
TYPE Hypothesis and Theory

PUBLISHED 06 September 2022

DOI 10.3389/fams.2022.909873

OPEN ACCESS

EDITED BY

Norbert Marwan,

Potsdam Institute for Climate Impact

Research (PIK), Germany

REVIEWED BY

Peter Bruza,

Queensland University of Technology,

Australia

Francesco Bianchini,

University of Bologna, Italy

*CORRESPONDENCE

Markus Huber-Liebl

markus.huber@b-tu.de

SPECIALTY SECTION

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

RECEIVED 31 March 2022

ACCEPTED 03 August 2022

PUBLISHED 06 September 2022

CITATION

Huber-Liebl M, Römer R, Wirsching G,

Schmitt I, beim Graben P and Wol� M

(2022) Quantum-inspired cognitive

agents.

Front. Appl. Math. Stat. 8:909873.

doi: 10.3389/fams.2022.909873

COPYRIGHT

© 2022 Huber-Liebl, Römer,

Wirsching, Schmitt, beim Graben and

Wol�. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Quantum-inspired cognitive
agents

Markus Huber-Liebl1*, Ronald Römer1, Günther Wirsching2,

Ingo Schmitt1, Peter beim Graben1,3 and Matthias Wol�1

1Faculty of Mathematics, Computer Science, Physics, Electrical Engineering and Information

Technology, Brandenburg University of Technology Cottbus—Senftenberg, Cottbus, Germany,
2Faculty of Mathematics and Geography, Catholic University Eichstätt—Ingolstadt, Eichstätt,

Germany, 3Bernstein Center for Computational Neuroscience, Berlin, Germany

The concept of intelligent agents is—roughly speaking—based on an

architecture and a set of behavioral programs that primarily serve to solve

problems autonomously. Increasing the degree of autonomy and improving

cognitive performance, which can be assessed using cognitive and behavioral

tests, are two important research trends. The degree of autonomy can be

increased using higher-level psychological modules with which needs and

motives are taken into account. In our approach we integrate these modules

in architecture for an embodied, enactive multi-agent system, such that

distributed problem solutions can be achieved. Furthermore, after uncovering

some weaknesses in the cognitive performance of traditionally designed

agents, we focus on two major aspects. On the one hand, the knowledge

processing of cognitive agents is based on logical formalisms, which have

deficiencies in the representation and processing of incomplete or uncertain

knowledge. On the other hand, in order to fully understand the performance

of cognitive agents, explanations at the symbolic and subsymbolic levels

are required. Both aspects can be addressed by quantum-inspired cognitive

agents. To investigate this approach, we consider two tasks in the sphere of

Shannon’s famous mouse-maze problem: namely classifying target objects

and ontology inference. First, the classification of an unknown target object

in the mouse-maze, such as cheese, water, and bacon, is based on sensory

data that measure characteristics such as odor, color, shape, or nature. For

an intelligent agent, we need a classifier with good prediction accuracy and

explanatory power on a symbolic level. Boolean logic classifiers do work

on a symbolic level but are not adequate for dealing with continuous data.

Therefore, we demonstrate and evaluate a quantum-logic-inspired classifier

in comparison to Boolean-logic-based classifiers. Second, ontology inference

is iteratively achieved by a quantum-inspired agent through maze exploration.

This requires the agent to be able to manipulate its own state by performing

actions and by collecting sensory data during perception. We suggest an

algebraic approach where both kinds of behaviors are uniquely described by

quantum operators. The agent’s state space is then iteratively constructed by

carrying out unitary action operators, while Hermitian perception operators act

as observables on quantum eigenstates. As a result, an ontology emerges as

the simultaneous solution of the respective eigenvalue equations.
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1. Introduction

In the early years of cybernetics, the Josuah Macy

Jr. Foundation [1] sponsored a series of conferences, where

the pioneers of the emerging information and communication

sciences had come together to develop the crucial concepts

of information and control in animals and machines. Among

the conference attendants were well-known scientists from

mathematics, engineering, psychology, humanities, biology, and

related fields, such as Margaret Mead, John von Neumann,

Norbert Wiener, Heinz von Foerster, Warren McCulloch,

Walter Pitts, and Claude E. Shannon, who had published their

groundbreaking monographs such as “Cybernetics or Control

and Communication in the Animal and the Machine” [2], “The

Computer and the Brain” [3] or “The Mathematical Theory of

Communication” [4].

Shannon was particularly interested in clarifying the

concept of information without referring to the vague notion

of “meaning” [4]. To this aim, Shannon presented an

electromechanical mouse-maze system, where a cognitive agent,

an artificial mouse dubbed “Theseus” (after the ancient Greek

hero who overcame the mythological Minotaur monster in

the Cretan labyrinth) had to find its way out of the maze

[5]. Shannon’s testing arrangement consisted of 25 maze

fields on which walls could have been arbitrarily erected for

probing different labyrinth configurations. The magnetic mouse

“Theseus” was driven by a motorized electromagnet beneath

the maze floor. Its motor pairs allowed the mouse to navigate

through the maze in all four geographic directions. Under

the floor of the labyrinth, there was an arrangement of relays

that formed the agent’s “memory”. Shannon had demonstrated

that “Theseus” was able to explore the labyrinth using relay

switching to memorize events such as bouncing the wall.

Notably, “Theseus” always found the exit of the maze by the

principle of trial and error even when the agent was initially

located in different fields of the maze.1

Both Theseus characters, the artificial agent and the

mythological figure solve their tasks to exit the labyrinth by

external means. On the one hand, Theseus was equipped with

a long thread by princess Ariadne (the “Ariadne thread”) in the

Greek legend tomemorize the path back to the exit. On the other

hand, Shannon’s mouse exploited the switching states of the

relay cells in a similar fashion. This simple technological solution

is not feasible in the context of contemporary cognitive systems

research for the following reasons. First, the artificial agent does

not distinguish between an outer and an inner world, since the

acquisition of information, as well as the release of information

via sensors and actuators, is not differentiated according to

attributes and effects. This means that target and auxiliary

1 For Shannon’s instructive video demonstration, look at https://www.

youtube.com/watch?v=vPKkXibQXGA.

objects cannot be differentiated by means of their attributes

and that no internal representations can be built, processed,

and stored either. Second, for neither needs, motives, nor goals

are taken into account, the behavior of the agent resembles

the principle of classical conditioning, where no goal-oriented

decisions among different actions take place.

In order to cope with these difficulties, the opposite

strategy is employed in current cognitive systems research.

There, embodied and enactive artificial agents [6] are endowed

with both, concepts of meaning and concepts of failure. One

firstly assumes the existence of an external world consisting

of objective entities with their respective properties and with

different relationships between these objects. Philosophically

speaking, there is an ontology of things as they are in the

outer world, independent of any perception or observation.

Encountering the objects, their properties and the relations

between different objects of this external world, the cognitive

agent performs interactions in form of perceptions to experience

the state of the world and in form of actions to modify the

state of the world. Thus, the agent must be able to create,

process, and store its own reactions to the external objects in

its own inner world. In traditional philosophy of mind and

artificial intelligence research, such reactions are conventionally

dubbed “representations” [7, 8], which is highly controversial in

current discourse [6, 9–11] and will be addressed subsequently.

In order to recognize deceptions and failures, the agent must

also be able to differentiate between these different worlds and

recognize mistakes for avoiding misfortune. Learning, thinking

and adaptation processes are triggered by such mistakes.

Using philosophical terminology again, the agent requires an

epistemology of the things of the outer world, as they appear

in its subjective internal world of representations. Eventually,

the epistemic representations of ontic properties and relations

should be as faithful as possible, or veridical [7, 12, 13].

1.1. Cognitive agents

With the concepts of intelligent agents and cognitive

dynamical systems [14] a large number of research directions

in artificial intelligence (AI) and machine learning (ML)

were integrated into AI systems that are characterized by

a high degree of autonomy. Taking a rough technical view,

an intelligent agent can be described by architecture and its

behavioral programs. Essentially, behavioral programs comprise

the data to be processed and some mathematical algorithms. In

contrast, cognitive architectures serve to integrate psychological

findings in a formal model that is as economical as possible

and capable of being simulated. It assumes that all cognitive

processes can be traced back to a few basic principles.

According to [15], this means that cognitive architectures have

suitable representational data structures, that they support the

principles of composition, adaptation, and classification, and

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2022.909873
https://www.youtube.com/watch?v=vPKkXibQXGA
https://www.youtube.com/watch?v=vPKkXibQXGA
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Huber-Liebl et al. 10.3389/fams.2022.909873

that they are autonomously capable to gain knowledge through

logical reasoning and learning. Further criteria are productivity,

robustness, scalability, and compactness. In psychological

research, these architectures are available as computer programs,

which are used to empirically test psychological theories. In

contrast, the utility of cognitive architectures in AI research lies

primarily in the construction of intelligent machines and in the

ability to explain their behavior.

The starting point of our own integrative approach is an

embodied, enactive cognitive multi-agent system (MAS) [6, 16],

which we refer to as the DAGHT architecture that consists of

five different agents, motivated by other mythological characters

besides Shannon’s Theseus. Each agent fulfills its own specific

tasks in terms of distributed intelligence and they are mutually

dependent on one another. Figure 1 shows the hierarchically

ordered three-layer structure in which the five agents are

reciprocally connected in a communication network [17]. The

structural requirements for the DAGHT architecture result from

the psychological superstructure consisting of needs, motives,

and goals at the highest level. The units at the intermediate level

deliver behavioral programs as well as model-based symbolic

information processing that is embedded in a perception-action

cycle (PAC) at the lowest level, ensuring enactive embodiment

within the external world.

The agents in Figure 1 are named upon the characteristics

of some mythological figures, namely “Demiurge” (D), “Argus”

(A), “Golem” (G), “Homunculus” (H), and “Theseus” (T). On

the lowest level, we find the perception-action cycle which

involves the characters Golem and Homunculus. Golem fulfills

the tasks that typically occur at the system boundary: the

enactive execution of instructions by actuators, the perception of

measurements using sensors, or the implementation of reflexive

behavior. It processes signal-related symbolic data structures.

Homunculus is in charge of the interpretation of sensory input,

the articulation of actuator instructions, and the goal-directed

selection of actions. In contrast to Golem, it operates on

representational symbolic data structures and is equipped with a

linguistic user interface. The psychological superstructure builds

on the lower level of the PAC. This is structured by another three

agents. Theseus provides action-guiding behavioral programs in

the sense of the psychological category of “ought”. This includes,

e.g., exploration and finding objects as well as programs of

thinking, learning, interaction, and communication processes.

We understand embodied adaptive performance in the sense of

homeostasis in which the internal state of the system has to be

compared with the external state of the system environment.

The determination of the external condition requires a model

of the system environment which must meet the veridicality

requirement. Such a model contains representations of objects

and their relationships to the system environment which creates

the Homunculus agent, that operates logically in controlling

behavior. For model construction, comparison with reality,

model adaptation, and the exchange of information with the

system environment are mandatory. This, however, can only

be performed via the Golem agent. Furthermore, the MAS has

protective functions that fall within the sphere of a guardian

agent, named Argus. It determines what the agent can do and

limits possible actions between Golem and the environment.

We regard the physical interaction that includes such protective

functions with which the functionality and viability of the

system can be maintained as well as access and authenticity

controls, e.g., object classification in terms of edible or inedible

[18].

Argus and Theseus are located on the intermediate level of

the MAS. Already at this level, access to the representational

data structures of the inner model (construction plan) and the

outer model (environment) takes place, so that the behavior

controlling mechanisms can implement the corresponding

adaptations on various time scales. These include reflex, instinct,

and coping behavior, taking effect over time into ontogenesis

(learned behavioral programs) and actual genesis (perception-

action cycle). Adaptations that affect the construction plan

and could be passed to “descendants” take place on the time

scale of phylogenesis. However, changes to the building plan

are only reserved for the Demiurge, heading the MAS. In

addition to maintaining the construction plan, it is also in

charge of “wanting”. The psychological category of desire is

determined by needs that can only be satisfied but not changed.

Therefore, adjustment services to the construction plan can

only be provided if they do not conflict with the given needs.

We understand the Demiurge as a character that—similar to

the cell nucleus—has the blueprint, and can access and change

it. Changes in the blueprint, therefore, take place on the

phylogenetic time scale, so that an evolutionary development

may happen also.

Furthermore, a cognitive dynamical system has to take

the distinction between the outer perspective upon the

environment as described by ontology and also the inner

perspective of an epistemic model of the environment

by means of mental representations into account. These

mediating representations have to be veridical as well. The

latter provides the adaptive performance of the system. In

doing so, the following principles and requirements must

be achieved: solving the symbol grounding and the frame

problems [19, 20]; recording and delivering information,

information transformation, and compositionality [21];

modeling, validation, and simulation; providing goals, motives,

and necessities; knowledge representation and processing;

behavioral mechanisms; ability to learn; distributed problem

solving and language capability [22].

The DAGHT architecture above comprises an extended

perception-action cycle (PAC) [23, 24] that is depicted in

Figure 2. A PAC often forms the core of an embodied

and enactive cognitive dynamic system [14]. It describes the

interaction of a cognitive agent with a dynamically changing

environment. The agent is equipped with sensors for the
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FIGURE 1

Multi-Agent-System. The DAGHT-architecture results from the analysis of natural organisms (biological cells) and technical artifacts (embedded

Turing Machines) as well as traditional cognitive architectures. Necessities or needs are given by a system designer (“Demiurge”), motives and

goal directed behavior are implemented by the hero “Theseus”. The ability to allow permissions in terms of the interaction between the agent

and the environment is associated with the “Argus” agent. The perception-action cycle controls information exchange with the environment. It

is separated into interaction and communication. Interaction is within the scope of the “Golem” agent, it comprises the control of physical

system components and the assessment of target objects. The “Golem” agent itself is controlled by the “Homunculus” agent which is working

on representational data structures and is additionally speech-enabled.

perception of its current state in the environment and with

actuators allowing for active state changes. A central behavior

control prescribes goals and strategies for problem solving. Here,

the psychological categories of “want”, “should”, and “allow” are

realized by the cognitive control of the Demiurge from Figure 1.

In Shannon’s original mouse-maze system, the motors are

the actuators pulling the mouse along a path until it hits a

wall which is registered by the corresponding sensors. These

perceptions have been stored in a relay array to be able

for avoiding the corresponding actions subsequently. In our

DAGHT architecture, the Demiurge prescribes a certain maze

cell where the agent could find a “piece of cheese”, a “glass of

water”, or even “a rind of bacon” as possible goals. When one

goal is eventually reached, no further action is required.

Since complex cognitive systems are characterized by a

high degree of autonomy, it is obvious with regard to the

learning ability of such systems, to focus on those learning

methods where a “teacher” is not demanded. This includes

associative learning algorithms, such as reinforcement learning

[14], which are based on environmental models and in which

a relationship between the predictions of the model and

the observations, in reality, must be established. The basic

structure of cognitive information processing is shown in

Figure 2. It is supported by model-based knowledge processing,

with which representational data structures can be processed,

either mathematically or logically. As such models construction

plans of the system as, well as dynamic, state-space-based

models of the environment, can be incorporated. In the

following, we describe the extended PAC of Figure 2 in more

detail.

Simulation loop. After modeling and validation, the

cognitive system has a simulation-capable model in which

the representational data structures can be processed

informationally closed. This approach can be used, for example,

when planning optimal control sequences or when solving

problems. These tasks are solved through the information
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FIGURE 2

Double cognitive loop using an embedded relational data model. The inner cognitive loop corresponds to the interaction between the agent

and the environment (non-verbal information exchange). The outer cognitive loop is used for the communication between a speech-enabled

agent and any other cognitive agent or natural language user (verbal information exchange). The flow of information between the behavioral

control and the relational data model is embedded in a simulation loop and enables the simulation of actions as well as the prediction of e�ects.

Since the simulation loop is not linked to the environment through perception and action, this loop is not referred to as a PAC. The exchange of

information between two systems with di�erent cognitive abilities (e.g., between humans and cognitive agents) is denoted as Inter-Cognitive

Communication [25].

processing in simulation loop2. Here, the query and response of

the knowledge model alternate cyclically, but there is no relation

to the signal level. Thus the simulation loop is not denoted as a

PAC. Of course, the existential risk of damage from this inward

directed behavior is negligible. However, since the existence of a

cognitive system—in the sense of a final system—is dependent

on a selection principle, any model-based solution needs to be

related to reality.

Interaction loop. The agent causes mechanical movements

or changes in physical quantities and also records information

or evidence on the existence of objects or their properties.

This information is required for comparison with reality. For

this reason, a compound system is required, which enables

a logical interconnection between comparative information

(model knowledge) and measurement information (current

observations, evidence). Only through this comparison facility,

a model-based system was able to decide “What is the case?” or

“What does this observation mean?” or whether an adjustment

2 Based on the terms used in control theory, we represent the cyclical

flow of information in a circular form and denote the cyclical flow as a

loop.

of the model is required. In case of uncertain information, a

probabilistic description is mandatory, so that a mathematical

statistical interconnection between comparative information

and measurement information may be established (e.g., via

Bayesian modeling). Only when facts are available, or the most

probable state of the world has been determined, the system

can select the next steps to achieve the specified goal. Hence,

all perceptions, behavior-relevant decisions, and actions that

affect the physical environment are processed via the inner

PAC. According to Figure 2 these processes are realized by the

interaction loop.

Communication loop. Representational data structures are

used already for problem solving and productive thinking.

In communication processes, these data structures play an

even more prominent role. In order to realize communication

processes between cognitive systems the external PAC is

required, which is referred to as a communication loop. With

this kind of coupling, statements about the world can be

obtained by means of natural language expressions, which can

be transformed logically and added to the existing knowledge.

On the other hand, derived statements from logical expressions

can also serve as evidence for observed facts [26].
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Compound system. By linking the interaction loop with

the simulation loop, we have shown above, how observations

of the environment can be mapped to possible categories of the

environment model. In this way, the agent arrives at ideas about

“What is the case in the world”. This approach corresponds to

the concept of meaning in a truth-functional sense. In addition,

a connection between communication and interaction loops

can be realized. This is particularly advantageous when several

interpretations of linguistic input are possible. In this case, the

sensory input of the interaction loop can be used as context, such

that input ambiguities can be resolved. The linking of both loops

means that behavioral control is embedded in a double cognitive

loop. In order to implement this embedding technically, it has

to be clarified which requirements must be fulfilled so that it

can be implemented as a logical compound system. In [27],

we proposed that the information from both loops must be

available in a form that they can be logically processed and

compared with one another. For this purpose, statements in all

information loops must be expressed in a formal language and

thus transformed and processed in a coherent manner [26].

As pointed out above, an important task of cognitive agents

is to relate their subjective inner worlds to the objective outer

world. On the one hand, things of the external world exist

independently of observations. This includes the “being” of

entities and their attributes as well as the structural relationships

between them [7]. The philosophical discipline of ontology deals

with ordering principles of being and with the basic structures

of reality. On the other hand, there are those structures with

which the phenomena of reality are formally described. The

philosophical discipline dealing with the formal description

of knowledge is called epistemology. This notably includes

terms with which “representations of being” are formally

available. However, a cognitive agent can only acquire formal

knowledge through experiential analysis and observation, and

this requires the informational coupling of the agent with its

environment according to Figure 2. The information processing

of a cognitive agent is therefore characterized by the formation

of representations and the logical operations upon them. In

this context, object classification and ontology inference are two

prominent tasks that can be used to capture the basic structures

of reality and which are discussed in this study.

1.1.1. Classification

Within our DAGHT architecture, object classification

belongs to the behavior programs of Argus, which is based

on typical object features and their values of measurement.

Classification is required for conceptualization and for

grounding symbols in perceptions. A cognitive dynamical

system may be equipped with different sensors, e.g.,

for taste, smell, or color that provide a high-dimensional

continuum, often called the observation space [28]. In classical

AI applications, standard ML techniques such as K-means

clustering, expectation maximization, Voronoi tessellation,

or decision trees are utilized to obtain a partitioning of these

observation spaces [7].

Before, an exploration phase is required in which the

modeling (e.g., by the building of decision trees) using some

training data takes place. Based on these models, the target

objects can be classified and assessed with regard to their

usefulness for the satisfaction of needs.

Of course, the prediction of a classification model is typically

not completely correct. Instead, the goal is to find a classification

model with high accuracy. A high number of correct training

objects is essential for achieving high accuracy. The typically

low number of training objects from an exploration phase

leads to an initial classification model with poor accuracy.

For improving the classification model, the set of training

objects should evolve and enlarge after the exploration phase.

That means, it must be possible to check the correctness of

performed classification predictions and to use that information

for refining and enlarging the set of training objects. Based

on that, the classification model needs refinement too. Thus,

learning a classification model within the DAGHT architecture

is an ongoing process of reinforced learning [14].

1.1.2. Ontologies

An exploration phase not only precedes the object

assessment but also the finding of target objects. For this,

relations between objects, such as the location of target objects

can be found using the ontology inference method. The

corresponding exploration program based on the associated

training data is part of behavior programs of Theseus.

The term ontology is widely used in the context of artificial

intelligence [7] where it is often understood as synonymous with

“semantic models” [29] or “conceptual systems” [30]. Although

it is acknowledged that the term has its origin in philosophy

[12, 31] it is used in a much narrower sense as “specification

of a conceptualization” [31], where a conceptualization is

understood as a triple of a universe of discourse with functions

and relations. The universe of discourse contains the objects

“hypothesized to exist” [32], which can be properties or reified

relations [32]. Where it is totally clear that “[f]or knowledge-

based systems, what ‘exists’ is exactly that which can be

represented” [31]. Although this last notion links to radical

constructivism incorporating notions from Kant and Piaget (cf.

[10]) the a priori of knowledge-based systems are seldom

discussed. As an exception [30] states, “Piaget insisted that

concepts must arise out of activities — because simple action

schemas develop before conceptual thought [. . . ]”3 indirectly

relating to epistemology.

3 In [33] some of the authors studied image schemaswhich can be seen

as results of “perceptual analysis” [34] of the mentioned “action schemas”.
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In computer science—following the tradition of languages,

compilers, and tools—an ontology is what can be specified by an

ontology language of which the web ontology language (OWL)

[35, 36] is by far the most prominent one together with its tools

Protégé [37] and WebProtégé [38]. And although much work

is done to derive ontologies from text [e.g., 39] they are usually

hand-crafted by “highly-trained knowledge engineers” [30] for

which Project Cyc [40] is an extreme example where since 1984

a huge knowledge base is assembled using the project’s own

language CycL [41]. The knowledge base should be 105 or 106

times bigger than what is necessary for small expert systems

[41]. But it remains that ontologies define the vocabulary of a

domain and therefore use natural language as its basis [13, 42]

circumventing the symbol grounding problem [19].

Picking-up on Piaget’s notion above he also states that

the construction of knowledge consists of the alternation of

assimilation and accommodation where the data of experience is

incorporated into existing schemata constantly modifying them

[43]. This idea is summarized by [30]: “Concepts and activities

bootstrap each other.”

Linking this section back to the previous one it must be said

that finding objects and finding relations between objects clearly

depend on each other [cf. 44] which relates cognitive agents to

bidirectional hierarchical systems [45, 46]. In the same manner

knowledge and its construction are inseparable [cf. 44] and the

former is determined by the latter.

1.2. Quantum-inspired cognitive agents

In cognitive science and psychology several pertinent

puzzles of decision theory, such as the Ellsberg and the Allais

paradoxes, the conjunction or the disjunction fallacy, or even

questionnaire ordering effects were not solvable by means of

classical statistical modeling, such as Kolmogorovian probability

theory or Markov chains [47–50]. In order to cope with these

problems, psychologists have developed alternative approaches

such as prospect theory, [47] or the bounded rationality program

[50, 51]. In the latter framework, a cognitive agent under

environmental pressure does not have all possible cognitive

resources available to select the most rational decision. Instead,

only a limited number of heuristic cues are evaluated according

to a take-the-best strategy. Notably, during the last two decades,

experts from mathematical psychology and theoretical physics

have realized in a common effort, that the human mind can be

treated as an abstract quantum system (refer to e.g., [48, 49]

and references therein). This quantum cognition approach rests

essentially on projective geometry as employed in the Hilbert

space formalism of quantum physics. Here, a mental state of a

cognitive agent is prescribed by a state vector in such a Hilbert

space that is transformed into a subsequent state vector by the

application of mental operators, describing logical propositions

or cognitive processes. If those operators do not commute with

each other, the ordering of their successive applications matters,

and different results may occur e.g., in logical conjunction or a

questionnaire.

It has been emphasized by different researchers (e.g., in the

open-peer commentary of [49]) that the geometric structure

of the quantum cognition approach can be implemented by

the linear structures of neural networks, without necessarily

claiming that biological brains must be physical quantum

computers [15]. Since vector spaces are not only employed

in biological or artificial neural networks as investigated

in computational neuroscience or artificial intelligence,

respectively, the underlying mathematics of linear and abstract

algebras is a promising framework for the integration of

related approaches into quantum-inspired (or neuro-inspired)

cognitive agents. Further examples of such attempts are

conceptual spaces, latent semantic analysis (LSA), geometric

information retrieval, or vector symbolic architectures

[8, 52–56].

Looking at the logical structure of Hilbert space quantum

theory, it turned out that quantum logic refers to non-Boolean,

yet partially Boolean lattices [28, 57, 58] instead of the Boolean

lattices underlying classical logics and probability theory.

Therefore, the Geneva school of quantum physics investigated

the representation theory of modular and orthomodular lattices

upon Hilbert spaces. Interestingly, using the methods of

operational statistics [59–61], Blutner and beim Graben [50]

have recently shown how bounded rationality and quantum

cognition can be conceptually integrated into a common

framework, where a single cue of a take-the-best strategy

corresponds to one particular operational perspective upon a

complex decision situation where limited cognitive resources

hence enforce partially Boolean descriptions. This finding could

also be of significance for the frame problem in cognitive science

[20], where an agent has to select the most relevant frame among

different incompatible Boolean descriptions.

Finally, quantum-inspired geometric approaches suggest

a revision of the controversially interpreted representation

concept [6, 9–11] in the sense of algebraic representation theory

[62]. This alternative interpretation is due to Skinner’s ABC

scheme [63] where (verbal) behavior (B) acts as a function on

an antecedent state (A), mapping it to a consequent state C in

the belief state space of a cognitive agent. If acts of behavior

possess some algebraic structure (which is the case for a word

semigroup, for example), this structure remains preserved in a

representation of B through operators acting upon a suitably

chosen geometric space for antecedent A and consequent C

states. This idea has been formalized within the framework

of dynamic semantics in such a way that the meaning of an

utterance is simply its operator impact on the agent’s belief

space [64, 65]. Similar attempts have been made for vector

symbolic architectures and hyperdimensional computation [15,

54, 55]. Accordingly, an operator representation for the word

semigroup acting upon the state space of a neural automaton
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could be constructed [66, 67], while syntactic term algebras for

minimalist grammars and context-free grammars lead to Fock

space representations [56, 68], as used in quantum field theory

[69].

The remainder of the article is organized as follows.

In Section 2, we address the problem statement and the

experimental environment of our cognitive agent system which

is essentially a quantum-inspired version of Shannon’s original

mouse-maze setup. Subsequently, in Section 3, we summarize

the required mathematical concepts and the notations being

used. Then, we introduce the novel idea of a quantum-inspired

perception-action cycle as the basis of our main contributions in

Section 4. In the following Section 5, we come to the first focus of

our study and describe quantum-inspired classifiers. In Section

6, we proceed with our attempt at quantum-inspired ontology

inference. The paper concludes with a summary and a discussion

of the achieved results in Section 7.

2. Problem statement and
experimental setup

According to the historical background, we consider the

mouse-maze problem, where an artificial mouse lives in a simple

N×M maze world that is given by a certain configuration of

walls. For the mouse to survive, one or more target objects

are located at some places in the maze. In our setup, we

are using the target object types cheese (C), bacon (B), and

a glass of water (G) to satisfy the primary needs of hunger

and thirst. These object types are defined symbolically by the

set O = {C,B,G,NOB} where NOB refers to no object at

all. The agent is able to move around the maze and perceive

information about its environment via physical interaction. This

is organized by the inner perception-action cycle (interaction-

loop, Figure 2) that allows the agent to navigate to these

target objects. To this end, the agent needs to measure its

current position (x, y) by two sensors, where x ∈ X =

{1, ...,N} and y ∈ Y = {1, ...,M} apply. It also has to

determine the presence or absence of target objects by an

object classifier, which we consider at first as a single complex

sensor. Then the current situation can be described on the basis

of the measurement result for the current position and the

result of object classification. Subsequently, the measurement

information needs to be encoded as a string of symbols and

has to be translated into a representational data structure saved

in a knowledge base. This kind of knowledge (“situations”)

should be stored as the result of an exploration phase if

no logical contradictions occur. A further kind of knowledge

is the set of movements in the maze. These “movements”

are based on permissible actions a ∈ A , which initially

correspond to the four geographic directions, north (N), south

(S), west (W), and east (E), that are defined symbolically by

the set A = {N, S,W,E,NOP} (NOP denoting no operation

here). Each action starts at a position z = (x, y) and ends

at a position z′ = (x′, y′). For this purpose, the actuators

associated with the x- or y- direction respectively, can be

incremented or decremented by one step. Hence, to establish

the parameterization of the four geographic directions we define

the sets 1X = 1Y = {−1, 0, 1}. Thus, the south action is

parameterized, for example, by the ordered pair (0,−1). Note

that with the knowledge about “movements” the agent’s behavior

can be described in the sense of “causality”. From a technical

point of view, the relationship between a cause (z = (x, y), a) and

an effect (z′ = (x′, y′)) can be expressed, e.g., by the transition

equation of a finite state automaton. The key role in cognitive

systems comes from the knowledge model. Building and using

such a model is based on the ability to exchange information

with the environment by communication or interaction. We

assume that all cognitive activities correspond to manipulations

of the knowledge model. This model represents the physical

world through a network of semantic objects—described by

measurable attributes—that are related to each other. Objects,

attributes, and relationships are the information of interest to

which both interaction and communication refer. However, in

order to be able to solve problems through planning and goal-

oriented behavior, representations are required that can be built,

processed, and stored in the knowledge model. In this context,

object classification and ontology inference are two prominent

tasks that can be used to build representations. Classification

of an unknown target object in the mouse-maze, such as

cheese, water, and bacon, is based on sensory data that measure

characteristics like odor, color, shape, or nature. Boolean logic

classifiers do work on a symbolic level but are not adequate

for dealing with continuous data. Therefore, we investigate a

quantum-logic-inspired classifier in comparison to Boolean-

logic-based classifiers. Furthermore, as a result of performing

actions and collecting sensory data during perception, an

ontology of the physical world should emerge. Hence, we

study whether ontology inference can be achieved during maze

exploration using an iterative quantum-inspired method.

3. Preliminaries

In the following, we present the basics of algebraic quantum

theory and quantum logic.

3.1. Algebraic quantum theory

In contrast to the purely epistemological formalization

that von Neumann [70] delivered in his statistical Hilbert space

quantum theory, algebraic quantum theory [57, 69, 71] allows

the clear distinction between ontic and epistemic descriptions

of arbitrary quantum systems [72]. Both levels of descriptions
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rely upon particularly chosen observable algebras, called C∗-

algebras which are basically non-commutative generalizations

of the complex number field C. The field of complex numbers

is first of all a two-dimensional vector space over the field

of real numbers, which means that addition and real scalar-

multiplication are well-defined. Moreover, C is also an algebra

as an outer product of complex numbers is given, producing

other complex numbers. The field C is equipped with a norm

(the modulus) and it is complete with respect to this norm,

making it a Banach algebra. Therefore, infinite power series

such as (holomorphic) Taylor series and exponential functions

are convergent in C. In C an involution is defined, yielding

the complex conjugate of any number. Finally, C exhibits

the so-called C∗-property, relating the norm to the product

of a complex number with its own conjugate. Yet, because

multiplication is commutative in C, it becomes an abelian C∗-

algebra in contrast to those required for quantum systems.

A quantum observable algebra contains operators that

can be linearly combined and also sequentially composed to

produce new operators. As a result, the commutator of any

two operators can be computed. The commutator measures the

degree of compatibility of both operators. In the case of two

commuting operators, their commutator vanishes and they are

called compatible because the order of sequential composition is

irrelevant. If the commutator of two operators does not vanish,

they are called incompatible, or even complementary. The

ontology of a quantum system is then uniquely prescribed by

the fundamental commutation relations (FCR) of the underlying

observable algebra.

3.1.1. Ontic description

In general, an ontic C∗-algebra is a real or complex Banach-

*-algebra A (i.e., a complete Banach algebra over the real or the

complex number fields, R or C, respectively, with involution

∗ :A → A) satisfying the C∗-property, ‖AA∗‖ = ‖A∗A‖ =

‖A‖2, for all A ∈ A [69, 71], where A∗ is the adjoined observable

obtained from the involution A∗ = ∗(A), and ‖ · ‖ denotes the

norm on A. An element A ∈ A is dubbed Hermitian4 when

A = A∗ and unitary when A∗ = A−1. Another important

concept is idempotence which holds when A2 = A. Hermitian

and idempotent observables are called projectors.

For two elements A,B ∈ A, the commutator is defined

through

[A,B] = AB− BA . (1)

Clearly, [A,A] = 0 for any A ∈ A. The commutator is

alternating (antisymmetric), linear in both arguments, and obeys

4 In mathematics one often assumes the stronger self-adjoined

property [57, 69, 71].

the product rule

[AB,C] = A[B,C]+ [A,C]B . (2)

If A = span({Ak | k ∈ N }) with a (countable) basis of

observables Ak ∈ A, the fundamental commutation relations of

the algebra are given by the linear combinations

[Ai,Aj] =
∑

k

aijkAk . (3)

The coefficients aijk ∈ C are called the structure constants of

algebraA. In high energy physics, e.g., the structure constants of

the particle (flavor) algebras reflect the possible scattering results

in a particle collider.

When the observable algebra of a quantum system contains

a maximal abelian subalgebra of hermitian operators, this

subalgebra provides the intrinsic properties of the system,

i.e., all properties that could be simultaneously measured

during observation. In the hydrogen atom, e.g., intrinsic

properties of the electron are energy, absolute angular

momentum, (only) one projection of angular momentum, and

a projection of the electron spin. Altogether, the eigenvalues of

those simultaneously measurable observables deliver the basic

quantum numbers of atomic physics and quantum chemistry.

Examples

Consider the unital complex C∗-algebra that is generated

by three Hermitian observables E, P,Q, with E as the algebra’s

identity.5 If the FCR appears as

[Q,E] = 0 (4)

[P,E] = 0 (5)

[Q, P] = iE , (6)

the given algebra is known as the Heisenberg algebra h of

non-relativistic quantum mechanics. Then, Q is interpreted as

the position observable while P receives the interpretation of

canonically conjugated momentum. The algebra h contains two

maximal commutative subalgebras, span(E,Q) and span(E,P)

such that either position or momentum can be regarded as the

ontologically intrinsic properties, but not both together. This

is excluded by the last commutation relation (6), expressing

the complementarity of position and momentum in quantum

mechanics in contrast to classical mechanics where both position

and momentum are intrinsic properties that together span the

particle’s phase space.

Another important C∗-algebra is the real spin Lie algebra

su(2).6 It can be generated by three observables X+,X−,X.

5 Note that an algebra does not necessarily contain an identity, i.e., a

neutral element with respect to algebraic multiplication. If this is the case,

the algebra is called unital.

6 Lie algebras provide an example for non-unital algebras. However,

any Lie algebra can be embedded into a larger unital algebra, called its

universal envelope, which is U(su(2)) in our case.
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These observables are introduced in such a way that X is

Hermitian, whereas X+ and X− are mutually adjoined to each

other: X+ = X∗−,X− = X∗+. The FCR of su(2) is given as

[X,X+] = X+ (7)

[X,X−] = −X− (8)

[X+,X−] = 2X (9)

such that its structure constants are +1,−1, and 2 in the given

realization. In su(2), there is a Hermitian element C = X2 +

X+X− −X called the Casimir operator, that commutes with any

other element. For example, one easily sees that

[C,X] = [X2+X+X−−X,X] = [X2,X]+[X+X−,X]−[X,X]

= [X+X−,X] = X+[X−,X]+ [X+,X]X−

= X+X− − X+X− = 0 ,

utilizing the commutation relations (7) and (8) in combination

with the commutator’s antisymmetry, its linearity, and its

product rule (2). Thus, the ontologically intrinsic properties

could be suitably chosen as C and X here, because span(C,X)

is a maximal abelian subalgebra.

3.1.2. Epistemic description

In quantum theory, epistemic descriptions are necessarily

probabilistic. Hence, they require the crucial concept of a

state which belongs to a state space that is given as a Hilbert

space in the canonical codification of von Neumann [70]. In

algebraic quantum theory, by contrast, states are introduced as

the positive, normalized linear functionals over a C∗-algebra

A [69, 71]. Therefore, the state space is part of the dual space

A∗ regarded as the Banach space of linear forms ρ :A → C,

such that ρ(A) = a ∈ C is the statistical expectation value

of observable A in state ρ. Formally, one could determine the

dual space of the state space as well, that is the bidual A∗∗. This

space also turns out as a C∗-algebra in which the original C∗-

algebra of ontologically intrinsic observables A is canonically

embedded through Â(ρ) = ρ(A) with Â ∈ A∗∗ and A ∈ A.

Hence, the distinction between Â and A can be neglected. The

bidual A∗∗ is a so-called W∗-algebra which is a C∗-algebra

possessing a Banach space as a predual. Clearly, the bidual A∗∗,

which is the dual space of A∗, has A∗ as its predual which

is a Banach space as state space [71]. In general, the bidual

A∗∗ is much larger than the original algebra A, containing

A as a proper subspace. In particular, it may contain many

epistemically emergent observables that are absent at the ontic

level of description [72].

Besides this rather abstract reasoning, there is a constructive

procedure for obtaining an epistemic W∗-algebra from its

underlying ontic C∗-algebra, called the Gel’fand-Naimark-

Seagal (GNS) construction [69]. In order to achieve this, only

one distinguished reference state ρ is sufficient to construe a

Hilbert spaceHρ and a representation
7 πρ (A) of the C

∗-algebra

A as a W∗-algebraM ⊆ B(Hρ ) of bounded operators overHρ .

The vectors of Hρ are conventionally written as Dirac kets |ψ〉

while linear forms of the dual space H∗ρ are written as Dirac

bras 〈ψ |, such that an expectation value functional ψ , which

is a pure state in the state space, is represented by ψ(A) =

〈ψ |πρ (A)|ψ〉 ∈ C [73].

Examples

The Schrödinger representation of the Heisenberg algebra

h above is given by Hermitian operators acting on the Hilbert

space8 of square-integrable functions over the reals,H = L2(R)

for a quantum system with one degree of freedom where a

particle can freely move around one spatial dimension. This

representation is obtained by the operators π(E) = 1, π(Q) =

x, and π(P) = −i∂x. The representation π is a C∗-algebra

homomorphism preserving the FCR

[π(Q),π(E)] = 0 (10)

[π(P),π(E)] = 0 (11)

[π(Q),π(P)] = iπ(E) , (12)

since [π(Q),π(E)]ψ(x) = [x, 1]ψ(x) = 0, [π(P),π(E)]ψ(x) =

[−i∂x, 1]ψ(x) = 0, yet

[π(Q),π(P)]ψ(x) = [x,−i∂x]ψ(x)

= −ix∂xψ(x)+ i∂x(xψ(x)) = −ixψ
′(x)+ i(ψ(x)+ xψ ′(x))

= iψ(x) = iπ(E)ψ(x)

with ψ(x) ∈ L2(R) as the particle’s Schrödinger wavefunction.

However, the image π(h) is not the desired W∗-algebra of

epistemic observables as the position and momentum operators

x and −i∂x are not bounded on the Hilbert space H =

L2(R). Therefore, one has to consider them as the infinitesimal

generators of the fundamental modulation and translation

symmetries of the system by introducing their exponential

functions exp(ipx) and exp(−q∂x) contained in the W∗-algebra

of bounded operators B(H) over H. Here, p, q are real

parameters of the corresponding Weyl transformations [74].

For the spin Lie algebra su(2) above, the GNS representation

yields the important qubit representation with Hilbert space

7 A representation π is a (C*-algebra) homomorphism, i.e., a structure-

preserving linear mapping, from a C∗-algebra A into the special C∗-

algebraB(H) of bounded operators acting on aHilbert spaceH, denoted

as representation space ofπ . Hence, the “meaning” of an abstract element

B ∈ A is its impact on Hilbert space, π(B) |a〉 = |c〉, |a〉 , |c〉 ∈ H; in analogy

to the ABC scheme of dynamic semantics [63–65].

8 Unless specified otherwise, we neglect the reference state ρ of the

respective GNS constructions subsequently.
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H = C
2 [75]. Introducing the basis vectors

|↑〉 =

(
1

0

)
|↓〉 =

(
0

1

)
(13)

the generators of su(2) become represented by linear

combinations of the Pauli matrices

π(X) =
1

2

(
1 0

0 −1

)
, π(X+) =

(
0 1

0 0

)

π(X−) =

(
0 0

1 0

)
, (14)

such that the FCR are preserved under the representation

[π(X),π(X+)] = π(X+) (15)

[π(X),π(X−)] = −π(X−) (16)

[π(X+),π(X−)] = 2π(X) . (17)

Looking at (15), e. g., yields

[
π(X),π(X+)

]
=

[
1

2

(
1 0

0 −1

)
,

(
0 1

0 0

)]

=
1

2

(
1 0

0 −1

)(
0 1

0 0

)
−

1

2

(
0 1

0 0

)(
1 0

0 −1

)
=

1

2

(
0 1

0 0

)
−

1

2

(
0 −1

0 0

)
=

(
0 1

0 0

)
= π(X+)

which proves the first FCR (15).

In the following, we assume a (separable) Hilbert space

H with a (countable) complete orthonormal basis B =

{ |k〉 | k ∈ N } (whereN could be deliberately identified withN0).

Then the orthonormality relations

〈i|k〉 = δik (18)

with Kronecker delta δik = 0(1) for i 6= k(i = k) hold. For

each basis vector |k〉, one construes a one-dimensional atomar

projector Pk = |k〉〈k| such that

Pk |i〉 = |k〉〈k| |i〉 = δik |k〉 ,

i.e., |k〉〈k| annihilates all basis vectors orthogonal to |k〉.

Completeness of the basis B is then expressed by the

requirement

∑

k

|k〉〈k| = 1 , (19)

where 1 denotes the unit operator of the unital W∗-algebra

B(H). The orthocomplement P⊥ of a projector P is defined as

P⊥ = 1− P.

For an arbitrary epistemic observable A ∈ B(H), we may

find a normalized eigenstate |a〉 ∈ H, obeying the eigenvalue

equation

A |a〉 = a |a〉 (20)

with scalar eigenvalue a ∈ C. The eigenvalues of A are the

solutions to the characteristic equation

(A− a1) |a〉 = 0 , (21)

i.e., |a〉 ∈ ker (A− a1) where the kernel ker (A− a1) is the

null space of the linear operator A − a1, namely the Hilbert

subspace that is annihilated byA−a1. This subspace is called the

eigenspace of the operator A for eigenvalue a, shortly Eiga(A) ⊆

H. The solution set of eigenvalues of an operator is called its

spectrum SpecA = { a ∈ C | A |a〉 = a |a〉 }. In a Hilbert space

representation, all intrinsic properties of an observable algebra

are given as compatible operators that are simultaneously

diagonalizable, which means that their eigenvalue equations can

be simultaneously solved.

If A is Hermitian, its eigenvalues are real numbers, for

a2 = a2 〈a|a〉 = 〈a|A2|a〉 = 〈a|A∗A|a〉 = a∗a 〈a|a〉 = a∗a ,

hence, a = a∗ with a∗ as the complex conjugate of a ∈ C, and

thus, a ∈ R. Moreover, if A is a projector, its eigenvalues can

only be 0 or 1, since

a2 = a2 〈a|a〉 = 〈a|A2|a〉 = 〈a|A|a〉 = a 〈a|a〉 = a ,

therefore, a2 − a = a(a− 1) = 0.

The eigenstates of a Hermitian operator A provide an

orthonormal basis of the Hilbert spaceH such that

H =
⊕

a∈SpecA

Eiga(A) (22)

as the inner direct sum of eigenspaces. Assigning one projector

Pa to each eigenspace Eiga(A) yields the crucial decomposition

of any Hermitian observable into its orthogonal projections

A =
∑

a∈SpecA

aPa (23)

according to the famous spectral theorem [70]. If all projectors

are atomar, one obtains

A =
∑

a∈SpecA

a |a〉〈a| . (24)

Examples

In the Schrödinger representation of the Heisenberg algebra

h, all Schrödinger wave functions in the Hilbert space L2(R)

over one-dimensional configuration space R are eigenstates

of the position operator, on the one hand, xψ(x) = xψ(x)
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but not simultaneous eigenstates of the momentum operator

−i∂xψ(x) = −iψ
′(x) 6= pψ(x) for any eigenvalue p ∈ R. On

the other hand, eigenstates of the momentum operator are the

harmonic wave functions ψp(x) = exp (ipx), because

−i∂xψp(x) = −i∂x exp (ipx) = −i(ip) exp (ipx)

= p exp (ipx) = pψp(x)

with eigenvalue p. The fact that a wave function ψ(x) cannot

simultaneously be a common eigenstate of both position and

momentum operator, reflects the intrinsic complementarity of

both observables as reflected by the FCR (6) and (12). As an

effect, position and momentum operators appear as Fourier

pairs in the Schrödinger wave function representation.

The qubit representation by means of the Pauli matrices

above is only the most simple non-trivial W∗ representation of

the spin algebra su(2). Its ontologically intrinsic properties are

given by the Hermitian Casimir operator C and the operator

X, the so-called highest weight module representations of su(2)

are constructed in the n = 2j + 1-dimensional Hilbert space

H = C
n where the “highest weight” j ∈ N is related to the

eigenvalue of the Casimir operator.9

C |jm〉 = j(j+ 1) |jm〉 . (25)

In addition, m ∈ Z is the eigenvalue of the operator X, such

that

X |jm〉 = m |jm〉 (26)

under the constraint −j ≤ m ≤ j. The eigenstates |jm〉

are indicated by the two simultaneously measurable quantum

numbers j,m which are related to the eigenvalues of the

observables C, and X, respectively.

In the n-dimensional representation under consideration,

the other two operators obey

X± |jm〉 =
√
j(j+ 1)−m(m± 1) |j m± 1〉 . (27)

Therefore, these are called either ladder or step operators.

Interestingly, the states |jj〉 and |j−j〉 are annihilated by the

operators X±, respectively:

X+ |jj〉 =
√
j(j+ 1)− j(j+ 1) |j j+ 1〉 = 0 ,

and

X− |j−j〉 =
√
j(j+ 1)+ j(−j− 1) |j−j− 1〉 = 0 ,

thereby justifying the notion of “highest weight module

representation” [75] where the qubit representation above

corresponds to the weight j = 1/2.

9 For the sake of simplicity, we identify observables from a C∗-algebra

A and its W∗ representation M ⊆ B(Hρ ) in the sequel.

Finally, we have to introduce the tensor product of two or

more Hilbert spaces. A quantum system that possesses either

several degrees of freedom or that consists of several subsystems,

each described by one Hilbert space Hk for k ∈ K ⊆ N, is

represented by the tensor product of those Hilbert spaces. For

K = { 1, 2 }, we have then

H = H1 ⊗H2 , (28)

and in general

H =
⊗

k∈K

Hk . (29)

The states of this tensor product space are written in the

Dirac notation as

|ψ〉 ⊗ |ϕ〉 = |ψ〉 |ϕ〉 = |ψ ϕ〉 , (30)

with |ψ〉 ∈ H1 and |ϕ〉 ∈ H2, where the last convention is the

most convenient one. Correspondingly, operators A1,B2 acting

in only one of the factor spaces H1, and H2, respectively, are

embedded into the product space (28) through

A = A1 ⊗ 1 , B = 1⊗ B2 . (31)

3.2. Quantum logics

The subset of all projectors of the unitalW∗-subalgebraM of

B(H) becomes an orthomodular lattice L(M) [57] with respect

to the partial ordering P1 - P2 if

P1P2 = P1 . (32)

Two projectors P1, P2 ∈ L(M) are orthogonal, if P1P2 =

010. Clearly, the orthocomplement P⊥ of a projector P is

orthogonal to P as

PP⊥ = P(1− P) = P − P2 = P − P = 0 .

The minimum and maximum of the lattice are given by the

projectors 0 and 1, respectively [28]. A maximal set of pairwise

orthogonal atomar projectors P ⊆ M generates L(P) as a

distributive sublattice of L(M) where meet and join are given

through the algebra product and addition as

P ∧ Q = PQ (33)

P ∨ Q = P + Q− PQ (34)

10 For atomar projectors |k〉〈k| , |i〉〈i| , (i 6= k) orthogonality is simply

proven as

|k〉〈k| |i〉〈i| = |k〉 〈k|i〉 〈i| = |k〉 δki 〈i| = 0 .
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for all P,Q ∈ L(P). For orthogonal projectors P,Q ∈ L(P),

Equation (34) reduces to P∨Q = P+Q. With orthocomplement

as negationL(P) becomes a Boolean lattice and every possibleP

defines a Boolean block in L(M).

For some observable A ∈M ⊆ B(H), we define its domain

projector (or shortly dominator)11 as the orthocomplement of its

kernel projector, i.e.,

DA = P⊥Eig0(A)
. (35)

Orthomodular lattices form the basics of quantum logics

with conjunction (meet), disjunction (join), and negation

(orthocomplement) connectives [28, 77].

Example

The projector lattice of the qubit spin algebra su(2) is given

by the matrices

P =
1

2

(
1 1

1 1

)
, P⊥ =

1

2

(
1 −1

−1 1

)
,

Q =
1

2

(
1 i

−i 1

)
,Q⊥ =

1

2

(
1 −i

i 1

)
,

R =

(
1 0

0 0

)
,R⊥ =

(
0 0

0 1

)
,

The projectors P, Q, and R indicate spin measurements in

positive x, y, and z-direction, respectively. The Hasse diagram

of the resulting non-distributive but modular lattice structure,

shown in Figure 3 is known as the “Chinese lantern” [58]. Note

that each P, Q, or R, together with its respective complement,

P⊥, Q⊥, or R⊥ define a distinct Boolean sublattice (comprising

0 and 1 as well), while the entire lattice is not Boolean at all.

4. Quantum-inspired
perception-action cycle

In this section, we propose a novel kind of cognitive

dynamical system, called quantum-inspired perception-action

cycle (QPAC). The starting point of this innovation is a classical

PAC as described in Section 1.1. The PAC comprises actuators

to modify the world state of the cognitive agent and sensors

to experience the current state of its world. Now, we assign to

each actuator of the PAC an operator of an ontic C∗-algebra

which we call an action operator, or briefly actor. Similarly, each

sensor is associated with a Hermitian operator, called perception

operator, or shortly perceptor. These operators span together the

ontic C∗-algebra A of the agent such that their fundamental

commutation relations provide a complete description of the

system’s ontology.

11 Also called range projector in [76].

FIGURE 3

Hasse diagram of the su(2) projector lattice, known as the

non-distributive but modular “Chinese lantern” lattice.

The ontic description refers to the intrinsic nature of

a system. By contrast, an epistemic description applies to

the knowledge that an observer bears about a system under

study [72]. In the case of a cognitive system, an agent

may be its own observer. In the framework of the QPAC,

we are interested in such autoepistemic descriptions [50]

that are iteratively inferred through the exploration behavior

of the agent. In Section 1.1, we have emphasized the

particular role of the simulation loop within the extended

PAC. Since simulation always takes place within the subjective

mental model that the agent constructs about the objective

external world, we adopt the corresponding idea from

the quantum cognition approach where cognitive operators

are only applied to mental states from a representational

Hilbert space.

Here, we first consider Shannon’s artificial mouse

“Theseus” [5, 78] restricted to a one-dimensional maze of

size N. In an epistemic quantum model, each site x (1 ≤ x ≤ N)

is associated with vector |x〉 in N-dimensional Hilbert space

HX = C
N such that all |x〉 form an orthonormal basis:

〈x|x′〉 = δx,x′ . The mouse performs its intrinsic PAC which—in

this most simple scenario—is delimited to measuring its actual

position x (perception) and walking either one place to the

right: x 7→ x + 1, or one place to the left: x 7→ x − 1. In the

QPAC, we assume the existence of one Hermitian perceptor,

X ∈ B(HX), on the one hand, which we refer to as the

position observable from the W∗-algebra B(HX). On the

other hand, actions can be characterized as non-Hermitian

operators from B(HX). In our model, we assume the existence

of two mutually adjoined actors X+,X− such that X∗+ = X−,

X∗− = X+, called step operators in the sequel. Note that we do

not assume that these operators are necessarily unitary. Their

relationship to the step operators of the highest weight module

representations of su(2) (discussed in Section 3.1) becomes

clarified later.
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The impact of the operators X,X+,X− upon a Hilbert space

state |x〉 is defined as follows:

X |x〉 = x |x〉 (36)

X+ |x〉 = f+(x) |x+ 1〉 (37)

X− |x〉 = f−(x) |x− 1〉 . (38)

Equation (36) is an eigenvalue equation, saying that state |x〉

is an eigenstate of the perceptor X with eigenvalue x, which is

the actual measurement result. Equations (37) and (38) define

the general action of the step operators where scaling functions

f+(x) and f−(x) are introduced for proper normalization.

Next, we compute the commutators (1) of the perceptor X

and the actors X±. We first determine the commutator [X,X+].

Applying the operator product XX+ to some state |x〉 yields

XX+ |x〉 = Xf+(x) |x+ 1〉

= f+(x)X |x+ 1〉 = f+(x)(x+ 1) |x+ 1〉

For the reversed order, we get

X+X |x〉 = X+x |x〉 = xX+ |x〉 = xf+(x) |x+ 1〉 .

Hence, we obtain the difference

(XX+ − X+X) |x〉 = f+(x)(x+ 1) |x+ 1〉 − xf+(x) |x+ 1〉

= (f+(x)(x+ 1)− xf+(x)) |x+ 1〉 = f+(x) |x+ 1〉 = X+ |x〉

and therefore

[X,X+] = X+ (39)

as the first commutator.

Similarly, we compute the commutator [X,X−] as follows:

XX− |x〉 = Xf−(x) |x− 1〉 = f−(x)X |x− 1〉

= f−(x)(x− 1) |x− 1〉

and for the reversed order:

X−X |x〉 = X−x |x〉 = xX− |x〉 = xf−(x) |x− 1〉

yielding

(XX− − X−X) |x〉 = f−(x)(x− 1) |x− 1〉 − xf−(x) |x− 1〉

= (f−(x)(x−1)−xf−(x)) |x− 1〉 = −f−(x) |x− 1〉 = −X− |x〉 .

Thus, the second commutator is

[X,X−] = −X− . (40)

Interestingly, Equations (39) and (40) are already those of

the spin Lie algebra su(2) [75]. Thus, it is tempting to calculate

another crucial commutator [X+,X−] next. We carry out this

calculation in a slightly different manner, by computing the two

expectation values of X+X− and X−X+, respectively. The first

one gives

〈x|X+X−|x〉 = ‖X− |x〉 ‖
2 = ‖f−(x) |x− 1〉 ‖2

= |f−(x)|
2‖ |x− 1〉 ‖2 = |f−(x)|

2 .

For the second one, we obtain

〈x|X−X+|x〉 = ‖X+ |x〉 ‖
2 = ‖f+(x) |x+ 1〉 ‖2

= |f+(x)|
2‖ |x+ 1〉 ‖2 = |f+(x)|

2 .

The expectation value of the commutator is then

〈x|[X+,X−]|x〉 = |f−(x)|
2 − |f+(x)|

2 ,

such that

[X+,X−] |x〉 = g(x) |x〉 (41)

with

g(x) = |f−(x)|
2 − |f+(x)|

2 . (42)

In order to proceed, we consider the following four cases.

1. g(x) = 0 for all x. This is the case when the squared

modules in (42) are identic. Then, X+ and X− commute

and they are also unitary. Thus, going either one step to the

right and afterward, one step to the left or vice versa results

always in applying the identity operator 1, such that all step

operations are reversible. The most simple choice for the

scaling functions, f+(x) = f−(x) = 1, yields then

X+ |x〉 = |x+ 1〉

X− |x〉 = |x− 1〉 ,

which requires the maze to be infinite, N = ∞, and without

any obstacles. Therefore, we conclude that a commutative

subalgebra of step operators {X+,X−} leads to classical

(Newtonian) infinite space.

2. g(x) = ax is linear in x. Then, we can write

g(x) |x〉 = ax |x〉 = aX |x〉 .

In this case, we obtain the commutator [X+,X−] = aX. In

particular, a = 2 renders the spin algebra su(2) from Section

3.1.
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3. g(x) = a0 + a1x is affine linear in x. Arguing along the same

line as above, the commutator becomes a linear combination

[X+,X−] = a01 + a1X of the identity operator and the

position observable.

4. g(x) can be developed into a power series of x. Now,

we may generalize the findings above, by replacing the

position measurement x through its observable X, thereby

obtaining the operator power series g(X) that converges in the

Banach-*-algebra B(HX). The general commutator is then

[X+,X−] = g(X).

Yet, let us go one step back for themoment in order to finally

establish the correspondence to angular momentum algebra. To

this end, we have to estimate the normalization functions f±(x).

We guess them from an affine transformation that relates the

size of the labyrinth N with the quantum number j (the “highest

weight”) from (25) through N = 2j+ 1. Moreover, the quantum

number m is associated with the labyrinth position x through

x = m+ j+1. Inserting these quantum numbers into (27) yields

the estimates

f+(x) =
1

2

√
N2 − (2x− N)2 (43)

f−(x) =
1

2

√
N2 − (2x− N)2 + 4(2x− N)− 4 . (44)

These guesses entail a first important consequence.

Computing f−(1) and f+(N), respectively, yields

f−(1) = f+(N) = 0, such that

X+ |N〉 = 0 (45)

X− |1〉 = 0 , (46)

the boundaries of the mentally represented labyrinth at x = 1

and x = N are absorbing for the moving mouse whose state

becomes annihilated. Note that this does not mean that the agent

is physically destroyed when bouncing into a wall (unless it

consists of antimatter) as all operations of the QPAC take place

at the agent’s internal mental stage within the simulation loop

from Section 1.1. Thus, an annihilated mental state can be easily

restored from a suitable backup copy if necessary.

Finally, we insert (43) and (44) into the commutator

[X+,X−] |x〉 = (|f−(x)|
2 − |f+(x)|

2) |x〉

=
1

4

(
N2 − (2x− N)2 + 4(2x− N)− 4− N2 + (2x− N)2

)
|x〉

= (2x−N−1) |x〉 = 2x |x〉−(N+1) |x〉 = (2X−(N+1)1) |x〉

such that eventually

[X+,X−] = 2X − (N + 1)1 (47)

which renders the last commutator of the spin algebra su(2) up

to an affine linear transformation. In fact, the particular size of

the maze N turns out as the dimension of the highest weight

matrix representation of that algebra.

Finally, we consider the most general case

[X+,X−] = g(X) (48)

again. The operator power series

g(X) =

∞∑

k=0

akX
k (49)

may contain several zeros. It is straightforward to interpret

those as annihilating walls erected along the spatial dimensions.

Because the power series completely depends on its coefficients

ak, these encode the structure of the labyrinth algebraically. We

may consider them as the maze’s structure constants quite in

analogy to the theory of Lie algebras in quantum physics.

Let us resume the su(2) scaling functions (43) and (44) again.

Their squared modules are given as

|f+(x)|
2 =

1

4

[
N2 − (2x− N)2

]

|f−(x)|
2 =

1

4

[
N2 − (2x− N)2 + 4(2x− N)− 4

]
.

Factorization yields respectively

|f+(x)|
2 =

1

4

[
N2 − (2x− N)2

]
=

1

4

[
N2 − (4x2 − 4Nx+ N2)

]
= Nx− x2 = x(N − x)

and

|f−(x)|
2 =

1

4

[
N2 − (2x− N)2 + 4(2x− N)− 4

]

=
1

4

[
N2 − (4x2 − 4Nx+ N2)+ 8x− 4N − 4

]

= Nx− x2 + 2x− N − 1 = −(x2 − 2x+ 1)+ Nx− N

= −(x− 1)2 + N(x− 1) = (x− 1)(N + 1− x) .

The zeros of |f+(x)|
2 are thus x = 0 and x = N, while those

of |f−(x)|
2 are x = 1 and x = N + 1, rendering a finite maze

with absorbing boundaries at x = 1 and x = N (for x = 0 and

x = N + 1 are beyond the spatial range of the labyrinth).

Now it is straightforward to introduce further absorbing

obstacles of the agent’s mental model into the factorized scaling

functions. Let x1 be the position of another obstacle. Then

f+(x) =
1

2

√
x(N − x)(x− x1) (50)

f−(x) =
1

2

√
(x− 1)(N + 1− x)(x− x1 − 1) (51)

possess the required zeros:

X+ |x1〉 = f+(x1) |x1 + 1〉 = 0

X− |x1 + 1〉 = f−(x1 + 1) |x1〉 = 0 .
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Accordingly, we obtain

f+(x) =
1

2

√√√√x(N − x)

m∏

k=1

(x− xk) (52)

f−(x) =
1

2

√√√√(x− 1)(N + 1− x)

m∏

k=1

(x− xk − 1) . (53)

for a sequence ofm annihilating obstacles B = {x1, x2, . . . xm}.

Inserting (52) and (53) into (42) yields a polynomial in x

obeying the general commutation relation (48).

The arguments above are straightforwardly generalized

toward a maze in two dimensions as follows. Let HX be the

Hilbert space of x-positions and HY be the Hilbert space of

y-positions, then all previous operators can be extended to

operators acting on the tensor product spaceH = HX ⊗HY . A

vector in this product space is indicated as |xy〉 = |x〉⊗ |y〉 ∈ H.

First, we obtain two perceptors (Hermitian observables

corresponding to perception): X = Xold ⊗ 1 and Y = 1⊗ Xold,

where Xold refers to the one-dimensional observable defined in

(36). Thus, we obtain two eigenvalue equations

X |xy〉 = x |xy〉 (54)

Y |xy〉 = y |xy〉 , (55)

i.e., observing X in state |xy〉 yields the measurement result x

which is the eigenvalue of eigenstate |xy〉, while observing Y

in state |xy〉 gives the measurement result y, the eigenvalue for

eigenstate |xy〉.

Correspondingly, we define four non-Hermitian actors

(action operators) X+,X−,Y+,Y− as X+ = X+old ⊗ 1, X− =

X-old ⊗ 1, Y+ = 1⊗ X+old, and Y− = 1⊗ X-old, such that

X+ |xy〉 = f+(x, y) |x+ 1, y〉 (56)

X− |xy〉 = f−(x, y) |x− 1, y〉 (57)

Y+ |xy〉 = h+(x, y) |x, y+ 1〉 (58)

Y− |xy〉 = h−(x, y) |x, y− 1〉 . (59)

These step operators mediate transitions to the north: Y+,

the east: X+, the south: Y−, and the west: X−. Certainly, the

scaling functions f , h become dependent on x and y coordinates

now. In the best case, these can be regarded as power series

again, whose zeros describe absorbing boundaries or obstacles

as above.

The Hermitian position operators X and Y with perception

Equations (54) and (55) possess a discrete spectrum of

eigenvalues. Additionally, we could assume the existence of

further Hermitian operators of the QPAC for smell, color, taste,

etc., either with discrete or even with continuous spectra as

well. All these perceptors together span a maximal abelian

subalgebra of the intrinsic properties of the QPAC. The direct

product of the spectra of these operators yields the observation

space of the agent’s sensory capabilities [28]. Partitioning this

observation space into disjoint classes is the first problem treated

subsequently in Section 5.

Having already solved the classification task, the QPAC

can be straightforwardly simplified by the induction of further

eigenvalue equations for observing the presence of cheese, water,

bacon (etc):

C |xy〉 = c |xy〉 (60)

G |xy〉 = g |xy〉 (61)

B |xy〉 = b |xy〉 , (62)

where the eigenvalues become binary variables then: c = 1

indicates the presence of cheese in state |xy〉, whereas c = 0

indicates the absence of cheese in that state. Similarly, for a glass

of waterG, etc. Therefore, the perceptorsC,G, . . . are projectors,

i.e., idempotent observables, C2 = C, etc.

5. Quantum-logic-inspired
classification

Exploring the world and constructing semantic structures

from sensor-based observations is an essential task of an

agent. The agent is typically confronted with the problem

of detecting objects of interest based on observations and

preexisting data about known objects. This problem is a

classification problem where the goal is to find a connection

between an input item, i.e., feature data from observations, and

a class representing a specific object. In our mouse example,

an input item may contain data from sensors for weight,

texture, color, and odor and objects to be detected may be

cheese, water, or bacon. In logic-based classification methods, a

logical expression establishes that connection, and its evaluation

provides a prediction of a class representing the existence of

the specific object. A logic-based method, furthermore, allows

for an interpretation of the connection. In the sequel, we focus

on logic-based classification methods. A prominent method is a

decision tree where Boolean logic rules form a tree with leaves

expressing the class decisions. Let us assume that an input item

corresponds to an element of the observation space [0, 1]n [28]

and every dimension corresponds to a property value from a

sensor. Then, every single Boolean condition can be seen as

an axis-parallel hyperplane separating input items belonging to

the specific object from items not belonging to that object. In

cases where the class decision line has axis-parallel boundaries

the decision tree based on Boolean logic is very successful.

However, in other cases, a Boolean logic-based decision tree

typically deteriorates.

In this section, we demonstrate that problem using our

mouse example. We want to detect bacon based on a sensor

value o ∈ [0, 1] for bacon odor and a sensor value c ∈ [0, 1] for

bacon color. Let us further assume that preexisting data lead to

a class separation line between bacon and non-bacon following

the formula o×c = 0.5, refer to the black line in Figure 4. Notice
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FIGURE 4

Class separation line o× c > 0.5 (black) and separation planes of

an approximating decision tree (red).

that this class separation line is not axis-parallel. A decision tree

based on Boolean logic tries to approximate the separation line

by axis-parallel hyperplanes. The resulting decision tree is very

complex for that simple example, refer to Figure 5.

In the following, we develop a two-class classifier inspired

by quantum logic. The evaluation of a quantum logic expression

describes the map from an input item to a class. All arithmetic

formulas below are derived from concepts of quantum

mechanics and quantum logic [79, 80].

Feature values can be represented as normalized state

vectors. The combination of feature values to tuples corresponds

to normalized state vectors in their tensor product. Given a

set of compatible projectors, they generate a Boolean sublattice

of the orthomodular lattice of all projectors. Now associate a

logical expression to each projector from the given set. Then

each projector in the Boolean sublattice also corresponds to a

logical expression. Before a logic expression can be evaluated on

an input tuple the expression must be normalized. Every logic

expression needs to be transformed into a specific normal form

by exploiting laws of the Boolean algebra. A logic expression

in normal form can then be transformed into an arithmetic

expression for evaluation.

For finding a good classifier, we derive a logic expression.

Here, we use the fact that every logic expression can be

transformed into its disjunctive normal form (DNF), i.e., into

a disjunction of minterms. In our approach, we equip minterms

with weights [81]. Thus, finding a classifier reduces to finding

the best weights for all minterms for some training data.

We consider the classification task in the following form.

Given a training set

T : = {(xi, yi) : i ∈ I}

with xi ∈ [0,1]n and yi ∈ {0, 1} for each index i ∈ I, where I

denote an appropriate index set. Then the task is to construct a

predictor mapping

p :[0, 1]n → {0, 1}

with two potentially conflicting properties:

1. It should generalize from the training set appropriately and

avoid over-fitting.

2. Restricted on the training data {xi : i ∈ I} ⊆ [0, 1]n, it should

reproduce the values p(xi) = yi for as many indices i ∈ I as

possible.

For achieving the first property, we take motivation from

classical logic and refine it with quantum logic.

The disjunctive normal form (DNF) of a logical expression

on n atomic propositions a1, . . . , an is, by definition, the

disjunction of a selection of minterms of the form

ã1 ∧ · · · ∧ ãn with ãk ∈ {ak,¬ak}. (63)

Hence, the DNF of a logical expression is the disjunction of

at most 2n terms of type (53).

Each minterm can be represented by an n-digit binary

expression d1 · · · dn, where

dk =




1 if ãk = ak,

0 if ãk = ¬ak.

Using the binary expressions as binary codes for numbers j,

we associate to each minterm an index j ∈ {0, . . . , 2n − 1} in the

following way:

mj : = ã1,j ∧ · · · ∧ ãn,j

where

j =

n∑

k=1

dk · 2
n−k

and

ãk,j : =




ak if dk = 1,

¬ak if dk = 0.

The transition to quantum logic is best illustrated by the

evaluation of logical expressions. We denote the evaluation of

a proposition a by JaK. Classical two-valued logic gives JaK = 1

if a is true and JaK = 0 if a is false. When using quantum logic,

the evaluation of a logical proposition is a real number in [0, 1].

Here, we use an evaluation of weighted logical expressions based

on CQQL (commuting quantum query language). The method

is described in [79–81]—what we need here are the following

rules:
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FIGURE 5

Complex decision tree for o× c > 0.5.

1. To each logical atom awe associate an evaluation JaK ∈ [0, 1].

2. The negation of a logical expression a evaluates to J¬aK =

1− JaK.

3. A minterm evaluates the product: Jã1 ∧ · · · ∧ ãnK =∏n
k=1JãkK.

4. A disjunction of minterms evaluates the sum of the

minterm evaluations.

Given an input item x = (x1, . . . , xn) ∈ [0, 1]n, assume that

ak(x) is a logical expression which evaluates to xk, i.e., Jak(x)K =

xk. Set

mj(x) : = ã1,j(x) ∧ · · · ∧ ãn,j (x).

Using the above rules leads to

Jmj(x)K =

n∏

k=1

Jãk,j(x)K =

n∏

k=1

x̃kj

where

x̃kj : =




xk if ãk,j = ak,

1− xk if ãk,j = ¬ak.

Note that

2n−1∑

j=0

Jmj(x)K = 1.

Now define a threshold function τρ , depending on a

parameter ρ ∈ [0, 1], as follows:

τρ :[0, 1]→ {0, 1}, τρ (x) : =




1 if x > ρ,

0 otherwise.

Our predictor map uses, in addition, parameters

λ0, . . . , λ2n−1, which represent minterm weights. The formula

is:

p(x) : = τρ



2n−1∑

j=0

λj · Jmj(x)K


 .

The question is how good the prediction reproduces the

training data, i.e., whether pi : = p(xi) = yi, or pi 6= yi, for

i ∈ {1, . . . , n}. The total accuracy is, by definition, the total

number of correct classifications. Hence, our task is to determine

a parameter set ρ, λ0, . . . , λ2n−1 ∈ [0, 1] such that the total

accuracy of training data

α(ρ, λj) : =
∑

i∈I

(
yipi+(1−yi)(1−pi)

)
=
∑

i∈I

(
(2yi−1)pi+(1−yi)

)
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is maximal. As the terms (1 − yi) do not depend on ρ and

λi, our task is equivalent to maximizing
∑

i∈I(2yi − 1)pi. In

order to get a more handsome formula, we use the notation

I0 : = {i ∈ I : yi = 0} and I1 : = {i ∈ I : yi = 1}. This allows

us to write I as a disjoint union I = I0 ∪ I1. Now our task is to

maximize

∑

i∈I

(2yi − 1)pi =
∑

i∈I1

pi −
∑

i∈I0

pi.

This means we are looking for

(ρ, λ0, . . . , λ2n−1) = argmax
(ρ,λj)


∑

i∈I1

pi −
∑

i∈I0

pi


 .

Next, we investigate the impact of a fixed minterm weight

λj0 . For simplicity, we denote the evaluation of the j-th minterm

on a training point xi by

mi
j : = Jmj(xi)K =

n∏

k=1

x̃ki,j.

Moreover, given weights λ0, . . . , λ2n−1 ∈ [0, 1] and an index

j0 ∈ {0, . . . , 2
n − 1}, we set

nij0
: =

2n−1∑

j=0

λjm
i
j − λj0m

i
j0
=
∑

j 6=j0

λjm
i
j.

In order to see what happens when λj0 runs from 0 to 1, we

say that the line

{
nij0 + λj0m

i
j0
: 0 ≤ λj0 ≤ 1

}

belongs to (i, j0). Some example lines with index j0 are depicted

in Figure 6. Lines belonging to indices i ∈ I1 are drawn in black,

and lines belonging to i ∈ I0 are red. The interpretation is

as follows: If, at some weight λoldj0
, a black line is below a red

line, and if it is possible to choose λnewj0
such that the two lines

intersect between λoldj0
and λnewj0

, then accuracy will be improved

if λoldj0
is replaced by λnewj0

. This is the idea behind our algorithms.

The next step is to derive formulae for use in our algorithms.

To this end, assume nij0
> nℓj0

. If mℓj0
− mi

j0
> nij0

− nℓj0
, then

the two lines belonging to (i, j0) and (ℓ, j0) intersect at an interior

point of the unit interval with coordinate

λj0 =
nij0
− nℓj0

mℓj0
−mi

j0

.

The basic idea of our algorithms is to choose minterm

weights that produce a ranking where training data items of the

index set I1 are higher ranked than items of I0. We suggest an

approximation approach. That is, starting from random weights

we modify the weights step by step as long as they improve the

1 Function GenerateWeights

Input: training data items T = {(xi, yi)}

Output: minterm weights {λj}, ranking measure

rankingScore

2 construct {λj} with λj ← rand ∈ [0, 1] for all j

3 compute all minterms {mi
j} for all items i

and all j minterms

4 construct double-chained list←
〈
(i, yi, scorei)

〉

from T with scorei ←
∑

j λj ·m
i
j

5 sort list descendingly by scorei

6 repeat

7 weightChanged← False

8 foreach λj ∈ {λj} do

9 λ′j ← NewWeight(list, λj, {m
i
j})

10 if λj 6= λ
′
j and λ

′
j ≥ 0 then

11 (list′, λ′j)← UpdateWeight(list, λj, λ
′
j , {m

i
j})

12 if λj 6= λ
′
j then

13 list← list′

14 λj ← λ′j

15 weightChanged← True

16 end

17 end

18 end

19 until not weightChanged;

20 rankingScore← sortCosts(list)/* number of exchange

operations of bubble sort to get list

sorted descendingly by yi */

21 return ({λj}, rankingScore)

22 end

Algorithm 1. Generates all minterm weights {λj}.

ranking, refer to Algorithm 1. Every single weight is updated

in Algorithm 2 if a new value means an improvement. The

algorithm counts how many I1 training data items change the

rank position with I0 items and then decides if the new weight is

really an improvement.

In order to find good candidates for a new minterm weight

to be checked we search in Algorithm 3 for a new weight. That

is, we identify minterm weight candidates which cause an item

swap. Choosing a new minterm weight from the candidate by

random is given in Algorithm 4. Instead, an alternative approach

would be to select the weight candidate which is nearest to the

current weight.

A new weight candidate can be smaller (testing to the left)

or bigger (testing to the right) than the current minterm value.

In order to find it, we check swaps on the λ = 0 and λ = 1 line

and derive the weight value where the swapped items share the

same score.
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FIGURE 6

Impact of λj0 on separating I1-objects (black) from I0-objects (red).

Our algorithm is a greedy approach and is very similar to

a hill-climbing algorithm. Thus, there is always the risk to get

stuck in a local optimum and not reaching the global optimum.

Therefore, in Algorithm 5, we start with random weights and

repeat the whole approximation process several times and take

then the best solution. We measure the quality of a solution

by resorting to the produced rank (originally ordered by score

values) by the y-values. We simply count the number of swaps

required for the bubble sort algorithm.

After finding for every minterm its weight, the final

threshold ρ needs to be found. A simple solution is to try out

the final score of every training input item as a threshold value

and select the one providing the best accuracy.

Finally, since all minterms may have different weight values

they cannot be combined with simple logical expressions for a

good human understanding. A solution to that problem is to

allow only discrete weight values from the unit interval [0, 1]

as a result of Algorithm 4. All minterms with equal discrete

weight values can then be combined and simplified by Boolean

algebra rules and then be interpreted. For example, minterms

of the simplified disjunctive form can be seen as sufficient

conditions for the class decision whereas maxterms of the

simplified conjunctive normal form can be seen as necessary

conditions. In spite of these aspects with respect to human

understanding, a technical agent can directly evaluate minterms

of different weights for predictions.

6. Quantum-inspired ontology
inference

The intent of ontology inference is the computation

of semantic structures from data of observations gathered

by a cognitive agent. These structures should serve

the agent in reaching its goals by organizing its world

as well as in communicating with other agents by

determining the meaningful objects in its world and,

therefore, the available terms. Because the goal of that

inference is the veiled ontology we have to develop

an algorithm for autoepistemic ontology inference in

the sequel.

We start as in earlier study [82, 83] with the distinction of

controllables and non-controllables but use these terms now for

perceptors. Perceptors are used to represent the observations

of the agent. Controllables are those for which the agent has

sensors and commands actuators whereas non-controllables are

those for which it only has sensors available. Additionally, as

in [82, 83], we are searching for functional dependencies of
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1 Function UpdateWeight
Input: double-chained list of training data

tuples list =
〈
(i, yi, scorei)

〉
(sorted

descendingly by scorei), current weight

on jth minterm λj, test weight λ′j,

minterm values {mi
j}

Output: double-chained list of training data

tuples, updated weight on jth

minterm λj

2 counter← 0

3 list′ ← list

4 for i in range(len(list)) do

5 (id, yi, scorei)← list[i]

6 score′i ← scorei + (λ′j − λj) ·m
id
j

7 list′[i].scorei ← score′i

8 d← 0

9 while i− d is not top element do

10 d← d + 1

11 (ℓ, yℓ, scoreℓ)← list′[i− d]

12 if score′i > scoreℓ then

13 if yi = 0 and yℓ = 1 then counter← counter− 1;

14 if yi = 1 and yℓ = 0 then counter← counter+ 1;

15 swap elements in list′ on position i− d

and i− d + 1

16 end

17 else break while-loop;

18 end

19 end

20 if counter > 0 then return (list′, λ′j);

21 return (list, λj)

22 end

Algorithm 2. Update of jth minterm weight λj .

non-controllables from controllables which arise from the fact

that a vector space representing a controllable can be split into

an inner orthogonal sum of subspaces representing parts of

a non-controllable. If this sum can be expressed in terms of

given basis vectors—which represent observation values of the

controllable—then there is obviously a mapping from those

values to the parts of the non-controllable—which represent

observation values of the non-controllable in turn. Note, that

a perceptor can also represent the result of classification as

suggested at the end of Section 4.

Since we are using Hermitian observables as perceptors it

follows from the spectral theorem (23) that there is always an

orthogonal basis of eigenvectors. By encoding the observation

values as eigenvalues of perceptors, we always get an inner

orthogonal sum of eigenspaces for such a perceptor. By

identifying controllables with Hilbert spaces and representing

non-controllables within the tensor product space of all those

spaces we can connect their observation values to each other.

In [82, 83], we checked dependencies after the agent made

a full exploration of its world and computed the semantic

structures afterward. Now, we show how semantic structures

can be constructed during exploration for an agent to constantly

structure its world. At the same time, we are able to say

more about the mathematical nature of semantic structures

through the reformulation end extension of our ontology

inference algorithm.

We first concentrate on the perceptors since we are only

interested in the observations the agent makes and what they

reveal about the structure of its experienced world. An extended

version of the algorithm would compute the actors in much

the same way and gather even more structural information.

To embed ontology inference into algebraic quantum theory

and establish the necessary tools there is some preparatory

work to do.

Let H be a (complex) Hilbert space and B an orthonormal

basis of H. For any element |b〉 ∈ B the term |b〉〈b| yields

a projector, i.e., a Hermitian idempotent observable. The real

vector space M(B) = span({ |b〉〈b| | |b〉 ∈ B }) of Hermitian

linear operators generated from B is a (real) Banach space

when equipped with the operator norm, a (real) Banach algebra

when additionally equipped with composition as multiplication

and eventually a (real) Banach-∗-algebra when also equipped

with adjunction as involution. It fulfills the C∗-property and

is a (real) C∗-algebra. According to [84], such algebras are

called B∗-algebras but are also simply referred to as real C∗-

algebras in the literature [cf. 76]. However, it is shown by

[76] that the complexification of a real C∗-algebra is in fact a

(complex) C∗-algebra. Moreover, denote for a real C∗-algebra A

its complexification with AC, then the natural embedding of A

into AC is a homeomorphic ∗-isomorphism [84]. In this sense,

M(B) is a properW∗-subalgebra ofB(H), theW∗-algebra of all

bounded operators on a Hilbert space H. Moreover, for a given

Hilbert space H an arbitrary orthonormal basis B generates

the commutative unital (real) W∗-subalgebra M(B) ⊆ M and⋃
Bi

M(Bi) running over all orthonormal bases Bi of H is the

real W∗-subalgebra of M comprising all projectors from B(H)

and (
⋃
Bi

M(Bi))
C = M. Interestingly, the projector lattice in

the real case is L(M) as well and the projector lattices of the

M(Bi) are exactly the Boolean blocks of orthomodular L(M).

During exploration controllables and non-controllables are

represented by elements from M(B) for a suitable Hilbert

space H and a suitable orthonormal basis B. Whenever a new

observation is made the space H is expanded if necessary

by adding new vectors to B preserving orthonormality. All

perceptors are embedded into the then possibly bigger space and

updated by adding a new component representing the suitable

part of the observation by means of an additional eigenvalue

equation. This gives rise to the first of three views on the set

M(B) given by different partial orders and lattice structures.
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Let A,B ∈ M(B) be Hermitian linear operators, then—by

utilizing the dominator from (35)—we set A E B iff DADB =

DA and ADA = BDA. Whenever A E B holds for any A,B ∈

M(B) then it follows that (SpecA\ { 0 }) ⊆ (SpecB\ { 0 }) which

means that A is a possible predecessor of B during exploration.

The (reflexive) partial order (M(B),E) defines the history view

on M(B) denoted by H(B) where every maximal element—any

O ∈ M(B) with DO = 1—represents a possible perceptor of

the agent at the current exploration step and every maximal

chain represents a possible history for the perceptor at its top

whereas different chains result from different sequences of the

made observations. As we already saw in Section 4, it is possible

for different observables to result in the same perceptor from

M(B). This indistinguishability is reflected in the history view

where only explorative contiguity is represented while the origin

in terms of sensors is abstracted away.

Let (X,≤) be a partial order. For any x ∈ X we denote by

≤↓(x) = { y ∈ X | y ≤ x } the principal downset of x where we

also omit the relation symbol if it is clear from the context. For a

complete lattice (L,∨,∧) an element a ∈ L is called totally below

an element b ∈ L denoted a≪ b iff for any subset X ⊆ L with∨
X ≥ b there exists an element x ∈ X with a ≤ x (cf. [85]).

Since M(B) is a vector space every element can be represented

as a linear combination of elements from a basis. Moreover,

setting P(B) = { |b〉〈b| | |b〉 ∈ B }, for any element B ∈ M(B)

the set
E
↓(B) ∩ P(B) contains exactly those basis vectors from

the linear combination of B over P(B) and the elements from

P(B) are exactly the minimal elements from M(B) \ { 0 } with

respect toE. These properties are carried over to the Dedekind-

MacNeille completion ofH(B) which is a complete lattice where

every element is the join of the elements totally below it. It

follows from Theorem 1 from [86] that the Dedekind-MacNeille

completion of (M(B),E) is a completely distributive complete

lattice. Following Theorem 2.9 from [85], a complete meet

sublattice of a completely distributive complete lattice is a partial

sup lattice, where the join is given as a partial operation ⊔

that agrees with the supremum whenever it is defined. In this

sense,H(H) is a partial sup lattice where the complete meet-part

means that every perceptor is composed of elements of P(B)

and every two perceptors can have common histories (at least 0)

whereas the partial sup-part means that if two perceptors evolve

in different directions during exploration they will never unite

again and if a perceptor already contains a certain component

this cannot be overwritten by a different eigenvalue.

Partial sup lattices have another nice interpretation in our

case. Since we want elements in semantic structures to represent

objects in the agent’s constructed world the complete meet-

part could mean that every object is composed of individual

sensor values whereas the partial sup-part could mean that not

every composition yields a meaningful object. Then, the aim

1 Function NewWeight
Input: double-chained list of training data

tuples list =
〈
(i, yi, scorei)

〉
(sorted

descendingly by scorei), current weight

on jth minterm λj, minterm values {mi
j}

Output: new weight on jth minterm next to λj

2 epsilon← small value

3 newWeightList← 〈〉

4 list0 ← list, list1 ← list/* lists for λj = 0 and

λj = 1 */

5 for i in range(len(list)) do

6 (id, yi, scorei)← list[i]

7 score0i ← scorei − λj ·m
id
j , score1i ← score0i +mid

j

8 list0[i].scorei ← score0i , list1[i].scorei ← score1i

9 d← 0

10 while i− d is not top element do

11 d← d + 1

12 (ℓ0, y0ℓ , score
0
ℓ)← list0[i− d]/* left side */

13 if score0i > score0ℓ then

14 if yi = 1 and y0ℓ = 0 then

15 newW ← (score0i − score0ℓ)/(m
ℓ0

j −mid
j )

16 newWeightList.append(newW)

17 end

18 swap elements in list0 on position

i− d and i− d + 1

19 end

20 (ℓ1, y1ℓ , score
1
ℓ)← list1[i− d]/* right side */

21 if score1i > score1ℓ then

22 if yi = 1 and y1ℓ = 0 then

23 newW ← (score0i − (score1ℓ −mℓ
1

j ))/(mℓ
1

j −mid
j )

24 newWeightList.append(newW)

25 end

26 swap elements in list1 on position

i− d and i− d + 1

27 end

28 if score0i ≤ score0ℓ and score
1
i ≤ score1ℓ then break

while-loop;

29 end

30 end

31 bestWeight← SelectWeightFromList(newWeightList, λj)

32 if bestWeight > λj then return bestWeight + epsilon;

33 if bestWeight < λj then return bestWeight − epsilon;

34 else return λj;

35 end

Algorithm 3. Generates new minterm weight next to λj by

checking changes of the order if λj would be 0 (left side) or

1 (right side). Epsilon should be small enough, an alternative

approach would be to choose the middle point between the

next and the second change of the order.
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of the ontology inference algorithm could be the computation

of several partial sup lattices as complete meet sublattices

of a suitable view on M(B). Those lattices should represent

dependencies of non-controllables from controllables on the

one hand and construct the meaningful objects in the world

of the cognitive agent on the other hand. Additionally, they

should allow the deduction of logical connections. Note, that

this is not to be confused with compositionality (or non-

compositionality) of (linguistic) semantics. We let the agent

construct objects as meaningful combinations of sensor values

and such combinations are only meaningful if they serve the

agent in reaching one of its goals.

We define an equivalence relation ∼ on M(B) utilizing the

dominator from Equation (35). Let A,B ∈ M(B) be Hermitian

linear operators, then A ∼ B iff DA = DB. Then, M(B)/∼

with the operations of M(B) lifted to the equivalence classes

is a commutative unital (real) W∗-algebra12 is isomorphic to

its own projector lattice (cf. Section 3.2) and can be seen as

a W∗-subalgebra of B(H). The partial order - given through

Equation (32) is also a partial order on M(B) when defined

with the help of the dominator and can be lifted to M(B)/∼.

Equipped with the unary operation ¬ : M(B)/∼ → M(B)/∼

defined by ¬[A] = [1− DA] the 6-tuple (M(B)/∼,+, ·,¬, 0, 1)

is a Boolean algebra and defines the logical view on M(B)

denoted by L(B). This view not only abstracts from origin like

H(B) but also from the concrete encoding of observation values.

The third view, the semantic view on M(B), is best

introduced with the help of an example. We start with the

situation depicted in Figure 7 where the cognitive agent Theseus

sits on the field with x-coordinate 1 and y-coordinate 1. The

world has an edge length of 3 and some glasses of water and a

piece of cheese in it13. Theseus is equipped with the four sensors

X, Y , C, and G yielding values for x- and y-coordinate and for

the presence/absence of cheese respectively water. These sensors

supply values from the sets of sensor values VX = { 1, 2, 3 },

VY = { 1, 2, 3 }, VG = { 0, 1 } and VC = { 0, 1 } and Theseus

uses functions to transform sensor values from these sets into

observation values. For a set of sensor values VS a real-valued

function kS : VS → R is called an encoding of VS iff kS is

injective and kS(VS) ⊆ R \ { 0 }. The second condition is

due to using the special element 0 as representing the absence

of knowing the concrete value [s. Equation (65)]. This use of

encodings justifies the above definition of logical view since it

abstracts from the concrete encodings used. Let C = {X,Y }

be the set of controllables and let N = {C,G } be the set of

non-controllables. Then we associate to every S ∈ C a Hilbert

space HS and get the world space W by the tensor product over

12 When the operator norm is defined as supremum over all operator

norms of all elements of an equivalence class.

13 For the sake of simplicity and smaller graphics, we limit ourselves to

cheese and water and omit the bacon.

1 Function SelectWeightFromList
Input: list of weight candidates

weightCandidates, old weight λj

Output: best weight

2 return random element of weightCandidates

3 end

Algorithm 4. Select weight from candidate weights.

these spaces, i.e.,W =
⊗

S∈C HS
14. An individual Hilbert space

HS is constructed in such a way that for every sensor value

v ∈ VS an observation vector |kS(v)〉 ∈ HS exists and the set

BS = { |kS(v)〉 | v ∈ VS } builds an orthonormal basis of HS.

Consequently, the set B =
⊗

S∈C BS is the basis of world space.

When Theseus makes an observation every sensor answers

with a value from its corresponding value set. Observation is,

therefore, a tuple m ∈×S∈C∪N VS
15 where we denote by mS

the already encoded observation value for the sensor value of S

in the observation tuple m and we denote by Cm =
⊗

S∈C |mS〉

the controllable observation vector. We also associate to every

sensor S a perceptor OS ∈M(B) as a Hermitian linear operator

over W such that for every previously made observation m the

eigenvalue equation OS |Cm〉 = mS |Cm〉 holds. Before Theseus

makes its first observation we initialize the Hilbert spaces for the

controllables S ∈ C by HS = 0 and the corresponding bases

consequently by BS = ∅. Every perceptor OS for S ∈ C ∪ N is

also initialized by OS = 0. The world space is a lonely point of

dimension zero andM(B) = { 0 }.

Theseus’ first observation according to Figure 7 is m1 =

(1, 1, 0, 0) ∈ VX × VY × VC × VG. Then we extend the Hilbert

spacesHS for S ∈ C by extending their bases through

BS ← BS ∪ { |mS〉 } (64)

obeying the orthonormality of the bases and updating all

perceptors OS for S ∈ C ∪N by

OS ← OS + δ0,〈Cm|OS|Cm〉
mS |Cm〉〈Cm| (65)

where we first have to embed all perceptors into the new world

space if it is now of a higher dimension. Clearly, OS E OS
′ holds

if we denote the right hand side of (65) by OS
′. In our example,

W is now a one-dimensional line and L(B) a boolean algebra

consisting of 0 and 1 with 0 6= 1.

Now, Theseus is moving one step in the x-direction and

makes its second observation m2 = (2, 1, 0, 0). After extending

the bases W is a two-dimensional plane and L(B) is a boolean

algebra with 0, 1, and two additional elements like depicted on

14 For the rest of this section, we pretend that the tensor product is

commutative since the resulting spaces are equal up to isomorphism.

15 The last footnote holds analogously for the Cartesian product, too.
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FIGURE 7

Cognitive agent Theseus in a labyrinth with water and cheese.

the left of Figure 8. After updating all perceptors the relations

1 ∼ X ∼ Y ∼ C ∼ G hold where we now use the

identifiers of the sensors also for their associated perceptors and

the represented knowledge of the world seems rather boring. For

a controllable S ∈ C and one of its basis vectors |kS(v)〉 ∈ BS we

introduce the so-called combinatorial basis projector P̂S,v which

represents the subspace of W corresponding to |kS(v)〉 and is

defined by

P̂S,v =
∑

b∈{
⊗

S′∈C\{ S }BS′ }

|kS(v)b〉〈kS(v)b| . (66)

We define PS,v = P̂S,vDOS as the basis projector PS,v which

represents the already observed subspace of W corresponding

to |kS(v)〉. Note that, for a controllable S ∈ C the sum P̂S(VS) =∑
v∈VS

P̂S,v over all sensor values of S correspond to the notion

of “focus operators” from [82] and the role ofDOS in the relation

PS(VS) = P̂S(VS)DOS between the combinatorial focus operator

and its already observed counterpart generalizes the notion of

“veridicality projector” from [82].

Combining this new notation with the equivalence relation

∼ and explicitly adding some equivalent elements we can

represent the situation in the spaces HX and HY respectively

their embeddings in W like in the middle respectively on the

right of Figure 8 where equivalent elements are connected by

snake lines16.

Theseus moves another step in the x-direction and makes

the observationm3 = (3, 1, 0, 1). Updating the bases makesW a

three-dimensional space and results in the logical view on the left

of Figure 9. Updating the perceptors and using the new notation

OS|V , for a perceptor OS with S ∈ C ∪N and a subset of sensor

values V ⊆ VS, defined by

OS|V =
∑

v∈V

kS(v)PEigkS(v)(OS) (67)

where we also omit the curly brackets for singleton setsV = { v }

and simply write OS|v, we end up with the structures in the

middle and on the right of Figure 9.

The depicted structures from Figure 9 show that the absence

of cheese can be predicted by knowing either the x-coordinate

or the y-coordinate. But the presence/absence of water can only

be predicted by knowing the x-coordinate. Both structures can

be seen as complete meet sublattices (e.g., [85]) of L(B) where

certain equivalence classes are listed multiple times by different

representatives and not all joins are present (partial sup lattices,

16 These lines are only to visualize that the partial order of the projector

lattice has to be refined on M(B) to be useful.
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FIGURE 8

The first non-trivial logic view on M(B) (A) and the structures for HX (B) and HY (C) after m2.

FIGURE 9

The logical view on M(B) (A) and the structures for HX (B) and HY (C) after m3.

e.g., [85]). Because G|1 ≺ PY ,1 and G|0 ≺ PY ,1 both hold

G|1 and G|0 cannot be expressed in terms of basis projectors

of HY anymore. But they can still be expressed in terms of

basis projectors of HX . In such situations, we omit the non-

controllables in question from the structure for the controllable

where they are no longer expressible.

After a step in the y-direction, Theseus makes the

observationm4 = (3, 2, 0, 1) and we represent the structures for

HX andHY combined in one structure as on the left of Figure 10

where 0, 1, and the atomar projectors are shared between the

parts. The atomar projectors |22〉〈22| and |21〉〈21| correspond to

the yet unobserved coordinates (2, 2) and (2, 1) which are only

assumed to exist because of combinatorial reasons and are left

out for space reasons. After another step in the y-direction and

the observationm5 = (3, 3, 1, 1) we arrive at the structure on the

right of Figure 10 where even more atomar projectors are not

depicted. Now, we have a situation where every controllable can

exactly predict one non-controllable.

A step in x-direction brings Theseus to the coordinates (2, 3)

where it makes the observation (2, 3, 0, 0) which leads to the

structure in Figure 11. Now, we have a different situation than

before since C|1 depends on knowing x- and y-coordinate and

cannot be predicted from one coordinate alone. This fact is

reflected by the edges from C|1 to PX,3 and PY ,3 showing that

C|1 is only a part of them each. On the other hand, C|0 consists

of parts from both sides of the structure but cannot be expressed

by elements from only one side. This is best seen when the

structure from Figure 11 is divided into three parts which are

depicted in Figure 12 where the atomar projectors are hidden

behind three dots for space reasons.

On the left of Figure 12, one can see that the

absence/presence of water separates the space of x-coordinates.

The column with the number 3 is equivalent to the presence of

water which constructs “column 3” as a meaningful object while

the sum of columns 1 and 2—corresponding to logical OR—is

equivalent to the absence of water. The structure in the middle

of Figure 12 contains no non-controllabels which makes the

space of y-coordinates useless on its own. The conditions for

absence/presence of cheese are shown on the right of Figure 12.

Presence of cheese is equivalent to the product of column 3 and
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FIGURE 10

The semantic structures for HX and HY combined after m4 (A) and after m5 (B).

FIGURE 11

The semantic structure after m6 where the prediction of C|1 needs PX,3 and PY,3 and C|0 can be predicted on parts of X, respectively, Y.

row 3—corresponding to logical AND—while the absence of

cheese is equivalent to the sum of columns 1 and 2 and rows

1 and 2—corresponding to logical OR, again. Thus, the “field

(3, 3)” is constructed as a meaningful object. Although Theseus

has not explored the whole labyrinth the structure represents

the situation very well. A complete exploration would only

add more edges from basis projectors to atomar projectors but

would not change the structure above them. This way semantic

structures allow for predictions on not yet explored parts of

the world by simply exchanging basis projectors with their

combinatorial counterparts and propagating the changes to

perceptors.
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1 Function FindWeights

Input: training data items T = {(xi, yi)}, number

of trials tnum

Output: minterm weights {λj}

2 m← len(T)/* number of training data items

*/

3 bestRankingScore← m ∗m

4 for t in range(tnum) do

5 ({λj}, rankingScore)← GenerateWeights(T)

6 if rankingScore < bestRenkingScore then

7 bestRankingScore← rankingScore

8 bestWeights← {λj}

9 end

10 end

11 return bestWeights

12 end

Algorithm 5. Find best minterm weights {λj} from several local

optima.

After the informal introduction of semantic structures,

we now define them with the help of labeled partial orders.

Formally, a labeled partial order (lpo) over a set X of labels

is a partial order ≤ on a set V of vertices together with a

labeling function l : V → X written as a 3-tuple (V ,≤, l). Since

sometimes we want equal observables to appear in different

places within our semantic structures—because they have

different origins and meanings and are, therefore, denoted by

different symbols and should possibly be connected to different

elements—labeled partial orders are an obvious choice here. To

get distinguishable vertices, we augment every observable with

its origin and context.

Let C = (Ci)
c
i=1 be a non-empty family of controllables

for some c ∈ N and N = (Ni)
n
i=1 be a non-empty

family of non-controllables for some n ∈ N, both after some

exploration steps. Let HC be the associated Hilbert space for

a controllable C ∈ C with its basis BC . Then the world

space is W =
⊗

C∈C HC . Let P(B) be the set of atomar

projectors from M(B) for the basis B =
⊗

C∈C BC of W. For

a controllable C ∈ C, we denote the set of its combinatorial

basis projectors by P̂C = { P̂C,v | |kC(v)〉 ∈ BC }, the set of

its basis projectors by PC = { PDC | P ∈ P̂C } and for a

non-empty family of controllables D ⊆ C we denote its

associated Hilbert space by H(D) =
⊗

C∈DHC . For a non-

controllable N ∈ N, we denote the set of its components by

PN = { N|V | kN (V) ⊆ SpecN } =
E
↓(N) \ { 0 }.

We use the members from C and N and the identifier

W as formal terms to denote origin as elements from O =

{W } ∪ C ∪ N and we use the formal sums
∑

C∈D C for

any non-empty family of controllables D ⊆ C and the

identifier W to denote context as elements from C = {W } ∪

{
∑

C∈D C | D ⊆ C ∧ D 6= ∅ }. We will have a certain subset of

M(B) × O × C to be the support V(W, C,N) of the semantic

view onM(B):

• (0,W,W) ∈ V(W, C,N),

• { (A,W,W) | A ∈ P(B) } ⊂ V(W, C,N),

• { (P,C,W) | C ∈ C, P ∈ PC } ⊂ V(W, C,N) and

• { (PN ,N,
∑

C∈D C) | N ∈ N, PN ∈ PN,D ⊆ C ∧ D 6= ∅ } ⊂

V(W, C,N).

For any element S ∈ V(W, C,N), we denote by SB the

observable in its first component, by SO the origin from its

second component, and by SC the context from its third

component. For any origin o and any context c, we write o ∈ c

iff the formal terms are equal (o = c) or c is the formal sum for

a non-empty family of controllables D ⊆ C and o is the formal

term of a member of D. Next, we define the (reflexive) partial

order � on V(W, C,N) with the help of - on M(B). For any

two elements S,T ∈ V(W, C,N), we set S � T iff SB - TB and

one of the following holds:

• S = T (for reflexivity).

• SO ∈ TC (for the standard ordering on V(W, C,N)).

• SO =W and TO ∈ N (for transitivity).

• TO ∈ SC and SB 6∼ TB (cf. C|1 in Figure 11).

• SO ∈ N ∋ TO and SB 6∼ TB (cf. C|0 and G|0 in

Figure 11).

• SO ∈ N ∋ TO and SB ∼ TB and T 6� S (cf. C and G in

Figure 8).

Following the same argumentation as in the case of H(B),

also the (reflexive) partial order (V(W, C,N),�) is a partial

sup lattice.

We define the labeling l on V(W, C,N) by explicitly

listing the results for the different classes of elements of

V(W, C,N) where the function values are to be understood as

formal terms:

• We set l((0,W,W)) = 0.

• For |B〉 ∈ B and A = |B〉〈B| ∈ P(B) we set l((A,W,W)) =

|B〉〈B|.

• For C ∈ C and P = PC,v ∈ PC we set l((P,C,W)) = PC,v.

• For N ∈ N and PN = N|V ∈ PN we set l((PN ,N, ·)) =

N|V .

Now, the (reflexive) labeled partial order (V(W, C,N),�, l)

defines the semantic view onM(B) denoted byS(B).

For every non-empty family of controllables D ⊆ C and

a non-controllable N ∈ N we denote for a component

PN ∈ PN of N by PN (D) = (PN ,N,
∑

C∈D C) ∈

V(W, C,N) the component PN from N in the context

of D and define the set of its lower D-basis projectors

↓D(PN ) =
⋃

C∈D { (P,C,W) | P ∈ PC ∧ (P,C,W) � PN (D) }
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FIGURE 12

The three parts (A–C) of the semantic structure from Figure 11 after m6.

and the set of its upper D-basis projectors ↑D(PN ) =⋃
C∈D { (P,C,W) | P ∈ PC ∧ PN (D) � (P,C,W) }. A

component PN ∈ PN of N is said to be predictable from D iff

either [PN ] =
∑

B∈↓D(PN )
[BB] or [PN ] =

∏
B∈↑D(PN )

[BB]

holds. If there is a subset from ↓D(PN ) respectively ↑D(PN )

containing at least one element from every origin C ∈ D such

that the family of basis projectors is linearly independent and

[PN ] is the sum respectively product over this family then PN is

said to beminimally predictable from D.

In the case [PN ] is the sum of basis projectors this

corresponds to a logical OR. If the sum contains at least one of

its basis projectors for every controllable C ∈ D and none of

them is spurious if they are linearly independent there can be

no smaller family D′ ⊂ D of controllables from which PN is

predictable, justifying the term “minimally”. However, there can

be families where at least one member is not contained inDwith

the same number or even fewer members. In the case [PN ] is the

product of basis projectors this corresponds to a logical AND.

Again, in the case of linear independence, there can be no proper

subfamily of D from which PN is predictable but there can be

other families equal in size or with fewermembers. In both cases,

predictability is equivalent to the solvability of the eigenvalue

equations of PN in the associated Hilbert spaceH(D). Note, that

for a non-controllable N ∈ N and a D-predictable component

PN ∈ PN it not necessarily follows that any component P′N ∈

PN with P′N ⊳ PN must be D-predictable.

Semantic structures like in our example arise from a goal

the agent tries to reach. A goal is given as a family of

components of non-controllables. Then, families of controllables

are searched from where the components are minimally

predictable. A semantic structure for a goal then consists of

all these families as a substructure of S(B). The meaningful

objects are the components in their respective context while

their composition is given by the order relation from L(B)

and is, therefore, logically interpretable. A meaningful object

is, therefore, a logical composition of controllable observation

values in the context of a goal. Hence, the world’s objects are

highly contextual.

7. Discussion

In this study, we have outlined a framework of quantum-

inspired cognitive agents for the leverage of artificial intelligence

and cognitive dynamical systems [7, 14]. Inspired by Shannon’s

groundbreaking mouse-maze system, “Theseus” [5, 78], we

have suggested an embodied, enactive, complex multi-agent

cognitive system [6, 10, 16], to which we refer the DAGHT

architecture [after five mythological characters: “Demiurge” (D),

“Argus” (A), “Golem” (G), “Homunculus” (H), and “Theseus”

(T)] that are connected within a communication network,

depicted in Figure 1. This architecture relies upon an embedded

perception-action cycle (PAC) (Figure 2), implemented by

the Golem agent for the generation of actuator signals and

the measurement of sensor signals within an interaction

loop. Another agent, Homunculus, interprets sensory input

during classification, articulates actuator instructions, and

selects actions using representational symbolic data structures

within a communication loop. In our approach, Shannon’s

original agent, Theseus, prescribes goals for its exploration

behavior and infers semantic relationships (ontologies) among

entities of the external world [7], while Argus actually

determines what the agent can achieve and limits possible

interactions between Golem and the environment. Finally, the

overarching Demiurge stands for the behavioral and cognitive

control unit.

In a first step, we have modified the classical PAC toward

a quantum-inspired PAC (QPAC), by assigning operators of

a suitably chosen observable algebra to its ingredients: to

each PAC actuator, an action operator (or briefly actor) is
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attributed while each PAC sensor is related to a Hermitian

perception operator (in short perceptor), such that actors

correspond to controllable observables, whereas perceptors find

their counterpart in non-controllable observables of a previous

approach [82, 83]. Specifically, we have chosen the framework of

algebraic quantum theory for our model [69, 71] since it clearly

allows to discriminate ontic and epistemic descriptions in terms

of structural C∗-algebras on the one hand and probabilistic W∗-

algebras on the other hand [72]. The ontology of the agent’s

environment [7, 12, 13, 29, 30] is then uniquely characterized

by the fundamental commutation relations of the underlying

C∗-algebra.

An important concept of algebraic quantum theory

is the ontologically intrinsic properties, referring to a

maximal abelian subalgebra of Hermitian observables,

i.e., perceptors [72]. These operators provide a maximally

Boolean description that is reflected by the possibility of

simultaneously solving the respective eigenvalue equations

of the epistemic W∗-algebra of bounded operators on a

Hilbert space. In the second step of our study, we have used

the observation space [28] that is spanned by the solutions

of these eigenvalue equations as the basis of a classification

problem for the Homunculus agent. We have compared one

standard machine learning technique, namely decision trees

[7] that only lead to partitions of overlapping hypercubes

of the observation space into classifiers with our newly

developed algorithm, exploiting quantum probabilities instead

[79, 80].

The third step is devoted to the autoepistemic ontology

inference of the Theseus agent [50]. Based on the fundamental

spectral theorem for Hermitian observables [70], we have

developed an algorithm for the induction of semantic lattices

in terms of partial sup lattices [85], which are generalizations

of the projector lattices originally introduced to quantum

logics [28, 58]. Although related to our previous study on

ontology inference through Fock space modeling [82, 83],

our algebraic approach is much more parsimonious and

computationally efficient.While Fock space attempts suffer from

the combinatorial explosion of tensor product powers, our novel

innovation straightforwardly distinguishes between controllable

action and non-controllable perception operators where only the

former is taken into account for generating a low-dimensional

tensor product “world space”. Hermitian perceptors, by contrast,

are described by their spectral decompositions and the

resulting partial sup lattice structures [85]. In an example,

we showed how the agent’s world model is constantly

restructured during exploration while new observations are

incorporated. We also showed how this model can be used

to make predictions on the not yet explored parts of the

agent’s world.

Our study is consistent with related approaches

to quantum cognition and quantum-inspired

computation [48–50] and can be generalized toward

other fields of active research, such as conceptual

spaces, latent semantic analysis (LSA), geometric

information retrieval, or vector symbolic architectures

[8, 52–56].

Future research on quantum-inspired cognitive agents

may address a number of pertinent problems in artificial

intelligence and cognitive systems science. First of all, the

philosophical peculiarities induced by a rather “naive”

interpretation of “representation” [6, 9–11] could be resolved

in a generalized framework of dynamic semantics [63–

65] by literally understanding mental representations as

operators acting upon the (geometric) belief space of the

cognitive agent [56, 62, 66–68]. Regarding those belief spaces

as Hilbert spaces equipped with a scalar product, allows

the assessment of similarity for classification and concept

formation, thus solving the symbol grounding problem in

conceptual space [8]. Through the definition of tensor product

states in representation space, concepts could be entangled as

suggested for non-compositional semantics [87]. Moreover,

superposition states could not be simultaneous eigenstates

of complementary observables. Since this is reflected by the

non-distributivity of the corresponding quantum logics, the

frame problem [20] could be reformulated as the problem to

find the most relevant Boolean sublattice in an orthomodular

lattice structure, as resulting from our ontology inference

algorithm.
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