although the 
present study did not explicitly address statistical power, the present results are informa-
tive about the statistical power of meta-d′/d′ and meta-da/da in group designs with t-tests, 
and of HMeta-d with continuous predictors and standard priors, because the false positive 
rate was even lower than 5%. An empirical false positive rate below the nominal alpha 
level indicates that the statistical power is too low (Bradley, 1978). This is because the 
alpha level is a criterion that researchers use to make statistical inferences, controlling both 
power and false positive rate. If researchers are willing to accept a higher false positive rate 
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by increasing the alpha level, they are more likely to detect effects if they exist. Likewise, if 
researchers keep the false positive rate excessively small, there will also be no large power 
to detect effects even though they exist. The low power of meta-d′/d′ and meta-da/da can be 
explained by a high number of stimulations in which meta-d′/d′ and meta-da/da were not 
normally distributed. Importantly, low statistical power also paradoxically implies that the 
probability that a published significant research finding is true is low (Ioannidis, 2005). 
Thus, previously reported results based on meta-d′/d′ and meta-da/da in group designs 
(assuming parametric statistics and without log-transformation) or results based on HMeta-
d with regression analysis and standard priors should be interpreted with caution.

For group designs, the false positive rate of meta-d′/d′ and meta-da/da is just as expected 
when the non-parametric Mann–Whitney-U-test is used or when meta-d′/d′ and meta-da/da 
are log-transformed, so we recommend using one of these procedures in future studies. For 
HMeta-d, the false positive rate was closer to 5% when a close-to-flat prior was used, but a 
close-to-flat prior may not be considered as reasonable choice as it gives too much weight 
to extremely large meta-d′/d′ ratios that are not plausible from a theoretical point of view. 
Instead, it is preferable to ensure sufficient statistical power of HMeta-d through sample 
size planning using Bayesian power analysis (Kruschke, 2014).

Preregistration is recommended

Regardless of the measure researchers choose to use, we recommend that researchers pre-
register their choice of measure of metacognitive accuracy prior to data collection, espe-
cially in cases where more than one choice for a measure of metacognitive accuracy is 
defensible to a sceptical audience. The reason is that the false positive rate is unacceptabil-
ity high if the measure of metacognitive accuracy is chosen based on the outcome of the 
statistical test. It is well known that undisclosed flexibility in data analysis causes an unac-
ceptable high number of false positive results (Simmons et al., 2011). The present study 
demonstrates that the measure of metacognitive accuracy is a choice that gives researchers 
the opportunity to engage in so-called p-hacking (Nelson et  al., 2018). This means that 
it is crucial that researchers select measures of metacognitive accuracy independently of 
the outcome of their statistical tests. The best way to demonstrate that analysis procedures 
have been selected independently from the results is by preregistration before data collec-
tion (Chambers, 2013; Nosek & Lakens, 2014; Wagenmakers et al., 2012). Unfortunately, 
if measures disagree if an effect is present or not, researchers may be tempted to convince 
oneself that the significant measure is the more accurate or powerful measure. Thus, pre-
registration is an important tool for researchers to try and be objective about their own 
results (Oberauer & Lewandowsky, 2019).

Conclusion

The present analysis showed that gamma correlations, confidence slopes, type 2 ROC 
curves, meta-d′, and meta-da are all adequate in terms of false positive rate. The false posi-
tive rate associated with meta-d′/d′ is adequate when meta-d′/d′ is log-transformed or when 
significance is assessed by a non-parametric statistical test. For logistic regression, the 
false positive rate is too high if the random effect of slope is omitted from the model. For 
HMeta-d, the false positive rate is slightly to high if independent priors are placed on two 
different groups. Selecting measures of metacognitive accuracy based on the outcome of 
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statistical tests inflates false positive rates, which is why preregistration is recommended 
for future studies investigating metacognitive accuracy. Finally, because it cannot be 
assumed a priori that newly proposed measures of metacognitive accuracy are adequate in 
terms of false positive rates, we recommend that any new method to assess metacognitive 
accuracy should be carefully validated in terms of false positive rate.
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