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Abstract
The generalized Cesàro operators Ct , for t ∈ [0, 1], were first investigated in the 1980s. They
act continuously in many classical Banach sequence spaces contained in C

N0 , such as �p , c0,
c, bv0, bv and, as recently shown in Curbera et al. (J Math Anal Appl 507:31, 2022) [26], also
in the discrete Cesàro spaces ces(p) and their (isomorphic) dual spaces dp . In most cases
Ct (t �= 1) is compact and its spectra and point spectrum, together with the corresponding
eigenspaces, are known. We study these properties of Ct , as well as their linear dynamics
and mean ergodicity, when they act in certain non-normable sequence spaces contained in
C
N0 . Besides C

N0 itself, the Fréchet spaces considered are �(p+), ces(p+) and d(p+), for
1 ≤ p < ∞, as well as the (LB)-spaces �(p−), ces(p−) and d(p−), for 1 < p ≤ ∞.

Keywords Generalized Cesàro operator · Compactness · Spectra · Power boundedness ·
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1 Introduction

The (discrete) generalized Cesàro operators Ct , for t ∈ [0, 1], were first investigated by
Rhaly, [52]. The action of Ct from ω := C

N0 into itself (withN0 := {0, 1, 2, . . .}) is given by
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Ct x :=
(

tn x0 + tn−1x1 + . . . + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.1)

For t = 0 note that C0 is the diagonal operator

Dϕx :=
(

xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω, (1.2)

where ϕ :=
(

1
n+1

)
n∈N0

, and for t = 1 that C1 is the classical Cesàro averaging operator

C1x :=
(

x0 + x1 + · · · + xn

n + 1

)
, x = (xn)n∈N0 ∈ ω. (1.3)

The spectra ofC1 have been investigated in various Banach sequence spaces. For instance,
wemention �p (1 < p < ∞), [22, 23, 30, 40], c0 [1, 40, 51], c [40], �∞ [50, 51], the Bachelis
spaces N p (1 < p < ∞) [25], bv and bv0 [47, 48], weighted �p spaces [7, 10], the discrete
Cesàro spaces ces(p) (for p ∈ {0} ∪ (1,∞)), [24], and their dual spaces ds (1 < s < ∞),
[19]. For the class of generalized Cesàro operators Ct , for t ∈ (0, 1), a study of their spectra
and compactness properties (in �2) go back to Rhaly, [52, 53]. A similar investigation occurs
for �p (1 < p < ∞) in [58] and for c and c0 in [55, 59]. The paper [55] also treats Ct when it
acts on bv0, bv, c, �1, �∞ and the Hahn sequence space h. In the recent paper [26] the setting
for considering the operators Ct is a large class of Banach lattices in ω, which includes all
rearrangement invariant sequence spaces (over N0 for counting measure), and many others.

Our aim is to study the compactness, the spectra and the dynamics of the generalized
Cesàro operatorsCt , for t ∈ [0, 1), when they act in certain classical, non-normable sequence
spaces X ⊆ ω. Besides ω itself, the Fréchet spaces considered are �(p+), ces(p+) and
d(p+), for 1 ≤ p < ∞, as well as the (LB)-spaces �(p−), ces(p−) and d(p−), for
1 < p ≤ ∞.

In Sect. 2 we formulate various preliminaries that will be needed in the sequel concerning
particular properties of the spaces X that we consider, aswell as linear operators between such
spaces. We also collect some general results required to determine the spectra of operators
T acting in the spaces X and the compactness of their dual operator T ′ acting in the strong
dual space X ′

β of X .
Section 3 is devoted to a detailed study of the operators Ct , for t ∈ [0, 1), when they act in

ω. These operators are never compact (c.f. Proposition 3.2) and their spectrum is completely
described in Theorem 3.7 where, in particular, it is established that the set of all eigenvalues
of Ct is independent of t and equals � := { 1

n+1 : n ∈ N0}. The 1-dimensional eigenspace

corresponding to 1
n+1 , for each n ∈ N0, is identified in Lemma 3.4.

The situation for the other mentioned spaces X ⊆ ω, which is rather different, is treated in
Sects. 4 and 5. The operatorCt , for t ∈ [0, 1), is always compact in these spaces; see Theorem
4.5(i) for the case of Fréchet spaces and Theorem 5.3(i) for the case of (LB)-spaces. The
spectra of Ct are fully determined in Theorems 4.5(ii) and 5.3(ii), and the 1-dimensional
eigenspace corresponding to each eigenvalue of Ct is identified in Theorems 4.5(iii) and
5.3(iii). We note, for all cases of X and t ∈ [0, 1), that the set of all eigenvalues of Ct is
again �. The main tool is a factorization result stating that Ct = Dϕ Rt , where Dϕ : X → X
is a compact (diagonal) operator in X and Rt : X → X is a continuous linear operator; see
Propositions 4.4(iii) and 5.2(iii).

For the definition of a mean ergodic operator and the notion of a supercyclic operator we
refer to Sect. 6, where the relevant operators under consideration are Ct acting in the spaces
X , for each t ∈ [0, 1). It is necessary to determine some abstract results for linear operators in
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general lcHs’ (c.f., Theorems 6.2 and 6.4), which are then applied to Ct to show that it is both
power bounded and uniformlymean ergodic in all spaces X �= ω; see Theorem 6.6. The same
is true for Ct acting in ω; see Theorem 6.1. In this section we also investigate the properties
of the dual operators C ′

t acting in X ′
β , which are given by (6.6) and (6.8). The operators C ′

t
are compact and their spectra are identified in Proposition 6.7, where it is also shown that the
set of all eigenvalues of C ′

t is �. Moreover, for each n ∈ N0, the eigenvector in X ′
β spanning

the 1-dimensional eigenspace corresponding to 1
n+1 ∈ � is also determined. A consequence

of C ′
t having a rich supply of eigenvalues is that each operator Ct : X → X , for t ∈ [0, 1),

fails to be supercyclic. Moreover, it is established in Proposition 6.8 that C ′
t : X ′

β → X ′
β

is power bounded, uniformly mean ergodic but, not supercyclic. It should be noted that the
main results in this section are also new for Ct acting in the Banach spaces �p , ces(p) and
dp .

2 Preliminaries

Given locally convex Haudorff spaces X , Y (briefly, lcHs) we denote by L(X , Y ) the space
of all continuous linear operators from X into Y . If X = Y , then we simply write L(X)

for L(X , X). Equipped with the topology of pointwise convergence τs on X (i.e., the strong
operator topology) the lcHs L(X) is denoted by Ls(X) and for the topology τb of uniform
convergence on bounded sets the lcHs L(X) is denoted by Lb(X). Denote by B(X) the
collection of all bounded subsets of X andby�X a systemof continuous seminormsdeterming
the topology of X . The identity operator on X is denoted by I . The dual operator of T ∈ L(X)

is denoted by T ′; it acts in the topological dual space X ′ := L(X , C) of X . Denote by
X ′

σ (resp., by X ′
β ) the space X ′ with the weak* topology σ(X ′, X) (resp., with the strong

topology β(X ′, X)); see [37, Sect. 21.2] for the definition. It is known that T ′ ∈ L(X ′
σ ) and

T ′ ∈ L(X ′
β), [38, p. 134]. For the general theory of functional analysis and operator theory

relevant to this paper see, for example, [27, 33, 36, 44, 49, 56].

Lemma 2.1 Let X be a lcHs and T ∈ L(X) be an isomorphism of X onto itself. Then T ′ is
an isomorphism of X ′

β onto itself. If, in addition, X is complete and barrelled, then T is an
isomorphism of X onto itself if, and only if, T ′ is an isomorphism of X ′

β onto itself.

Proof If T is an isomorphism of X onto itself, then T −1 ∈ L(X) exists with T T −1 =
T −1T = I . It was already noted that T ′, (T −1)′ ∈ L(X ′

β) and clearly (T −1)′T ′ =
T ′(T −1)′ = I . Thus, (T ′)−1 exists in L(X ′

β) and (T ′)−1 = (T −1)′; that is, T ′ is an isomor-
phism of X ′

β onto itself.
Suppose that X is also complete and barrelled and that T ′ ∈ L(X ′

β) is an isomorphism of
X ′

β onto itself. As proved above, T ′′ is necessarily an isomorphism of X ′′
β onto itself. By the

proof of Lemma 3 in [6] it follows that T is an isomorphism of X onto itself. This completes
the proof. 
�

Given a lcHs X and T ∈ L(X), the resolvent set ρ(T ; X) of T consists of all λ ∈ C

such that R(λ, T ) := (λI − T )−1 exists in L(X). The set σ(T ; X) := C\ρ(T ; X) is called
the spectrum of T . The point spectrum σpt (T ; X) of T consists of all λ ∈ C (also called
an eigenvalue of T ) such that (λI − T ) is not injective. An eigenvalue λ of T is called
simple if dimKer(λI − T ) = 1. Some authors (e.g. [56]) prefer the subset ρ∗(T ; X) of
ρ(T ; X) consisting of all λ ∈ C for which there exists δ > 0 such that the open disc
B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T ; X) and {R(μ, T ) : μ ∈ B(λ, δ)} is an
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equicontinuous subset ofL(X). Define σ ∗(T ; X) := C\ρ∗(T ; X), which is a closed set with
σ(T ; X) ⊆ σ ∗(T ; X). If X is a Banach space, then σ(T ; X) = σ ∗(T ; X). For the spectral
theory of compact operators in lcHs’ we refer to [27, 33], for example.

Corollary 2.2 Let X be a complete, barrelled lcHs and T ∈ L(X). Then

ρ(T ; X) = ρ(T ′; X ′
β) and σ(T ; X) = σ(T ′; X ′

β). (2.1)

Moreover,

σ ∗(T ′; X ′
β) ⊆ σ ∗(T ; X). (2.2)

Proof The identities in (2.1) are an immediate consequence of Lemma 2.1.
Fix λ ∈ ρ∗(T ; X). Then there exists δ > 0 such that B(λ, δ) ⊆ ρ(T ; X) and {R(μ; T ) :

μ ∈ B(λ, δ)} ⊆ L(X) is equicontinuous. For each μ ∈ B(λ, δ) it follows from the proof
of Lemma 2.1 that R(μ, T )′ = ((μI − T )−1)′ = (μI − T ′)−1 = R(μ, T ′). Then [38,
Sect. 39.3(6), p.138] implies that {R(μ, T ′) : μ ∈ B(λ, δ)} ⊆ L(X ′

β) is equicontinuous,
that is, λ ∈ ρ∗(T ′; X ′

β). So, we have established that ρ∗(T ; X) ⊆ ρ∗(T ′; X ′
β); taking

complements yields (2.2). 
�
A linear map T : X → Y , with X , Y lcHs’, is called compact if there exists a neighbour-

hood U of 0 in X such that T (U) is a relatively compact set in Y . It is routine to show that
necessarily T ∈ L(X , Y ). For the following result see [38, Sect. 42.1(1)] or [36, Proposition
17.1.1].

Lemma 2.3 Let X be a lcHs. The compact operators are a 2-sided ideal in L(X).

To establish the continuity of Ct , for t ∈ [0, 1], in the Fréchet spaces considered in this
paper we will need the following result, [14, Lemma 25].

Lemma 2.4 Let X = ∩∞
n=1Xn and Y = ∩∞

m=1Ym be two Fréchet spaces which resp. are the
intersection of the sequence of Banach spaces (Xn, ‖ · ‖n), for n ∈ N, and of the sequence
of Banach spaces (Ym, ||| · |||m), for m ∈ N, satisfying Xn+1 ⊂ Xn with ‖x‖n ≤ ‖x‖n+1 for
each n ∈ N and x ∈ Xn+1 and Ym+1 ⊂ Ym with |||y|||m ≤ |||y|||m+1 for each m ∈ N and
y ∈ Ym+1. Suppose that X is dense in Xn for each n ∈ N. Then a linear operator T : X → Y
is continuous if, and only if, for each m ∈ N there exists n ∈ N such that the operator T has
a unique continuous extension Tn,m : Xn → Ym.

The following result, based on [8, Lemma 2.1], will be needed to determine the spectra
of Ct , for t ∈ [0, 1], in the Fréchet spaces considered in this paper.

Lemma 2.5 Let X = ∩∞
n=1Xn be a Fréchet space which is the intersection of a sequence of

Banach spaces (Xn, ‖ · ‖n), for n ∈ N, satisfying Xn+1 ⊂ Xn with ‖x‖n ≤ ‖x‖n+1 for each
n ∈ N and x ∈ Xn+1. Let T ∈ L(X) satisfy the following condition:

(A) For each n ∈ N there exists Tn ∈ L(Xn) such that the restriction of Tn to X (resp. of
Tn to Xn+1) coincides with T (resp. with Tn+1).

Then the following properties are satisfied.

(i) σ(T ; X) ⊆ ∪∞
n=1σ(Tn; Xn) and σpt (T ; X) ⊆ ∩∞

n=1σpt (Tn; Xn).
(ii) If ∪∞

n=1σ(Tn; Xn) ⊆ σ(T ; X), then σ ∗(T ; X) = σ(T ; X).
(iii) If dim ker(λI − Tm) = 1 for each λ ∈ ∩∞

n=1σpt (Tn; Xn) and m ∈ N, then σpt (T ; X) =
∩∞

n=1σpt (Tn; Xn).
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Proof In view of [8, Lemma 2.1] it remains to show the validity of the inclusion σpt (T ; X) ⊆
∩∞

n=1σpt (Tn, Xn) in the statement (i) and the identity in (iii).
The inclusion σpt (T ; X) ⊆ ∩∞

n=1σpt (Tn; Xn) is clear. Indeed, if (λI − T )x = 0 for some
x ∈ X\{0} and λ ∈ C, then in view of X ⊆ Xn and Tn |X = T , for n ∈ N, (see condition (A)),
we have that x ∈ Xn\{0} and (λI −Tn)x = 0 for every n ∈ N. Hence, λ ∈ ∩∞

n=1σpt (Tn; Xn).
To establish the validity of (iii), fix λ ∈ ∩∞

n=1σpt (Tn; Xn). Then, for each n ∈ N, there
exists xn ∈ Xn\{0} such that (λI − Tn)xn = 0. Since xn+1 ∈ Xn+1 ⊆ Xn , for n ∈ N,
condition (A) implies that also (λI − Tn)xn+1 = 0 in Xn for each n ∈ N. So, for each
n ∈ N, we have that xn+1 = μn xn for some μn ∈ C\{0}. Therefore, xn = (

∏n−1
j=1 μ j )x1,

with
∏n−1

j=1 μ j �= 0. Accordingly, x1 ∈ Xn for each n ∈ N and hence, x1 ∈ X . On the other
hand, applying again condition (A), we can conclude that (λI − T )x1 = (λI − T1)x1 = 0,
i.e., λ ∈ σpt (T ; X). 
�

Fréchet spaces X which satisfy the assumptions of Lemma 2.5 are often called countably
normed Fréchet spaces; for the general theory of such spaces see [29], for example.

A Hausdorff locally convex space (X , τ ) is called an (LB)-space if there is a sequence
(Xk)k∈N of Banach spaces satisfying Xk ⊆ Xk+1 continuously for k ∈ N, X = ∪∞

k=1Xk

and τ is the finest locally convex topology on X such that the natural inclusion Xk ⊂ X is
continuous for each k ∈ N, [44, pp. 290–291]. In this case we write X = ind k Xk . If, in
addition, X is a regular (LB)-space, [36, p. 83], then a set B ⊂ X is bounded if and only if
there exists m ∈ N such that B ⊂ Xm and B is bounded in the Banach space Xm . Complete
(LB)-spaces are regular, [37, Sect. 19.5(5)]. All of the (LB)-spaces of sequences considered
in this note will be regular because of the following result, [44, Proposition 25.19(2)].

Lemma 2.6 Let X = ind k Xk be an (LB)-space with an increasing union of reflexive Banach
spaces X = ∪∞

k=1Xk such that each inclusion Xk ⊆ Xk+1, for k ∈ N, is continuous. Then X
is complete and hence, also regular.

An (LB)-space X = ind k Xk is said to be boundedly retractive if for every B ∈ B(X)

there exists k ∈ N such that B is contained and bounded in Xk , and X and Xk induce the
same topology on B. The (LB)-space X is said to be sequentially retractive if for every null
sequence in X there exists k ∈ N such that the sequence is contained and converges to zero in
Xk . Finally, the (LB)-space X is said to be compactly regular if for every compact subset C
of X there exists k ∈ N such that C is compact in Xk . Each of these three notions implies the
completeness of X , [57, Corollary 2.8]. Neus [46] proved that all these notions are equivalent
even for inductive limits of normed spaces.

In the setting of boundedly retractive (LB)-spaces, the following general statement on the
compactness of certain dual operators is valid.

Proposition 2.7 Let X be a lcHs, Y = ind kYk be a boundedly retractive (LB)-space and
T ∈ L(X , Y ) be compact. Then T ′ ∈ L(Y ′

β, X ′
β) is compact.

Proof The compactness of T implies that there exists a closed, absolutely convex neigh-
bourhood U of 0 in X such that T (U) is a relatively compact set in Y . So, the closure
B := T (U) ∈ B(Y ) of T (U) is a compact set in Y . But, Y is a boundedly retractive (LB)-
space. Accordingly, there exists k ∈ N such that B is contained and bounded in Yk , and Y and
Yk induce the same topology on B. Therefore, B is also a compact set in Yk and T (X) ⊆ Yk .
Accordingly, the operator T acts compactly from X into Yk . Denote by T1 the operator T
when interpreted to be acting from X into Yk and by ik the continuous inclusion of Yk into Y .
So, T1 ∈ L(X , Yk) is compact and T = ik T1. Denote by p the continuous seminorm on X
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corresponding toU and let X p denote the normed quotient space
(

X
Kerp , p

)
. Then there exists

a unique continuous linear operator S from X p into Yk such that SQ = T1, where Q denotes
the canonical quotient map from X into X p and hence, is an open map. Since T1 ∈ L(X , Yk)

is compact and Q ∈ L(X , X p) is open, the operator S ∈ L(X p, Yk) is necessarily compact.
By Schauder’s theorem, [38, Sect. 42(7), p. 202], it follows that S′ ∈ L(Y ′

k, X ′
p) is compact.

So, T ′
1 = Q′S′ ∈ L(Y ′

k, X ′
β) is compact and hence, T ′ = T ′

1i ′k ∈ L(Y ′
β, X ′

β) is compact (cf.
Proposition 17.1.1 in [36]). This completes the proof. 
�

A Fréchet space X is said to be quasinormable if for every neighbourhhod U of 0 in X
there exists a neighbourhhod V of 0 in X so that, for every ε > 0, there exists B ∈ B(X)

satisfying V ⊆ B + εU . Thus, every Fréchet-Schwartz space is quasinormable [44, Remark,
p. 313]. The strong dual X ′

β of a quasinormable Fréchet space X is necessarily a boundedly
retractive (LB)-space [18, Theorem]. Thus, the strong dual of any Fréchet-Schwartz space
(briefly, (DFS)-space) is a boundedly retractive (LB)-space.

Corollary 2.8 Let X and Y be two Fréchet spaces and T ∈ L(X , Y ). If T ′′ ∈ L(X ′′
β, Y ′′

β ) is
compact, then T is compact.

If, in addition, X is quasinormable and T is compact, then T ′′ ∈ L(X ′′
β, Y ′′

β ) is compact.

Proof Suppose that T ′′ ∈ L(X ′′
β, Y ′′

β ) is compact. Since X , Y are Fréchet spaces, they are
isomorphic to their respective natural image in X ′′

β , Y ′′
β (in which they are closed subspaces).

Moreover, the restriction of T ′′ to X coincides with T and takes its values in Y ⊆ Y ′′
β . Then

the compactness of T follows from that of T ′′.
Suppose that X is quasinormable and that T ∈ L(X , Y ) is compact. Since X is quasi-

normable, its strong dual X ′
β is a boundedly retractive (LB)-space. Moreover, Y being a

Fréchet space implies that T ′ : Y ′
β → X ′

β is compact, [27, Corollary 9.6.3]. It follows from
Proposition 2.7, with Y ′

β in place of X and X ′
β in place of Y = ind kYk and T ′ in place of T ,

that T ′′ ∈ L(X ′′
β, Y ′′

β ) is compact. 
�
To identify the spectrum of Ct acting in the (LB)-spaces arising in this paper we will

require the following two results; the first one, i.e. Lemma 2.9, is a direct consequence of
Grothendieck’s factorization theorem (see e.g. [44, Theorem 24.33]), and the second one,
i.e. Lemma 2.10, is proved in [11, Lemma 5.2].

Lemma 2.9 Let X = ind n Xn and Y = ind mYm be two (LB)-spaces with increasing unions
of Banach spaces X = ∪∞

n=1Xn and Y = ∪∞
m=1Ym. Let T : X → Y be a linear map. Then T

is continuous (i.e., T ∈ L(X , Y )) if and only if for each n ∈ N there exists m ∈ N such that
T (Xn) ⊆ Ym and the restriction T : Xn → Ym is continuous.

Lemma 2.10 Let X = ind k Xk be a Hausdorff inductive limit of a sequence of Banach spaces
(Xk, ‖ · ‖k). Let T ∈ L(X) satisfy the following condition:

(A′) For each k ∈ N the restriction Tk of T to Xk maps Xk into itself and Tk ∈ L(Xk).
Then the following properties are satisfied.

(i) σpt (T ; X) = ∪∞
k=1σpt (Tk; Xk).

(ii) If ∪∞
k=mσ(Tk; Xk) ⊆ σ(T ; X) for some m ∈ N, then σ ∗(T ; X) = σ(T ; X).

(iii) σ(T ; X) ⊆ ∩m∈N
(∪∞

n=mσ(Tn; Xn)
)
.

Another useful fact for our study is the following result.
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Lemma 2.11 Let T ∈ L(ω). Let X be a Fréchet space or an (LB)-space continuously included
in ω. If T (X) ⊆ X, then T ∈ L(X).

Proof The result follows from the closed graph theorem, [44, Theorem 24.31], after recalling
that X is ultrabornological, [44, Remark 24.15(c) & Proposition 24.16] and has a web, [44,
Corollary 24.29 & Remark 24.36]. So, it is enough to show that the graph of T in X is closed.
To do this, we assume that a net (xα)α ⊆ X satisfies xα → x and T (xα) → y in X . Since
the inclusion X ⊆ ω is continuous, xα → x in ω and hence, T (xα) → T (x) in ω. On the
other hand, by the continuity of the inclusion X ⊆ ω also T (xα) → y in ω. Then T (x) = y.
So, (x, y) belongs to the graph of T . This shows that the graph of T is closed. 
�

For X a barrelled lcHs, every bounded subset ofLs(X) is equicontinuous, [44, Proposition
23.27]. It is known that every Fréchet space is barrelled, [44, Remark, p. 296], and that every
(LB)-space is barrelled, [44, Proposition 24.16].

The operator norm of a Banach space operator T ∈ L(X , Y )will be denoted by ‖T ‖X→Y .
The Banach spaces �p = �p(N0), for 1 ≤ p < ∞, with their standard norm ‖ · ‖p are
classical. For 1 < p < ∞ these spaces are reflexive. The spectra of Ct acting in such
spaces are given in the following result; see [58] for 1 < p < ∞ and also [55, Sect. 8] for
1 ≤ p < ∞. Recall from Sect. 1 that

� :=
{

1

n + 1
: n ∈ N0

}
.

Proposition 2.12 For each t ∈ [0, 1) the operator Ct ∈ L(�p), for 1 ≤ p < ∞, is a compact
operator satisfying

‖Ct‖�1→�1 = 1

t
log

(
1

1 − t

)
, t ∈ (0, 1),

and( ∞∑
n=0

(
tn

n + 1

)p
)1/p

≤ ‖Ct‖�p→�p ≤
(
1

t
log

(
1

1 − t

))1/p

, 1 < p < ∞, t ∈ (0, 1),

with ‖C0‖�p→�p = 1. Moreover,

σpt (Ct ; �p) = � and σ(Ct ; �p) = � ∪ {0}. (2.3)

Concerning the classical Cesàro operator C1 (c.f. (1.3)) in L(�p) we have the following
result.

Proposition 2.13 Let 1 < p < ∞.

(i) The operator C1 ∈ L(�p) with ‖C1‖�p→�p = p′, where 1
p + 1

p′ = 1.
(ii) The spectra of C1 are given by

σpt (C1; �p) = ∅ and σ(C1; �p) =
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ ≤ p′

2

}
.

Moreover, the range (C1 − z I )(�p) is not dense in �p whenever |z − p′
2 | <

p′
2 .

For part (i) we refer to [34, Theorem326] and for part (ii) see [30, 40, 54] and the references
therein. In particular, C1 is a not a compact operator.
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G. Bennett thoroughly investigated the discrete Cesàro spaces

ces(p) := {x ∈ ω : C1|x | ∈ �p}, 1 < p < ∞,

where |x | := (|xn |)n∈N0 , which satisfy �p ⊆ ces(p) continuously and are reflexive Banach
spaces relative to the norm

‖x‖ces(p) := ‖C1|x |‖p, x ∈ ces(p); (2.4)

see, for example, [17], as well as [15, 24, 31, 41] and the references therein. The following
result, [26, Proposition 5.6] describes the spectra of Ct acting in ces(p).

Proposition 2.14 Let t ∈ [0, 1) and 1 < p < ∞. The operator Ct ∈ L(ces(p)) is compact
and satisfies

‖Ct‖ces(p)→ces(p) ≤ min

{
1

1 − t
,

p

p − 1

}
.

Moreover,

σpt (Ct ; ces(p)) = � and σ(Ct ; ces(p)) = � ∪ {0}. (2.5)

The situation for C1 ∈ L(ces(p)) is quite different. Indeed, ‖C1‖ces(p)→ces(p) = p′ and
the spectra are given by

σpt (C1; ces(p)) = ∅ and σ(C1; ces(p)) =
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ ≤ p′

2

}

for each 1 < p < ∞; see Theorem 5.1 and its proof in [24]. In particular,C1 is not a compact
operator.

The dual Banach spaces (ces(p))′, for 1 < p < ∞, are rather complicated, [35]. A more
transparent isomorphic identification of (ces(p))′ is given in Corollary 12.17 of [17]. It is
shown there that

dp :=
{

x ∈ �∞ : x̂ :=
(
sup
k≥n

|xk |
)

n∈N0

∈ �p

}
, 1 < p < ∞,

is a Banach space for the norm

‖x‖dp := ‖x̂‖p, x ∈ dp, (2.6)

which is isomorphic to (ces(p′))′, where p′ is the conjugate exponent of p. The sequence x̂
is called the least decreasing majorant of x . The duality is the natural one given by

〈w, x〉 :=
∞∑

n=0

wn xn, w ∈ ces(p′), x ∈ dp.

In particular, dp is reflexive for each 1 < p < ∞. Since |x | ≤ |x̂ |, it is clear that ‖x‖p ≤
‖x̂‖p = ‖x‖dp , for x ∈ dp , that is, dp ⊆ �p continuously. So, for all 1 < p < ∞, we have
dp ⊆ �p ⊆ ces(p) with continuous inclusions. The following result is Theorem 6.9 of [26].

Proposition 2.15 Let t ∈ [0, 1) and 1 < p < ∞. The operator Ct ∈ L(dp) is compact and
satisfies

‖Ct‖dp→dp ≤ (1 − t)−1−(1/p).
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Moreover,

σpt (Ct ; dp) = � and σ(Ct ; dp) = � ∪ {0}. (2.7)

Concerning the operator C1 ∈ L(dp), 1 < p < ∞, it is known that ‖C1‖dp→dp = p′ and
that its spectra are given by

σpt (C1; dp) = ∅ and σ(C1; dp) =
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ ≤ p′

2

}
;

see Proposition 3.2 and Corollary 3.5 in [19].

3 The operators Ct acting in!

Given an element x = (xn)n∈N0 ∈ ω we write x ≥ 0 if x = |x | = (|xn |)n∈N0 . By x ≤ z it
is meant that (z − x) ≥ 0. The sequence space ω is a non-normable Fréchet space for the
Hausdorff locally convex topology of coordinatewise convergence, which is determined by
the increasing sequence of seminorms

rn(x) := max
0≤ j≤n

|x j |, x ∈ ω, (3.1)

for each n ∈ N0. Observe that rn(x) = rn(|x |) ≤ rn(|y|) = rn(y) whenever x, y ∈ ω satisfy
|x | ≤ |y|. Let en := (δnj ) j∈N0 for each n ∈ N0 and set E := {en : n ∈ N0}. It is clear from
(1.1) that each Ct : ω → ω is a linear map which is represented by a lower triangular matrix
with respect to the unconditional basis E of ω. Namely,

Ct �

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
t/2 1/2 0 0 · · ·
t2/3 t/3 1/3 0 · · ·
t3/4 t2/4 t/4 1/4 · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

(3.2)

with main diagonal the positive, decreasing sequence given by

ϕ :=
(

1

n + 1

)
n∈N0

∈ c0. (3.3)

The following properties of Ct are recorded in [26, Lemma 2.1], except for part (iv).

Lemma 3.1 Let t ∈ [0, 1).
(i) Each Ct is a positive operator on ω,i.e., Ct x ≥ 0 whenever x ≥ 0.
(ii) Let 0 ≤ r ≤ s ≤ 1. Then

0 ≤ |Cr x | ≤ Cr |x | ≤ Cs |x |, x ∈ ω.

(iii) For each t ∈ [0, 1) the identities

Ct en =
∞∑

k=0

tk

k + n + 1
ek+n ∈ �1, n ∈ N0,

and

Ct (en − ten+1) = 1

n + 1
en, n ∈ N0,

are valid.
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(iv) For each 1 < q < ∞ we have dq ⊆ �q ⊆ ces(q) ⊆ ω with continuous inclusions.

Proof (iv) In view of the discussion after (2.6) it remains to establish that ces(q) ⊆ ω

continuously. Fix x ∈ ces(q). Given n ∈ N0 observe that

|xk | ≤ (n + 1)
|x0| + |x1| + · · · + |xn |

n + 1
≤ (n + 1)‖C1|x |‖q = (n + 1)‖x‖ces(q), 0 ≤ k ≤ n.

It follows from (3.1) that rn(x) ≤ (n+1)‖x‖ces(q). Since n ∈ N0 is arbitrary, we can conclude
that ces(q) ⊆ ω continuously. 
�

The classical Cesàro operator C1 : ω → ω is a bicontinuous topological isomorphism
(and hence, is not a compact operator) with spectra given by

σ(C1;ω) = σpt (C1;ω) = � and σ ∗(C1;ω) = � ∪ {0};
see [8, p. 285 and Proposition 4.4]. So, we will only consider the case t ∈ [0, 1).

Let t ∈ [0, 1) and fix n ∈ N0. According to (1.1) and (3.1), for each x ∈ ω, it is the case
that

rn(Ct x) = max
0≤k≤n

∣∣∣∣∣
1

k + 1

k−1∑
i=0

tk−i xi

∣∣∣∣∣ ≤ max
0≤k≤n

1

k + 1

k−1∑
i=0

|xi | ≤ rn(x). (3.4)

This implies that Ct ∈ L(ω) and that the family of operators {Ct : t ∈ [0, 1)} is an
equicontinuous subset of L(ω).

Proposition 3.2 For each t ∈ [0, 1) the operator Ct ∈ L(ω) is a bicontinuous isomorphism
of ω onto itself with inverse operator (Ct )

−1 : ω → ω given by

(Ct )
−1y = ((n + 1)yn − ntyn−1)n∈N0 , y ∈ ω (with y−1 := 0). (3.5)

In particular, Ct is not a compact operator.

Proof Fix t ∈ [0, 1). Let x ∈ ω satisfy Ct x = 0. Considering the coordinate 0 of Ct x = 0
yields x0 = 0; see (1.1). The equation for coordinate 1 of Ct x = 0 is t x0+x1

2 = 0 (cf. (1.1))
which yields x1 = 0. Proceed inductively for successive coordinates reveals that xn = 0 for
all n ∈ N0. Hence, Ct is injective.

Given y ∈ ω let x ∈ ω be the element on the right-side of (3.5). Direct calculation shows
that Ct x = y. Accordingly, Ct is surjective.

By the open mapping theorem for Fréchet spaces (cf. Corollary 24.29 and Theorem 24.30
in [44]) the operator Ct is a bicontinuous isomorphism.

Since Ct is a bicontinuous isomorphism of ω, which is an infinite dimensional Fréchet
space, Ct cannot be a compact operator. 
�

To determine the spectrum of Ct ∈ L(ω) requires some preparation. Define

S :=
{

x ∈ ω : β(x) := lim
n→∞

|xn+1|
|xn | < 1

}
, (3.6)

with the understanding that there exists N ∈ N0 such that xn �= 0 for n ≥ N and the limit
β(x) exists. Analogously to dp , for 1 < p < ∞, define

d1 :=
{

x ∈ �∞ : x̂ :=
(
sup
k≥n

|xk |
)

n∈N0

∈ �1

}
; (3.7)
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see [17, 19, 24, 31] and the references therein. Then d1 is a Banach lattice for the norm
‖x‖d1 := ‖x̂‖1 and the coordinatewise order. Since 0 ≤ |x | ≤ x̂ , for x ∈ �∞, it is clear that
‖x‖1 ≤ ‖x‖d1 for x ∈ d1, that is, d1 ⊆ �1 with a continuous inclusion. Clearly, d1 ⊆ dp ,
for all 1 < p < ∞, and d1 ⊆ �1 implies that d1 ⊆ �p , for all 1 < p < ∞. Moreover,
�p ⊆ ces(p) (cf. Section2) and so also d1 ⊆ ces(p), for 1 < p < ∞. All inclusions are
continuous. In view of Lemma 3.1(iv) it is clear that d1 ⊆ ω and �1 ⊆ ω continuously. It is
known that S ⊆ d1, [26, Lemma 3.3].

Remark 3.3 Proposition 2.15 is also valid for p = 1; see [26, Theorem 6.9].

The following result, [26, Lemma 3.6], will be required.

Lemma 3.4 Let t ∈ [0, 1) and ϕ be as in (3.3). For each m ∈ N define x [m] ∈ ω by

x [m] := αm

(
0, . . . , 0, 1,

(m + 1)!
m! 1! t,

(m + 2)!
m! 2! t2,

(m + 3)!
m! 3! t3, . . .

)
, (3.8)

with αm ∈ C\{0} arbitrary, where 1 is in position m. For m = 0 define x [0] := α0(tn)n∈N0

with α0 ∈ C\{0} arbitrary.

(i) For each m ∈ N0, the vector x [m] is the unique solution in ω of the equation Ct x =
ϕm x = 1

m+1 x whose m-th coordinate is αm.

(ii) The vector x [m] ∈ d1 ⊆ ω, for each m ∈ N0.

Remark 3.5 Let t ∈ [0, 1) and X be anyBanach space in {�1, d1}∪{�p, ces(p), dp : 1 < p <

∞}. For each ν ∈ σpt (Ct ; X) = �, it is the case that dim Ker(ν I −Ct ) = 1. Indeed, d1 ⊆ X ;
see the discussion prior to Remark 3.3. Given ν ∈ � there exists m ∈ N0 such that ν = ϕm .
According to Lemma 3.4 the 1-dimensional eigenspace corresponding to ν ∈ σpt (Ct ;ω) is
spanned by x [m] with x [m] ∈ d1. The claim is thereby proved.

The next lemma places a restriction on where σ(Ct ;ω) can be located in C.

Lemma 3.6 Let t ∈ [0, 1). For each ν ∈ C\� the operator Ct − ν I is a bicontinuous
isomorphism of ω onto itself. In particular, σ(Ct ;ω) ⊆ �.

Proof Fix ν /∈ �. Let (Ct − ν I )x = 0 for x ∈ ω. It follows from (3.2), by equating the
coordinate 0 of Ct x = νx , that x0 = νx0 and hence, as ν �= 1, that x0 = 0. Equating the
coordinate 1 of Ct x = νx yields t x0+x1

2 = νx1. Since x0 = 0 and ν �= 1
2 , it follows that

x1 = 0. Considering coordinate 2 gives t2x0+t x1+x2
3 = νx2. Then x0 = x1 = 0 and ν �= 1

3
imply x2 = 0. Proceed inductively to conclude that x = 0, that is, Ct − ν I is injective.

To verify the surjectivity of Ct − ν I fix y ∈ ω. It is required to show that there exists
x ∈ ω satisfying (Ct − ν I )x = y. Equating coordinate 0 gives x0 − νx0 = y0, that is,
x0 = y0/(1− ν). Considering coordinate 1 yields t x0

2 + ( 12 − ν)x1 = y1. Substituting for x0
gives ( 12 − ν)x1 = y1 − t

2(1−ν)
y0, that is,

x1 = y1( 1
2 − ν

) − t y0
2

( 1
2 − ν

)
(1 − ν)

.

Next, an examination of coordinate 2 yields t2
3 x0 + t

3 x1 + ( 13 − ν)x2 = y2. Substituting for
x0 and x1 we can conclude that

x2 = y2( 1
3 − ν

) − t y1
3

( 1
3 − ν

) ( 1
2 − ν

) + νt2y0
3

( 1
3 − ν

) ( 1
2 − ν

)
(1 − ν)

.
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Continuing inductively yields

xn = yn(
1

n+1 − ν
) − t yn−1

(n + 1)
(

1
n+1 − ν

) ( 1
n − ν

)+

+ νt2yn−2

(n + 1)
(

1
n+1 − ν

) ( 1
n − ν

) (
1

n−1 − ν
)

− ν2t3yn−3

(n + 1)
(

1
n+1 − ν

) ( 1
n − ν

) (
1

n−1 − ν
) (

1
n−2 − ν

) + · · ·

+ (−1)n νn−1tn y0

(n + 1)
(

1
n+1 − ν

) ( 1
n − ν

)
. . .

( 1
2 − ν

)
(1 − ν)

. (3.9)

Then x ∈ ω satisfies (Ct − ν I )x = y. Hence, Ct − ν I is surjective. 
�
Combining the previous results yields the main result of this section.

Theorem 3.7 For each t ∈ [0, 1) the spectra of Ct ∈ L(ω) are given by

σ(Ct ;ω) = σpt (Ct ;ω) = �,

with each eigenvalue being simple, and

σ ∗(Ct ;ω) = � ∪ {0}.
The 1-dimensional eigenspace corresponding to the eigenvalue 1/(m + 1) ∈ � is spanned
by x [m] (cf. (3.8)), for each m ∈ N0.

Proof It is clear from Lemma 3.4 that � ⊆ σpt (Ct ;ω) and that each point 1/(m + 1) ∈ �

is a simple eigenvalue of Ct , whose corresponding eigenspace is spanned by x [m], for each
m ∈ N0. Since σ(Ct ;ω) ⊆ � (cf. Lemma 3.6) and σpt (Ct ;ω) ⊆ σ(Ct ;ω), we can conclude
that σ(Ct ;ω) = σpt (Ct ;ω) = �. The containment σ(Ct ;ω) ⊆ σ ∗(Ct ;ω) and the fact that
σ ∗(Ct ;ω) is a closed set imply that 0 ∈ σ ∗(Ct ;ω).

It remains to show that every ν /∈ (� ∪ {0}) belongs to ρ∗(Ct ;ω). So, fix ν /∈ (� ∪ {0}).
Select δ > 0 such that the distance ε of B(ν, δ) to the compact set �∪{0} is strictly positive.
It follows from 0 ≤ t < 1 and the identity (3.9) which is coordinate n of (Ct − ν I )−1y, for
each y ∈ ω, that for any given k ∈ N0 there exists Mk > 0 such that

rk((Ct − μI )−1y) ≤ Mk

εk+1

(
max
0≤ j<k

|ν| j
)

rk(y), μ ∈ B(ν, δ),

where rk is the seminorm (3.1), with k in place of n. This implies that {(Ct − μI )−1 : μ ∈
B(ν, δ)} is a bounded set inLs(ω) and hence, by the barrelledness ofω, it is an equicontinuous
subset of L(ω). Accordingly, ν ∈ ρ∗(Ct ;ω). 
�

4 Ct acting in the Fréchet spaces �(p+), d(p+) and ces(p+)

Given 1 ≤ p < ∞, consider any strictly decreasing sequence {pk}k∈N ⊆ (p,∞) which
satisfies pk ↓ p. Then Xk := �pk satisfies Xk+1 ⊆ Xk with ‖x‖�pk ≤ ‖x‖�pk+1 for each
k ∈ N and x ∈ Xk+1. Moreover, X = ∩∞

k=1Xk (i.e., �(p+) := ∩∞
k=1�

pk ) is a Fréchet space
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of the type given in Lemma 2.5 whose topology is generated by the increasing sequence of
norms uk , for k ∈ N, given by

uk : x �→ ‖x‖�pk , x ∈ �(p+). (4.1)

That is, uk ≤ uk+1 for k ∈ N. Moreover, pk > p implies that the natural inclusion map
�(p+) ↪→ �pk is continuous for each k ∈ N. Clearly the Banach space �p ⊆ �(p+)

continuously and also �(p+) ⊆ ω continuously, as �q ⊆ ω continuously, for every 1 ≤ q <

∞ (cf. Lemma 3.1(iv)). The space �(p+) is independent of the choice of {pk}k∈N.
Changing the Banach spaces, now let Xk := ces(pk), in which case again Xk+1 ⊆ Xk

with ‖x‖ces(pk ) ≤ ‖x‖ces(pk+1) for each k ∈ N and x ∈ Xk+1; see [13, Proposition 3.2(iii)].
Then X = ∩∞

k=1Xk (i.e., ces(p+) := ∩∞
k=1ces(pk)) is a Fréchet space of the type given in

Lemma 2.5 whose topology is generated by the increasing sequence of norms vk , for k ∈ N,
given by

vk : x �→ ‖x‖ces(pk ), x ∈ ces(p+). (4.2)

That is, vk ≤ vk+1 for k ∈ N. Again ces(p) ⊆ ces(p+) (if p > 1) and ces(p+) ⊆ ω

with both inclusions continuous, where we again use Lemma 3.1(iv). The Fréchet spaces
ces(p+), for 1 ≤ p < ∞, have been intensively studied in [9, 14].

Finally, consider the family of Banach spaces Xk := dpk , in which case Xk+1 ⊆ Xk

with ‖x‖dpk
≤ ‖x‖dpk+1

for each k ∈ N and x ∈ Xk+1; see [19, Proposition 5.1(iii)]. So,
X = ∩∞

k=1Xk (i.e., d(p+) := ∩∞
k=1dpk ) is a Fréchet space of the type given in Lemma 2.5

whose topology is generated by the increasing sequence of norms wk , for k ∈ N, given by

wk : x �→ ‖x‖dpk
, x ∈ d(p+). (4.3)

That is, wk ≤ wk+1 for k ∈ N. With continuous inclusions we have dp ⊆ d(p+) ⊆ ω; see
[20, Sect. 4] or, argue as for �p and �(p+).

It is known that the canonical vectors E belong to �(p+), d(p+) and ces(p+), for 1 ≤
p < ∞, and form an unconditional basis in each of these spaces; see [20, Proposition 3.1],
[20, Lemma 4.1] and [9, Proposition 3.5(i)], respectively.

In this section we consider the compactness and determine the spectra of Ct when they act
in the Fréchet spaces �(p+), d(p+) and ces(p+), for 1 ≤ p < ∞. The decreasing sequence
{pk}k∈N always has the properties listed above. Crucial for the proofs is the existence of a
particular factorization available for Ct (cf. Proposition 4.4).

The decreasing sequence ϕ given in (3.3) satisfies ‖ϕ‖∞ = 1. Define the linear map
Dϕ : ω → ω by

Dϕx := (ϕ0x0, ϕ1x1, ϕ2x2, . . .) =
(

xn

n + 1

)
n∈N0

, x ∈ ω. (4.4)

The diagonal (multiplication) operator Dϕ ∈ L(ω) since, for each n ∈ N0,

rn(Dϕx) ≤ rn(x), x ∈ ω,

where rn is the seminorm (3.1). Define the right-shift operator S : ω → ω by

Sx := (0, x0, x1, . . .), x ∈ ω. (4.5)

For each n ∈ N note that rn(Sx) = max0≤k<n |xk | ≤ rn(x) and for n = 0 that r0(Sx) = 0 ≤
r0(x) for each x ∈ ω. So, for every n ∈ N0, the operator S satisfies

rn(Sx) ≤ rn(x), x ∈ ω, (4.6)
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which implies that S ∈ L(ω). The following result is Lemma 2.2 in [26].

Lemma 4.1 For each t ∈ [0, 1) we have the representation

Ct =
∞∑

n=0

tn Dϕ Sn

with the series being convergent in Ls(ω). Equivalently,

Ct x =
∞∑

n=0

tn Dϕ Sn x, x ∈ ω,

with the series being convergent in ω.

Fix t ∈ [0, 1) and x ∈ ω. For each n ∈ N0 it follows from (4.6) that

rn

( ∞∑
k=0

tk Sk x

)
≤

∞∑
k=0

rn(tk Sk x) ≤ 1

1 − t
rn(x).

Accordingly, the series

Rt :=
∞∑

n=0

tn Sn, t ∈ [0, 1), (4.7)

is absolutely convergent in the quasicomplete lcHs Ls(ω). In particular, Rt ∈ L(ω). Com-
bining this with Lemma 4.1 and the fact that Dϕ ∈ L(ω) yields the following factorization
of Ct .

Proposition 4.2 For each t ∈ [0, 1) the operators Dϕ , Rt , Ct belong to L(ω) and

Ct = Dϕ Rt =
∞∑

n=0

tn Dϕ Sn, (4.8)

with the series being absolutely convergent in Ls(ω).

Our aim is to to extend Proposition 4.2 to L(X) with X ∈ {�(p+), ces(p+), d(p+) :
1 ≤ p < ∞}, to show that Dϕ ∈ L(X) is compact and then to apply Lemma 2.3 to conclude
that Ct ∈ L(X) is compact.

Proposition 4.3 Let X be any Fréchet space in {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞}.
Then Dϕ maps X into X and Dϕ ∈ L(X) is compact.

Proof Recall that ϕ ∈ c0 with ‖ϕ‖∞ = 1. We consider each of the three possible cases for
X . It was shown above that Dϕ ∈ L(ω) and that X ⊆ ω continuously.

(a) Suppose that X = �(p+) for some 1 ≤ p < ∞. Clearly, Dϕ(Xk) ⊆ Xk for each
k ∈ N and so Dϕ ∈ L(X); see Lemma 2.11. In the notation of [14] it is clear from (4.4) that
Dϕ is precisely the multiplication operator Mϕ defined there. Such a multiplication operator
is compact if and only if ϕ ∈ �(∞−) = ∪s>1�

s , [14, Proposition 17], which is surely the
case as ϕ ∈ �2, for example. So, Dϕ ∈ L(�(p+)) is a compact operator.

(b) Suppose that X = ces(p+) for some 1 ≤ p < ∞. It follows from (2.4) that Dϕ(Xk) ⊆
Xk for each k ∈ N and so Dϕ : X → X . Lemma 2.11 yields that Mϕ = Dϕ ∈ L(ces(p+)).
Moreover, if ϕ ∈ d(∞−) = ∪s>1ds , then Mϕ is also compact, [14, Proposition 10]. But, ϕ
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is a positive decreasing sequence and so ϕ = ϕ̂. Accordingly, by choosing s = 2 say, we see
that

‖ϕ‖d2 := ‖ϕ̂‖2 = ‖ϕ‖2 < ∞.

Hence, ϕ ∈ d2 ⊆ d(∞−) and so Dϕ = Mϕ ∈ L(ces(p+)) is indeed compact.
(c) Suppose X = d(p+) for some 1 ≤ p < ∞. Since |Dϕx | = Dϕ |x | ≤ |x |, for

x ∈ �∞, it is clear that D̂ϕx ≤ x̂ . Then (2.6) implies that Dϕ(Xk) ⊆ Xk for all k ∈ N and so
Dϕ : X → X . Again Lemma 2.11 yields that Dϕ ∈ L(d(p+)). Note that the operator Mϕ

d(p+)

in [21] is precisely Dϕ : d(p+) → d(p+). It was verified in (b) above that ϕ ∈ d(∞−)

which, together with Dϕ ∈ L(d(p+)), implies that Dϕ is compact, [21, Theorem 4.13(i)]. 
�
Proposition 4.4 Let t ∈ [0, 1), and X be any Fréchet space in {�(p+), ces(p+), d(p+) :
1 ≤ p < ∞}.
(i) The generalized Cesàro operator Ct maps X into itself and Ct ∈ L(X).
(ii) The right-shift operator S given by (4.5) maps X into itself and belongs to L(X).
(iii) The operator Rt given by (4.7) maps X into itself and belongs to L(X), with the series∑∞

n=0 tn Sn being absolutely convergent in Ls(X). Moreover,

Ct = Dϕ Rt =
∞∑

n=0

tn Dϕ Sn .

Proof (i) Again we consider the three possible cases for X . Fix t ∈ [0, 1). According to
Proposition 3.2 the operator Ct ∈ L(ω).

(a) Suppose that X = �(p+) for some 1 ≤ p < ∞. Proposition 2.12 implies that
Ct (Xk) ⊆ Xk for all k ∈ N, with Xk = �pk , and so Ct (X) ⊆ X . In view of Lemma 2.11,
with T := Ct , it follows that Ct ∈ L(�(p+)).

(b) Suppose that X = ces(p+) for some 1 ≤ p < ∞. Proposition 2.14 shows that
Ct (Xk) ⊆ Xk for all k ∈ N, with Xk = ces(pk), and so Ct (X) ⊆ X . Again, for T := Ct ,
Lemma 2.11 implies that Ct ∈ L(ces(p+)).

(c) Suppose that X = d(p+) for some 1 ≤ p < ∞. Proposition 2.15 shows thatCt (Xk) ⊆
Xk for all k ∈ N, with Xk = dpk , and so Ct (X) ⊆ X . Yet again, for T := Ct , Lemma 2.11
implies that Ct ∈ L(d(p+)).

(ii) Again we check the three separate cases for X . Prior to Lemma 4.1 it was shown that
S ∈ L(ω).

(a) Suppose that X = �(p+) for some 1 ≤ p < ∞. Using the fact that the Banach space
right-shift operator S : �pk → �pk is an isometry, for every k ∈ N, we see that S(X) ⊆ X . It
follows that S ∈ L(�(p+)); see Lemma 2.11 for T := S ∈ L(ω).

(b) Suppose that X = ces(p+) for some 1 ≤ p < ∞. It is known, for each k ∈ N, that
S ∈ L(ces(pk)) and ‖S‖ces(pk )→ces(pk ) ≤ 1, [26, Lemma 5.4]. Accordingly, S(X) ⊆ X and
so Lemma 2.11, for T := S ∈ L(ω), implies that S ∈ L(ces(p+)).

(c) Suppose that X = d(p+) for some 1 ≤ p < ∞. Fix k ∈ N. It is known that S ∈ L(dpk )

and

‖Sm‖dpk →dpk
= (m + 1)1/pk , m ∈ N0, (4.9)

[26, Lemma6.2]. Form = 1we can conclude that S(dpk ) ⊆ dpk for k ∈ N, that is, S(X) ⊆ X .
So, in view of Lemma 2.11, for T := S ∈ L(ω), it follows that S ∈ L(d(p+)).

(iii) (a) Suppose that X = �(p+) for some 1 ≤ p < ∞. Fix k ∈ N and x ∈ �(p+) ⊆ �pk .
It follows from S being an isometry in �pk that uk(Sn x) = uk(x) for all n ∈ N0 and hence,
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that

∞∑
n=0

uk(t
n Sn x) =

∞∑
n=0

tnuk(Sn x) ≤ 1

1 − t
uk(x) < ∞.

Accordingly, the series
∑∞

n=0 tn Sn x is absolutely convergent in the Fréchet space �(p+)

for each x ∈ �(p+). By part (ii) the sequence {∑m
n=0 tn Sn}m∈N0 ⊆ L(�(p+)) and so, by

the Banach-Steinhaus theorem (as �(p+) is barrelled), the series
∑∞

n=0 tn Sn is absolutely
convergent in Ls(�(p+)); its sum is denoted by Rt ∈ L(�(p+)).

It has been established that each of the operators Ct , Dϕ , Rt belongs to L(�(p+)). The
identities Ct = Dϕ Rt = ∑∞

n=0 tn Dϕ Sn are valid in L(�(p+)) because they are valid in
L(ω); see Lemma 4.1 and both (4.7) and (4.8).

(b) Suppose X = ces(p+) for some 1 ≤ p < ∞. Fix k ∈ N and x ∈ ces(p+) ⊆ ces(pk).
Using ‖Sn‖ces(pk )→ces(pk ) ≤ 1, for all n ∈ N0 (see the proof of part (ii)(b)), we can argue as
in (a) to conclude that

∞∑
n=0

vk(t
n Sn x) ≤ 1

1 − t
vk(x) < ∞.

Hence, the series
∑∞

n=0 tn Sn x is absolutely convergent in ces(p+) for each x ∈ ces(p+).
Then argue as in (a) to deduce that the series Rt := ∑∞

n=0 tn Sn is absolutely convergent in
Ls(ces(p+)), with Rt ∈ L(ces(p+)), and that the identities Ct = Dϕ Rt = ∑∞

n=0 tn Dϕ Sn

are valid in L(ces(p+)).
(c) Let X = d(p+) for some 1 ≤ p < ∞. Fix k ∈ N and x ∈ d(p+) ⊆ dpk . It follows

from (4.9) that

wk(Sm x) = ‖Sm x‖dpk
≤ ‖Sm‖dpk →dpk

‖x‖dpk
= (m + 1)1/pk wk(x), m ∈ N0,

and hence, since 0 ≤ t < 1, that

∞∑
n=0

wk(t
n Sn x) ≤

( ∞∑
n=0

tn(n + 1)1/pk

)
wk(x) < ∞.

Now argue as in (a) to conclude that the series Rt := ∑∞
n=0 tn Sn is absolutely convergent in

Ls(d(p+)), with Rt ∈ L(d(p+)), and that the identities Ct = Dϕ Rt = ∑∞
n=0 tn Dϕ Sn are

valid in L(d(p+)). 
�

We come to the main result of this section, which should be compared with Proposition
3.2 and Theorem 3.7.

Theorem 4.5 Let t ∈ [0, 1) and X be any Fréchet space in {�(p+), ces(p+), d(p+) : 1 ≤
p < ∞}.
(i) The generalized Cesàro operator Ct ∈ L(X) is compact.
(ii) The spectra of Ct are given by

σpt (Ct ; X) = � (4.10)

and

σ ∗(Ct ; X) = σ(Ct ; X) = � ∪ {0}. (4.11)
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(iii) For each λ ∈ σpt (Ct ; X) the subspace (λI − Ct )(X) is closed in X with codim (λI −
Ct )(X) = 1. Moreover, the 1-dimensional eigenspace Ker( 1

m+1 I − Ct ) = span(x [m]),
for each m ∈ N0, with x [m] ∈ d1 ⊆ X given by (3.8).

Proof (i) Since Dϕ ∈ L(X) is compact (cf. Proposition 4.3) and Rt ∈ L(X) (cf. Proposition
4.4(iii)), the compactness of Ct follows from the factorization Ct = Dϕ Rt (cf. Proposition
4.4(iii)) and Lemma 2.3.

(ii) Since X ⊆ ω, we can conclude from Theorem 3.7 that

σpt (Ct ; X) ⊆ σpt (Ct ;ω) = �. (4.12)

Fix 1 ≤ p < ∞. Then d1 ⊆ �1 ⊆ �p ⊆ �(p+). Since �p ⊆ ces(p) ⊆ ces(p+) (cf.
(1) on p. 2 of [24]), it follows that also d1 ⊆ ces(p+). Moreover, d1 ⊆ dp ⊆ d(p+).
So, d1 ⊆ X . Given ν ∈ � there exists m ∈ N0 such that ν = ϕm . According to Lemma
3.4 the 1-dimensional eigenspace corresponding to ν ∈ σpt (Ct ;ω) is spanned by x [m] with
x [m] ∈ d1. Since d1 ⊆ X , it follows that ν ∈ σpt (Ct ; X). So, it has been established that
� ⊆ σpt (Ct ; X). Combined with (4.12) we can conclude that (4.10) is valid.

The spectrum of a compact operator in a lcHs is necessarily a compact subset of C (see
[27, Theorem 9.10.2], [33, Theorem 4 & Proposition 6]) and it is either a finite set or a
countable sequence of non-zero eigenvalues with limit point 0. It follows from part (i) and
(4.10) that

σ(Ct ; X) = � ∪ {0}. (4.13)

The discussion in the first three paragraphs of this section, with the notation from there,
shows that X = ∩∞

k=1Xk is a Fréchet space of the type given in Lemma 2.5. Setting there
T := Ct ∈ L(X) and Tn := Ct ∈ L(Xn) for n ∈ N (see Propositions 2.12, 2.14 and 2.15), it
is clear that condition (A) is satisfied. Moreover, σ(Tn; Xn) = � ∪ {0} for every n ∈ N (cf.
(2.3), (2.5) and (2.7) with pn in place of p) and so, via (4.13), we have that

∪∞
n=1σ(Tn; Xn) = � ∪ {0} = σ(T ; X) = σ(Ct ; X).

In particular, ∪∞
n=1σ(Tn; Xn) ⊆ σ(T ; X) and so we can conclude from Lemma 2.5 that

(4.11) is valid.
(iii) First observe that (ν I − Ct ) = ν(I − ν−1Ct ), for ν ∈ C\{0}, with ν−1Ct being a

compact operator by part (i). So, by [27, Theorem 9.10.1(i)], the subspace (ν I − Ct )(X) is
closed in X with codim (ν I − Ct )(X) = dimKer(ν I − Ct ) for every ν ∈ σpt (Ct ; X). But,
dim Ker(ν I − Ct ) = 1 for ν ∈ σpt (Ct ; X), as observed in the proof of part (ii), where it was
also established that Ker( 1

m+1 I − Ct ) = span(x [m]), for each m ∈ N0. 
�

Remark 4.6 (i) The identity (4.10), established in the proof of part (ii) of Theorem 4.5, can
also be deduced from Lemma 2.5(ii).

(ii) Let t ∈ [0, 1) and X be anyFréchet space in {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞}.
Since X ⊆ ω and Ct ∈ L(ω) is injective (cf. Lemma 3.6), also Ct ∈ L(X) is injective.
Moreover, as Ct ∈ L(X) is compact (cf. Theorem 4.5(i)) it cannot be surjective, otherwise
it would be an isomorphism thereby implying that 0 ∈ ρ(Ct ; X), which is not the case (see
(4.11)). Recall that E is a basis for X and, by Lemma 3.1(iii), that the rangeCt (X) is a proper,
dense subspace of X . Hence, 0 belongs to the continuous spectrum of Ct . This is in contrast
to the situation of ω, where 0 ∈ ρ(Ct ;ω); see Theorem 3.7.

(iii) Concerning the case when t = 1, it is known that σpt (C1; �(p+)) = ∅ and
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σ(C1; �(p+))=
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ <
p′

2

}
∪ {0} and σ ∗(C1; �(p+))=σ(C1; �(p+)),

(4.14)

for every 1 < p < ∞, [8, Theorem 2.2]. For p = 1, again σpt (C1; �(1+)) = ∅ whereas

σ(C1; �(1+)) = {z ∈ C : Re z > 0} ∪ {0} and σ ∗(C1; �(1+)) = σ(C1; �(1+)),

(4.15)

[8, Theorem 2.4]. For the Fréchet space ces(p+), both (4.14) and (4.15) are also valid
(with ces(p+), resp. with ces(1+), in place of �(p+), resp. in place of �(1+)), as well as
σpt (C1; ces(p+)) = ∅ for all 1 ≤ p < ∞, [14, Theorem 3]. For the Fréchet space d(p+),
both (4.14) and (4.15) are again valid with d(p+) (resp. with d(1+)), in place of �(p+)

(resp. of �(1+)), as well as σpt (C1; d(p+)) = ∅ for all 1 ≤ p < ∞, [21, Theorem 3.2].

5 Ct acting in the (LB)-spaces �(p−), d(p−) and ces(p−)

Given 1 < p ≤ ∞, consider any strictly increasing sequence {pk}k∈N ⊆ (1, p) which
satisfies pk ↑ p. The Banach spaces Xk := �pk satisfy Xk ⊂ Xk+1 with a continuous
inclusion, for each k ∈ N, and X = ∪∞

k=1Xk is an (LB)-space, necessarily regular by
Lemma 2.6. The (LB)-space X is denoted by �(p−) = ind k�

pk . If we set Xk := ces(pk),
then again Xk ⊂ Xk+1 for k ∈ N (see the discussion prior to Proposition 3.3 in [13])
with a continuous inclusion. The (LB)-space X := ∪∞

k=1Xk , necessarily regular by Lemma
2.6, is denoted by ces(p−) := ind kces(pk). Finally, the Banach spaces Xk := dpk satisfy
Xk ⊂ Xk+1 with a continuous inclusion, for k ∈ N (see Propositions 2.7(ii) and 5.1(iii)
in [19]). The (LB)-space X := ∪∞

k=1Xk , necessarily regular by Lemma 2.6, is denoted by
d(p−) := ind kdpk . The discussion after (3.7) shows that d1 is continuously included in each
space in {�p, ces(p), dp : 1 < p < ∞}, from which it follows that d1 ⊆ X continuously,
for each X ∈ {�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}. Indeed, by the definition of the
inductive limit topology, �p ⊆ �(p−) and dp ⊆ d(p−) and ces(p) ⊆ ces(p−) with all
inclusions continuous. In all of these (LB)-spaces the canonical vectors E form a Schauder
basis. Indeed, concerning �(p−) recall that E is a basis for each Banach space �pk and the
natural inclusion �pk ⊆ �(p−) is continuous for each k ∈ N. It follows that E is a Schauder
basis for �(p−). For the (LB)-spaces ces(p−), resp. d(p−), see [12, Proposition 2.1], resp.
[20, Theorem 4.6]. It follows from [44, Proposition 24.7] together with Lemma 3.1(iv) that
X ⊆ ω continuously. For further properties of the (LB)-spaces �(p−), ces(p−) and d(p−),
and operators acting in them, we refer to [12, 20, 21], for example, and the references therein.

For each of the three cases above it is clear that the diagonal (multiplication) operator
Dϕ ∈ L(ω) as defined in (4.4) satisfies Dϕ(Xk) ⊆ Xk for all k ∈ N (cf. proof of Proposition
4.3) and so Dϕ(X) ⊆ X . By Lemma 2.11 it follows that Dϕ ∈ L(X). Actually, Dϕ ∈ L(X)

is a compact operator. For the case X = �(p−), since ϕ ∈ �2 ⊆ �(∞−), Proposition 4.5
of [12] implies that Dϕ ∈ L(�(p−)) is compact. Suppose now that X := ces(p−). By
Proposition 4.2 of [12] it follows that Dϕ ∈ L(ces(p−)) is compact provided that ϕ̂ ∈ �t

for some t > q (with 1
p + 1

q = 1). But, it is clear from (3.3) that ϕ̂ = ϕ ∈ ∩s>1�
s and so

Dϕ is a compact operator in ces(p−). Consider now when X := d(p−). Since ϕ̂ ∈ �2 and
ϕ̂ = ϕ, it follows that ϕ ∈ d2 ⊆ d(∞−) and so Proposition 4.13(ii) of [21] implies that Dϕ

is a compact operator in d(p−). So, we have established the following result.
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Proposition 5.1 Let X be any (LB)-space in {�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}. Then
Dϕ maps X into itself and Dϕ ∈ L(X) is a compact operator.

The following result will also be required.

Proposition 5.2 Let t ∈ [0, 1) and X be any (LB)-space in {�(p−), ces(p−), d(p−) : 1 <

p ≤ ∞}.
(i) The right-shift operator S given by (4.5) maps X into X and belongs to L(X).

(ii) The generalized Cesàro operator Ct maps X into X and satisfies Ct ∈ L(X).
(iii) The operator Rt given by (4.7) maps X into X and belongs to L(X), with the series∑∞

n=0 tn Sn being convergent in Ls(X). Moreover,

Ct = Dϕ Rt =
∞∑

n=0

tn Dϕ Sn . (5.1)

Proof (i) It was observed in the proof of Proposition 4.4(ii) that S ∈ L(ω) as well as S(�pk ) ⊆
�pk and S(ces(pk)) ⊆ ces(pk) and S(dpk ) ⊆ dpk , for each k ∈ N, from which it is clear that
S(X) ⊆ X . By Lemma 2.11 it follows that S ∈ L(X).

(ii) In each of the three cases �(p−), ces(p−), d(p−) for X it is clear that Ct : ω → ω

(cf. (1.1)) satisfies Ct (Xk) ⊆ Xk for all k ∈ N (see the proof of Proposition 4.4(i)) and hence,
Ct (X) ⊆ X . Since Ct ∈ L(ω), via Proposition 3.2, again by Lemma 2.11 we can conclude
that Ct ∈ L(X).

(iii) According to part (i) the sequence {∑k
n=0 tn Sn}k∈N0 ⊆ L(X).

Claim. {∑k
n=0 tn Sn : k ∈ N0} is an equicontinuous subset of L(X).

Suppose first that X = �(p−) or X = ces(p−). Since X is barrelled, to establish the Claim
it suffices to show, for each x ∈ X , that

B(x) :=
{

k∑
n=0

tn Sn x : k ∈ N0

}

is a bounded subset of X = ind r Xr . Since X is a regular (LB)-space, the set B(x) will be
bounded if there existsm ∈ N such that B(x) ⊆ Xm and B(x) is bounded in the Banach space
Xm . But, x ∈ X = ∪∞

r=1Xr and so there exists m ∈ N such that x ∈ Xm . Since Sn ∈ L(Xm)

for all n ∈ N0, it is clear that B(x) ⊆ Xm . Moreover, in the proof of Proposition 4.4(ii) it
was noted that ‖S‖Xm→Xm ≤ 1 and hence, ‖Sn‖Xm→Xm ≤ 1 for all n ∈ N0. Accordingly,

‖
k∑

n=0

tn Sn x‖Xm ≤
∞∑

n=0

tn‖Sn x‖Xm ≤
∞∑

n=0

tn‖Sn‖Xm→Xm ‖x‖Xm ≤ ‖x‖Xm

(1 − t)
, k ∈ N0,

which implies that B(x) is a bounded set in Xm . In the event that X = d(p−), an analogous
argument applies except that now Xm = dpm and so ‖Sn‖dpm →dpm

= (n+1)1/pm for n ∈ N0;
see (4.9). In this case the previous inequality becomes

‖
k∑

n=0

tn Sn x‖dpm
≤

( ∞∑
n=0

tn(n + 1)1/pm

)
‖x‖dpm

, k ∈ N0,

which implies that B(x) is a bounded set in dpm as
∑∞

n=0 tn(n + 1)1/pm < ∞. The proof of
the Claim is thereby complete.
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In view of the Claim, to show that the series
∑∞

n=0 tn Sn converges in Ls(X) it suffices to
show that the limit

Rt x := lim
k→∞

k∑
n=0

tn Sn x =
∞∑

n=0

tn Sn x (5.2)

exists in X for all x ∈ X in some dense subset of X . Since E is a Schauder basis for X , its
linear span span E is a dense subspace of X and so it suffices to show that the limit in (5.2)
exists for each x ∈ E . Let x := er = (0, . . . , 0, 1, 0, . . .), for any fixed r ∈ N0, where 1 is in
position r . Then Sner = er+n for all n ∈ N0. Fix k ∈ N0. It follows that

k∑
n=0

tn Sner =
k∑

n=0

tner+n = (0, . . . , 1, t, t2, . . . , tk, 0, 0, . . .), (5.3)

where 1 is in position r and tk is in position r + k. Observe that ‖e j‖�p1 = 1 for j ∈ N0.
Direct calculation via (2.6) shows that ‖e j‖dp1

= ( j + 1)1/p1 , for j ∈ N0, and by Lemma
4.7 in [17], there exists K > 0 such that ‖e j‖ces(p1) ≤ K for all j ∈ N0. It follows
that

∑∞
j=r t j‖e j‖�p1 = tr

(1−t) ≤ 1
(1−t) , that

∑∞
j=r t j‖e j‖ces(p1) ≤ K tr

(1−t) ≤ K
(1−t) and that∑∞

j=r t j‖e j‖dp1
≤ ∑∞

j=r t j ( j + 1)1/p1 < ∞. Accordingly, the series

y[r ] :=
∞∑
j=r

t j e j = (0, . . . , 0, 1, t, t2, . . .), (5.4)

with 1 in position r , is absolutely convergent in the Banach space X1 belonging to
{�p1 , ces(p1), dp1} and defines an element of X1, that is, y[r ] ∈ X1. Since the inclusion
X1 ⊆ X is continuous, the series (5.4) is also convergent to y[r ] in X . For any k > r we have

‖y[r ] −
k∑

n=0

tn Sner‖X1 = ‖
∞∑

j=r+k+1

t j e j‖X1 → 0, k → ∞,

being the tail of the absolutely convergent series (5.2). So, the sequence in (5.3) converges to
y[r ] in X1 for k → ∞ and hence, also to y[r ] in X . Since r ∈ N0 is arbitrary, we have proved
that the limit in (5.2) exists in X for each x ∈ span E and hence, by theClaim, it exists for every
x ∈ X . Accordingly, the limit operator Rt = limk→∞

∑k
n=0 tn Sn exists in Ls(X). Since

Dϕ, Rt , Ct ∈ L(X) and X ⊆ ω continuously, the equality Ct = Dϕ Rt = ∑∞
n=0 tn Dϕ Sn

follows from Proposition 4.2. 
�
The main result of this section is as follows.

Theorem 5.3 Let t ∈ [0, 1) and X be any (LB)-space in {�(p−), ces(p−), d(p−) : 1 <

p ≤ ∞}.
(i) The generalized Cesàro operator Ct ∈ L(X) is compact.
(ii) The spectra of Ct are given by

σpt (Ct ; X) = � (5.5)

and

σ ∗(Ct ; X) = σ(Ct ; X) = � ∪ {0}. (5.6)
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(iii) For each λ ∈ σpt (Ct ; X) the subspace (λI − Ct )(X) is closed in X with codim (λI −
Ct )(X) = 1. Moreover, the 1-dimensional eigenspace Ker( 1

m+1 I − Ct ) = span(x [m]),
for each m ∈ N0, with x [m] ∈ d1 ⊆ X given by (3.8).

Proof (i) Since Dϕ ∈ L(X) is compact (cf. Proposition 5.1) and Rt ∈ L(X) (cf. Proposition
5.2(iii)), the compactness of Ct ∈ L(X) follows from the factorization in (5.1) and Lemma
2.3.

(ii) The (LB)-space X = ind k Xk is an inductive limit of the type in Lemma 2.10.
Moreover, T := Ct ∈ L(X) has the property, for each k ∈ N, that the restriction
Tk of T to the Banach space Xk maps Xk into itself and satisfies Tk ∈ L(Xk). That
is, T satisfies condition (A′) of Lemma 2.10. Then, by Lemma 2.10(i) it follows that
σpt (Ct ; X) = ∪∞

k=1σpt (Tk; Xk) = � (cf. Propositions 2.12, 2.14 and 2.15). SinceCt ∈ L(X)

is compact by part (i), the analogous argument used to prove (4.13), nowwith (4.10) replaced
by (5.5), can be used to show that

σ(Ct ; X) = � ∪ {0}. (5.7)

Moreover, σ(Tk; Xk) = σ(Ct ; Xk) = � ∪ {0} for every k ∈ N and so, for m = 1 say, we
note (via (5.7)) that

∪∞
k=mσ(Tk; Xk) = � ∪ {0} ⊆ σ(T ; X).

We can conclude again from Lemma 2.10(ii) that σ ∗(Ct ; X) = σ(Ct ; X). Combined with
(5.7) this yields (5.6).

(iii) The analogous argument used to prove part (iii) of Theorem 4.5 also applies to
establish the given statement. Again, since d1 ⊆ X (see the introduction to Sect. 5), it follows
that Ker( 1

m+1 I − Ct ) = span(x [m]), for each m ∈ N0. 
�
Remark 5.4 (i) An examination of the arguments given in Remark 4.6 shows that, when
suitably adapted, they also apply here to conclude that Ct (X) is a proper, dense subspace of
X . That is, 0 belongs to the continuous spectrum of Ct .

(ii) Concerning t = 1, it is known that σpt (C1; ces(p−)) = ∅, [12, Proposition 3.1] with

{0} ∪
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ <
p′

2

}
⊆ σ(C1; ces(p−)) ⊆

{
z ∈ C :

∣∣∣∣z − p′

2

∣∣∣∣ ≤ p′

2

}

(5.8)

and

σ ∗(C1; ces(p−)) =
{

z ∈ C :
∣∣∣∣z − p′

2

∣∣∣∣ ≤ p′

2

}
= σ(C1; ces(p−)), 1 < p ≤ ∞, (5.9)

[12, Propositions 3.2 and 3.3].
For the (LB)-space d(p−), both (5.8) and (5.9) are also valid (with d(p−) in place of

ces(p−)) as well as σpt (C1; d(p−)) = ∅, for all 1 < p ≤ ∞; see Theorem 3.6 in [21].

The spectrum of C1 acting in �(p−) is covered by the next result.
Recall that the space �(p′+) is the strong dual of �(p−), [20, Proposition 3.4(i)], and that

the dual operator C ′
1 ∈ L(�(p′+)) of C1 ∈ L(�(p−)) is given by

C ′
1x =

( ∞∑
i=n

xi

i + 1

)

n∈N0

, x = (xn)n∈N0 ∈ �(p′+),

see, for instance, [40, p. 123].
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Proposition 5.5 Let p ∈ (1,∞] and let p′ ∈ [1,∞) satisfy 1
p + 1

p′ = 1.

(i) σpt (C1; �(p−)) = ∅ and {z ∈ C : |z − p′
2 | <

p′
2 } ⊆ σpt (C ′

1; �(p′+)).

(ii) {0} ∪ {z ∈ C : |z − p′
2 | <

p′
2 } ⊆ σ(C1; �(p−)) ⊆ {z ∈ C : |z − p′

2 | ≤ p′
2 }.

(iii) σ ∗(C1; �(p−)) = {z ∈ C : |z − p′
2 | ≤ p′

2 } = σ(C1; �(p−)).

Proof (i) The first part of (i) follows from Lemma 2.10(i), the definition �(p−) = ∪∞
k=1�

pk

with 1 < pk ↑ p, and the fact that σpt (C1; �q) = ∅ for every 1 < q < ∞; see Proposition
2.13(ii).

To establish the second part, fix z ∈ C with |z − p′
2 | <

p′
2 . Since 1 < pk ↑ p, it

follows that p′
k ↓ p′ and hence, the open disk B(

p′
2 ,

p′
2 ) ⊆ B(

p′
k
2 ,

p′
k
2 ) for every k ∈ N.

Accordingly, |z − p′
k
2 | <

p′
k
2 for all k ∈ N. So, by [40, Theorem 1(b)], for each k ≥ 1

there exists xk ∈ �p′
k \{0} such that C ′

1xk = zxk with xk = (xk,i )i∈N0 satisfying xk,i+1 =
xk,0

∏i
h=0(1 − 1

z(h+1) ) for all i ∈ N0 (see (1) on p. 125 of [40]) for some xk,0 ∈ C\{0}.
Setting xk,0 := 1 for each k ∈ N, it follows that xk = x1 =: x for all k ∈ N and hence,
x ∈ ∩k∈N�p′

k = (�(p−))′ = �(p′+). On the other hand, it is clear that C ′
1x = zx . This

shows the second part of (i).
(ii) To establish the second containment in (ii) we note that an analogous proof as that given

for Proposition 3.2 in [12] also applies here. The use of Theorem 3.1 and Lemma 3.1(ii) there
needs to be replaced, respectively, with the fact that σ(C1; �q) = {z ∈ C : |z − q ′

2 | ≤ q ′
2 }

for 1 < q < ∞ (cf. Proposition 2.13(ii)) and Lemma 2.10(iii).
Concerning the first containment in (ii), observe thatC1 is not surjective on �(p−). Indeed,

the element y := (
1−(−1)n+1

2(n+1) )n∈N0 belongs to �p1 with �p1 ⊆ �(p−) and so y ∈ �(p−). On

the other hand, x := C−1
1 y = ((−1)n)n∈N0 belongs to ω but, x /∈ �pk for every k ∈ N

implies that x /∈ �(p−) = ∪∞
k=1�

pk . Since x is the unique element in ω satisfying y = C1x
(as C1 ∈ L(ω) is a bicontinuous isomorphism), it follows that y is not in the range of
C1 ∈ L(�(p−)) for every 1 < p ≤ ∞. In particular, 0 ∈ σ(C1; �(p−)).

Fix λ ∈ C\{0}. If λ ∈ ρ(C1; �(p−)), then (λI − C1)(�(p−)) = �(p−). Since �(p−) is
dense in �p , it follows (with the bar denoting the closure in �p) that

�p = �p = (λI − C1)(�(p−)) ⊆ (λI − C1)(�p) ⊆ �p.

By Proposition 2.13 we can conclude that |λ− p′
2 | ≥ p′

2 . Accordingly, |λ− p′
2 | <

p′
2 implies

that λ ∈ σ(C1; �(p−)).
(iii) An analogous argument used for the proof of Propostion 3.3 in [12] also applies here.

One only needs to replace the use of Proposition 3.2 and Theorem 3.1 there by part (ii) above
and Proposition 2.13, respectively. 
�

6 Dynamics of the generalized Cesàro operators Ct

The aimof this section is to investigate themean ergodicity and linear dynamics of the operator
Ct , for t ∈ [0, 1], inω, in the Fréchet spaces {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞} and in
the (LB)-spaces {�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}. For the Banach spaces �1, d1 and
�p , ces(p), dp , for 1 < p < ∞, these results are also new. We also study the compactness,
spectra and linear dynamics of the dual operators C ′

t .
An operator T ∈ L(X), with X a lcHs, is called power bounded if {T n : n ∈ N} is an

equicontinuous subset of L(X). Here T n := T ◦ ... ◦ T is the composition of T with itself
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n times. For a Banach space X , this means precisely that supn∈N ‖T n‖X→X < ∞. Given
T ∈ L(X), its sequence of averages

T[n] := 1

n

n∑
m=1

T m, n ∈ N, (6.1)

is called the Cesàro means of T . The operator T is said to be mean ergodic (resp., uniformly
mean ergodic) if (T[n])n∈N is a convergent sequence in Ls(X) (resp., in Lb(X)). It follows
from (6.1) that

T n

n
= T[n] − n − 1

n
T[n−1],

for n ≥ 2. Hence, necessarily T n

n → 0 in Ls(X) (resp., in Lb(X)) as n → ∞, whenever T
is mean ergodic (resp., uniformly mean ergodic). A relevant text is [39].

Concerning the dynamics of a continuous linear operator T defined on a separable lcHs
X, recall that T is said to be hypercyclic if there exists x ∈ X whose orbit {T n x : n ∈ N0}
is dense in X . If, for some x ∈ X , the projective orbit {λT n x : λ ∈ C, n ∈ N0} is dense
in X , then T is called supercyclic. Clearly, any hypercyclic operator is also supercyclic. As
general references, we refer to [16, 32].

We begin with a study of the dynamics of generalized Cesàro operators acting in ω. For
this, we will require, for each fixed n ∈ N0, the combinatorial identity

n∑
k=n−i

(−1)(n−i)−k
(

n + 1

k + 1

)
=

(
n

i

)
, i = 0, . . . , n. (6.2)

For the proof we proceed by induction on i = 0, . . . , n. For i = 0 observe that

n∑
k=n

(−1)n−k
(

n + 1

k + 1

)
= (−1)0

(
n + 1

n + 1

)
= 1 =

(
n

0

)
.

Assume that (6.2) is valid for some 0 ≤ i < n. For i + 1 it follows that

n∑
k=n−(i+1)

(−1)(n−i−1)−k
(

n + 1

k + 1

)
= (−1)0

(
n + 1

n − i

)
+ (−1)−1

n∑
k=n−i

(−1)(n−i)−k
(

n + 1

k + 1

)

=
(

n + 1

n − i

)
−

(
n

i

)
= (n + 1)!

(n − i)!(i + 1)! − n!
i !(n − i)!

= n!
i !(n − i)!

[
n + 1

i + 1
− 1

]
= n!

(i + 1)!(n − i − 1)! =
(

n

i + 1

)
.

Since this is identity (6.2) for i + 1, the proof is complete.

Theorem 6.1 Let t ∈ [0, 1) and x [0] := α0(tn)n∈N0 with α0 ∈ C\{0}; see (3.8).

(i) The generalized Cesàro operator Ct ∈ L(ω) is power bounded and uniformly mean
ergodic.

(ii) Ker(I − Ct ) = span {x [0]} and the range

(I − Ct )(ω) = {x ∈ ω : x0 = 0} = span {er : r ∈ N} (6.3)

of (I − Ct ) is closed in ω.
(iii) The operator Ct is not supercyclic in ω.
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Proof (i) ThatCt is power bounded follows from the barrelledness ofω and rn(Ct x) ≤ rn(x),
for x ∈ ω and n ∈ N0 (cf. (3.4)), which implies, for every x ∈ ω, that

rn(Cm
t x) ≤ rn(x), m, n ∈ N0.

Since ω is Montel, Ct is uniformly mean ergodic, [3, Proposition 2.8].
(ii) By part (i) and [5, Theorem 3.5] we can conclude that (I − Ct )(ω) is closed in ω and

that

ω = Ker(I − Ct ) ⊕ (I − Ct )(ω). (6.4)

Moreover, Lemma 3.4(i) yields that Ker(I − Ct ) = span{x [0]}. Since (Ct x)0 = x0 for each
x ∈ ω (cf. (1.1)), we have (I − Ct )(ω) ⊆ {x ∈ ω : x0 = 0} = span {er : r ∈ N}. In order
to establish (6.3), it remains to show that er ∈ (I − Ct )(ω) for each r ≥ 1. Observe, via
Lemma 3.1(iii), that

(I − Ct )(en − ten+1) = (en − ten+1) − 1

n + 1
en = n

n + 1
en − ten+1, n ∈ N0. (6.5)

Arguing by induction and using (6.5) we can conclude that er ∈ (I − Ct )(ω) for each r ≥ 1.
Indeed, if n = 0, then (6.5) yields (I − Ct )(e0 − te1) = −te1 and hence, e1 ∈ (I − Ct )(ω).
Suppose that en ∈ (I − Ct )(ω). Then (6.5) implies that n

n+1en − ten+1 = (I − Ct )(en −
ten+1) ∈ (I − Ct )(ω). Since en ∈ (I − Ct )(ω), by the induction hypothesis, it follows that
en+1 ∈ (I − Ct )(ω). This completes the proof of (6.3).

(iii) To verify that Ct ∈ L(ω) is not supercyclic we proceed as follows. It follows from
(6.4), by a duality argument, that (ω)′β = Ker(I −C ′

t )⊕(I −C ′
t )((ω)′β) and that dim Ker(I −

C ′
t ) = codim (I − Ct )(ω) = 1, where C ′

t ∈ L((ω)′β) is the dual operator of Ct . Accordingly,
1 ∈ σpt (C ′

t ; (ω)′β). On the other hand, a direct calculation shows that the dual operator
C ′

t ∈ L((ω)′β) is given by the transpose matrix of (3.2), that is,

C ′
t z =

( ∞∑
k=i

t k−i

k + 1
zk

)

i∈N0

, z = (zk)k∈N0 ∈ (ω)′β . (6.6)

Recall that (ω)′β consists of vectors z = (zn)n∈N0 ∈ C
N0 with only finitely many non-zero

coordinates. Define

z[n] :=
n∑

i=0

(−1)i
(

n

i

)
t i en−i ∈ (ω)′β\{0}, n ∈ N0.

It is shown below that

C ′
t z

[n] = 1

n + 1
z[n], n ∈ N0. (6.7)

This reveals that � = { 1
n+1 : n ∈ N0} ⊆ σpt (C ′

t ; (ω)′β). Since σ(Ct ;ω) = σpt (Ct ;ω) =
� (cf. Theorem 3.7), it follows via (2.1) in Corollary 2.2 that also σpt (C ′

t ; (ω)′β) ⊆
σ(C ′

t ; (ω)′β) = �. So,

σpt (C
′
t ; (ω)′β) = σ(C ′

t ; (ω)′β) = �.

In particular, C ′
t has a plenty of eigenvalues which implies that Ct cannot be supercyclic, [16,

Proposition 1.26].
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It remains to establish (6.7). Note, for n ∈ N0 fixed, that (z[n])i = 0 if i > n and
(z[n])n−i = (−1)i

(n
i

)
t i for i = 0, . . . , n. In particular, z[n] ∈ (ω)′β\{0}. For i > n it is clear

that

(C ′
t z

[n])i =
∞∑

k=i

t k−i

k + 1
(z[n])k = 0 = 1

n + 1
· 0 = 1

n + 1
(z[n])i .

To verify that (C ′
t z

[n])n−i = 1
n+1 (z

[n])n−i for i = 0, . . . , n observe that

(C ′
t z

[n])n−i =
∞∑

k=n−i

t k−(n−i)

k + 1
(z[n])k =

n∑
k=n−i

t k−(n−i)

k + 1
(z[n])k

=
n∑

k=n−i

t k−(n−i)

k + 1
(z[n])n−(n−k) =

n∑
k=n−i

t k−(n−i)

k + 1
(−1)n−k

(
n

n − k

)
tn−k

=
n∑

k=n−i

t i

k + 1
(−1)n−k n!

(n − k)! k! · n + 1

n + 1

= t i (−1)i

n + 1

n∑
k=n−i

(−1)(n−i)−k
(

n + 1

k + 1

)
= (−1)i

n + 1
t i

(
n

i

)
,

where the last equality follows from (6.2). But, as noted above, (−1)i
(n

i

)
t i = (z[n])n−i and

so (C ′
t z

[n])n−i = 1
n+1 (z

[n])n−i for i = 0, . . . , n. The identity (6.7) is thereby established and
the proof is complete. 
�

We now turn to the dynamics of generalized Cesàro operators Ct acting in the other
sequence spaces considered in this paper, for which we first need to establish some general
results on bounded linear operators acting in lcHs’. Recall that a linear operator T : X → Y ,
with X , Y lcHs’, is said to be bounded if there exists a neighbourhood U of 0 ∈ X such that
T (U) is a bounded subset of Y . It is routine to verify that necessarily T ∈ L(X , Y ). A lcHs X
is called locally complete if, for each closed, absolutely convex subset B ∈ B(X), the space
X B := span (B) equipped with the Minkowski functional ‖ · ‖B , [44, p. 47], is a Banach
space, whose closed unit ball is B. Such a set B is also called a Banach disc, [36, Sect. 8.3].

Theorem 6.2 Let X be a locally complete lcHs and T ∈ L(X) be a bounded operator
satisfying σ(T ; X) ⊆ B(0, δ) for some δ ∈ (0, 1). Then T n → 0 in Lb(X) as n → ∞. In
particular, T is both power bounded and uniformly mean ergodic.

Proof Since T is a bounded operator, there exists a closed, absolutely convex neighbourhood
U of 0 ∈ X such that T (U) ∈ B(X). So, we can select a closed, absolutely convex subset
B ∈ B(X) such that T (U) ⊆ B. By the assumptions, (X B , ‖ · ‖B) is a Banach space. Since
T (U) ⊆ B, the map S : X → X B defined by Sx := T x for x ∈ X , is well defined and it
is clearly continuous. Let j : X B → X denote the canonical inclusion of X B into X , i.e.,
j(x) := x for x ∈ X B . Then j ∈ L(X B , X) and T = j S ∈ L(X). On the other hand
Sj ∈ L(X B). So, by [33, Proposition 5, p. 199] we have that

σ( j S; X)\{0} = σ(Sj; X B)\{0}.
Accordingly, σ(Sj; X B) = σ(T ; X) ⊆ B(0, δ). This implies that the spectral radius r(Sj)

of Sj satisfies r(Sj) ≤ δ < 1. Since r(Sj) = limn→∞
(‖(Sj)n‖X B→X B

)1/n , it follows via
standard arguments that (Sj)n → 0 in Lb(X B) as n → ∞. The claim is that this implies
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T n → 0 in Lb(X) as n → ∞. To establish the claim, fix any C ∈ B(X) and any absolutely
convex neighbourhood V of 0 ∈ X . Then there exist λ > 0 such that C ⊆ λU and μ > 0
such that B ⊆ μV . Since B is the unit closed ball of X B and (Sj)n → 0 in Lb(X B), there
exists n0 ∈ N such that (Sj)n(B) ⊆ 1

λμ
B for all n ≥ n0. So, for each n > n0, it follows that

T n(C) ⊆ λT n(U) = λT n−1T (U) ⊆ λT n−1(B) = λT n−1( j(B)) = λ( j S)n−1( j(B))

= λ j(Sj)n−2S( j(B)) = λ j[(Sj)n−1(B)] ⊆ λ j

((
1

λμ

)
B

)
=

(
1

μ

)
j(B)

=
(
1

μ

)
B ⊆ V.

This means, with W (C,V) := {R ∈ L(X) : R(C) ⊆ V}, that T n ∈ W (C,V) for each
n > n0. Since C ∈ B(X) and V are arbitrary and the sets W (C,V) form a basis of neigh-
bourhoods for 0 in Lb(X), the claim is proved, i.e., T n → 0 in Lb(X) as n → ∞. It follows
that T is power bounded (clearly) and that T[n] → 0 in Lb(X) as n → ∞ (i.e., T is uni-
formly mean ergodic). Indeed, let q be any τb-continuous seminorm. Then (6.1) implies that
q(T[n]) ≤ 1

n

∑n
m=1 q(T m) for n ∈ N. Since q(T n) → 0 in [0,∞), also its arithmetic means

1
n

∑n
m=1 q(T m) → 0 for n → ∞, that is, limn→∞ q(T[n]) = 0. So, we can conclude that

T[n] → 0 in Lb(X) for n → ∞. 
�
Theorem 6.2 permits us to formulate and prove the following general criterion for power

boundedness and uniform mean ergodicity. To state it, recall that a lcHs X is said to be
ultrabornological if it is an inductive limit of Banach spaces, [36, Sect. 13.1], [44, p. 283].
For instance, Fréchet spaces, [36, Corollary 13.1.4], and (LB)-spaces are ultrabornological.
A lcHs X is called a webbed space if a web can be defined on X . For the definition of a
web and the properties of webbed spaces we refer to [36, Sect. 5.2] and [38, Ch. 2.4]. Recall
from Sect. 2 that Fréchet spaces and (LB)-spaces are webbed spaces. Moreover, sequentially
closed subspaces and quotients of webbed spaces are webbed spaces, [36, Theorem 5.3.1].

For what followswe require the next result concerning algebraic sums in ultrabornological
lcHs’ which can be found in [38, Sect. 35.5(4), p. 66].

Proposition 6.3 Let X be an ultrabornological lcHs such that X = X1 ⊕ X2 algebraically
with both X1, X2 ⊆ X webbed spaces for the topology induced by X. Then X1 and X2

are closed subspaces of X and X = X1 ⊕ X2 topologically, i.e., the canonical projections
Pi : X → Xi are continuous for i = 1, 2.

In general compact operators need not be mean ergodic. Just consider T = α I with
|α| > 1 in a finite dimensional space.

Theorem 6.4 Let X be a locally complete, webbed and ultrabornological lcHs. Let T ∈
L(X) be a compact operator such that 1 ∈ σ(T ; X) with σ(T ; X)\{1} ⊆ B(0, δ) for some
δ ∈ (0, 1) and satisfying Ker(I − T ) ∩ (I − T )(X) = {0}. Then T is both power bounded
and uniformly mean ergodic.

Proof Since T ∈ L(X) is a compact operator, the following properties hold true: (a) (I −
T )(X) is closed in X , (b) dimKer(I − T ) < ∞ (1 is necessarily an eigenvalue of T as it is an
isolated point of σ(T ; X) and T is compact), and (c) codim (I −T )(X) = dimKer(I −T ) <

∞, see, e.g., [27, Theorem 9.10.1]. Since Ker(I − T ) ∩ (I − T )(X) = {0} by assumption,
it follows that X = Ker(I − T ) ⊕ (I − T )(X) algebraically. Moreover, (I − T )(X) and
Ker(I − T ) are closed complemented subspaces of X and hence, are webbed spaces, [36,
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Theorem 5.3.1]. So, we can apply Proposition 6.3 to conclude that X = Ker(I − T ) ⊕ (I −
T )(X) holds topologically.

Set Y := (I − T )(X) and S := T |Y . It is routine to verify that S(Y ) ⊆ Y and S : Y → Y
is a compact operator. So, σ(S; Y )\{0} = σpt (S; Y ) ⊆ σpt (T ; X) ⊆ σ(T ; X). But, 1 /∈
σ(S; Y ). Otherwise, there exists y ∈ Y\{0} such that Sy = y, i.e., T y = y or, equivalently,
(I − T )y = 0. Thus, y ∈ Y ∩ Ker(I − T ) = (I − T )(X) ∩ Ker(I − T ) = {0} and hence,
y = 0; a contradiction. Hence, σ(S; Y ) ⊆ σ(T ; X)\{1} ⊆ B(0, δ) with δ ∈ (0, 1). Since S
is compact, it is also bounded and hence, we can apply Theorem 6.2 to conclude that Sn → 0
in Lb(Y ) as n → ∞, after noting that the closed subspace Y of X is locally complete.

Denote by P : X → X the continuous projection onto Ker(I −T ) along (I −T )(X) = Y ,
i.e., for each z ∈ X there exist unique elements x ∈ Ker(I − T ) and y ∈ Y such that
z = x + y and so Pz := x . The claim is that T n → P in Lb(X) as n → ∞. To establish
this fix B ∈ B(X) and a neighbourhood U of 0 ∈ X . As (I − P) ∈ L(X), we have that
(I − P)(B) ∈ B(Y ). Taking into account that Sn → 0 in Lb(Y ) as n → ∞, there exists
n0 ∈ N such that Sn((I − P)(B)) ⊆ U ∩ Y for every n ≥ n0. On the other hand, for each
z ∈ X we have that Pz ∈ Ker(I − T ), i.e., T Pz = Pz, and hence, T n(Pz) = Pz for each
n ∈ N. Accordingly, as S = T on (I − P)(X) = (I − T )(X) = Y we get, for each z ∈ B
and n ≥ n0, that

T nz − Pz = T n(Pz + (z − Pz)) − Pz = T n(z − Pz) = T n((I − P)z)

= Sn((I − P)z) ∈ Sn((I − P)(B)) ⊆ U ∩ Y ,

where we used the fact that (I − P)z ∈ Y . Since z ∈ B is arbitrary, this implies that
T n − P ∈ W (B,U) := {R ∈ L(X) : R(B) ⊆ U} for each n ≥ n0. So, by the arbitrariness
of B and U , the claim is proved. 
�
Remark 6.5 (i) Let X be a sequentially complete lcHs and T ∈ L(X). If T n

n → 0 in Ls(X)

as n → ∞, then σ(T ; X) ⊆ B(0, 1), [2, Proposition 5.1 & Remark 5.3]; see also [28,
Proposition 4.4]. In particular, if T is power bounded, then σ(T ; X) ⊆ B(0, 1). In view of
this fact, Theorem 6.4 can be seen as a sort of converse result (observe that every sequentially
complete lcHs is locally complete, [44, Corollary 23.14]).

(ii) Theorem 6.2 should also be compared with [6, Theorem 10] in which it is proved,
for T ∈ L(X) with X a prequojection Fréchet space, that T n → 0 in Lb(X) as n → ∞
if, and only if, σ(T ; X) ⊆ B(0, 1) and T n

n → 0 in Lb(X). Since σ(Ct ;ω) � B(0, 1) (as
1 ∈ σ(Ct ;ω) but 1 /∈ B(0, 1)) and ω is a prequojection Fréchet space, for each t ∈ [0, 1), it
follows that (Ct )

n �→ 0 in Lb(ω) for n → ∞.

Combining Theorem 6.4 with the results in the preceding sections we get the following
result.

Theorem 6.6 Let t ∈ [0, 1). Let X belong to any one of the sets: {dp, �
p : 1 ≤ p <

∞} ∪ {ces(p) : 1 < p < ∞} or {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞} or
{�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}. Then Ct ∈ L(X) is power bounded and uni-
formly mean ergodic, but not supercyclic.

Proof From the results of the preceding sections recall that Ct ∈ L(X) is a compact operator
on X and σ(Ct ; X) = � ∪ {0}. Hence, σ(Ct ; X)\{1} ⊆ B(0, 1/2). Moreover, (I − Ct )(X)

is also closed in X . Since x [0] ∈ d1 ⊆ X , we can adapt the arguments in the proof of
Theorem 6.1 to argue that (I − Ct )(X) = {x ∈ X : x0 = 0} = span{er : r ∈ N} and
Ker(I −Ct ) = span {x [0]}. Hence, Ker(I −Ct )∩ (I −Ct )(X) = {0}. So, all the assumptions
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of Theorem 6.4 (for δ = 1
2 and T := Ct ) are satisfied. Then we can conclude that Ct is power

bounded and uniformly mean ergodic.
To show that Ct : X → X is not supercyclic we proceed as follows. Since Ct ∈ L(X)

is compact, the operators Ct : X → X and C ′
t : X ′

β → X ′
β have the same non-zero eigen-

values, [27, Theorem 9.10.2(2)]. Hence, σpt (C ′
t ; X ′

β) = σpt (Ct ; X) = �. According to [16,
Proposition 1.26] it follows that the operator Ct : X → X cannot be supercyclic. 
�

A first consequence of the results collected above is the following one concerning the dual
operators C ′

t . First we recall the relevant dual spaces involved. Namely, for p, p′ satisfying
1
p + 1

p′ = 1 we have (see Proposition 3.4(i), Proposition 4.3 and Remark 4.4 in [20],
respectively):

�(p−) � (�(p′+))′β and (�(p−))′β � �(p′+), for 1 < p ≤ ∞;
d(p−) � (ces(p′+))′β and (ces(p−))′β � d(p′+), for 1 < p ≤ ∞;
ces(p−) � (d(p′+))′β and ces(p′+) � (d(p−))′β , for 1 < p ≤ ∞.

Proposition 6.7 Let t ∈ [0, 1) and X belong to any one of the sets: {dp, �
p : 1 ≤

p < ∞} ∪ {ces(p) : 1 < p < ∞} or {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞} or
{�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}.
(i) The dual operator C ′

t ∈ L(X ′
β) of Ct ∈ L(X) is compact and is given by

C ′
t y =

( ∞∑
k=i

t k−i

k + 1
yk

)

i∈N0

, y = (yk)k∈N0 ∈ X ′
β . (6.8)

(ii) The point spectrum of C ′
t ∈ L(X ′

β) is given by

σpt (C
′
t ; X ′

β) = σpt (Ct ; X) = �. (6.9)

Each eigenvalue 1
n+1 , for n ∈ N0, is simple and its corresponding eigenspace is spanned by

y[n] =
n∑

i=0

(−1)i
(

n

i

)
t i en−i ∈ X ′

β\{0}, n ∈ N0.

Moreover,

σ ∗(C ′
t ; X ′

β) = σ(C ′
t ; X ′

β) = � ∪ {0}.

Proof (i) Recall that E is an unconditional basis in �(p+), ces(p+), d(p+), for 1 ≤ p < ∞
(cf. Section4) and an unconditional basis in �(p−), ces(p−), d(p−), for 1 < p ≤ ∞ (cf.
Section5). Moreover, E is also an unconditional basis in the dual Banach spaces (�p)′ = �p′

for 1 < p < ∞, in the dual Banach spaces (ces(p))′ � dp′ for 1 < p < ∞, [19], and
in the dual Banach spaces (dp)

′ � ces(p′) for 1 < p < ∞ (cf. [17, 24]), as well as in
(d1)′ � ces(0), [25, Sect. 6]. In view of the description of X ′

β (for X non-normable) given

prior to this Proposition it follows, for all X �= �1, that the linear space span(E) = (ω)′ is
dense in X ′

β . The continuity of C ′
t : X ′

β → X ′
β then implies that (6.6) can be extended to an

inequality for every y ∈ X ′
β , that is, (6.8) is valid.

For X = �1, the linear space span(E) = (ω)′ is not dense in X ′
β = �∞. So, in this case we

argue as follows. Define T y :=
(∑∞

k=i
tk−i

k+1 yk

)
i∈N0

for y ∈ �∞, in which case T ∈ L(�∞).
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Indeed, for y ∈ �∞, note that

‖T y‖∞ = sup
i∈N0

∣∣∣∣∣
∞∑

k=i

t k−i

k + 1
yk

∣∣∣∣∣ ≤ sup
i∈N0

∞∑
k=i

t k−i

k + 1
|yk | ≤ ‖y‖∞ sup

i∈N0

∞∑
k=i

t k−i

k + 1

≤ ‖y‖∞ sup
i∈N0

∞∑
k=i

t k−i = ‖y‖∞
∞∑
j=0

t j = 1

1 − t
‖y‖∞ (as 0 ≤ t < 1).

Accordingly, ‖T ‖�∞→�∞ ≤ 1
1−t , that is, T ∈ L(�∞). For each x ∈ �1 and y ∈ �∞, a direct

calculation yields

〈Ct x, y〉 = 〈x, T y〉,
which implies that T = C ′

t .
For any Fréchet space X ∈ {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞} and any Banach

space X ∈ {�1, d1} ∪ {�p, ces(p), dp : 1 < p < ∞} the operator Ct ∈ L(X) is compact
(cf. Propositions 2.12, 2.14, 2.15 and Remark 3.3 and Theorem 4.5(i)). Accordingly, the dual
operator C ′

t ∈ L(X ′
β) of Ct ∈ L(X) is compact, [27, Corollary 9.6.3].

For any (LB)-space X ∈ {�(p−), ces(p−), d(p−) : 1 < p ≤ ∞} the operator Ct ∈
L(X) is also compact (cf. Theorem 5.3(i)). So, the compactness of C ′

t ∈ L(X ′
β) follows from

Proposition 2.7, after observing that X is a boundedly retractive (LB)-space. Indeed, X =
�(p−), for 1 < p ≤ ∞, is a boundedly retractive (LB)-space, as it is the strong dual of the
quasinormable Fréchet space �(p′+), [45, p. 12]. On the other hand, X ∈ {ces(p−), d(p−) :
1 < p ≤ ∞} is a boundedly retractive (LB)-space, as it is a (DFS)-space, [20, Proposition
2.5(ii) & Lemma 4.2(i)].

(ii) It was shown in the proof of Theorem 6.1 that each vector z[n] ∈ (ω)′β\{0} ⊆ X ′
β

satisfies C ′
t z

[n] = 1
n+1 z[n], for every n ∈ N0. Accordingly.

� ⊆ σpt (C
′
t ; X ′

β). (6.10)

Moreover, 0 /∈ σpt (C ′
t ; X ′

β) as C ′
t is injective. To verify this let z ∈ X ′

β satisfy C ′
t z = 0. By

considering the individual coordinates in (6.8) it follows that

1

i + 1
zi = (C ′

t z)i − t(C ′
t z)i+1, i ∈ N0,

that is, z = 0 and so indeed 0 /∈ σpt (C ′
t ; X ′

β). The compactness of C ′
t ∈ L(X ′

β) then implies
that

σ(C ′
t ; X ′

β) = {0} ∪ σpt (C
′
t ; X ′

β) and 0 /∈ σpt (C
′
t ; X ′

β). (6.11)

It follows from (2.1) in Corollary 2.2 (with T := Ct ), from (6.11) and from the fact that
σpt (Ct ; X) = �, that (6.9) is valid.

Parts (1) and (2) of [27, Proposition 9.10.2] imply that each eigenvalue of C ′
t is simple, as

this is the case for Ct ; see Propositions 2.12, 2.14, 2.15 and Remark 3.3 and Theorems 4.5,
5.3, which also include the identities

σ ∗(Ct ; X) = σ(Ct ; X) = � ∪ {0}. (6.12)

Setting T := Ct it follows from (2.2) in Corollary 2.2, together with (6.12), that

σ ∗(C ′
t ; X ′

β) ⊆ σ ∗(Ct ; X) = � ∪ {0}.
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From general theory (cf. Section2) we also have that

σ(C ′
t ; X ′

β) ⊆ σ ∗(C ′
t ; X ′

β).

Since (6.9) and (6.11) imply that σ(C ′
t ; X ′

β) = � ∪ {0}, we can conclude that

� ∪ {0} = σ(C ′
t ; X ′

β) ⊆ σ ∗(C ′
t ; X ′

β) ⊆ � ∪ {0}.
This, together with (6.12), yields σ ∗(C ′

t ; X ′
β) = σ ∗(Ct ; X) = � ∪ {0}. 
�

A consequence of Theorem 6.6 is the next result.

Proposition 6.8 Let t ∈ [0, 1). Let X belong to any one of the sets: {dp, �
p : 1 ≤

p < ∞} ∪ {ces(p) : 1 < p < ∞} or {�(p+), ces(p+), d(p+) : 1 ≤ p < ∞} or
{�(p−), ces(p−), d(p−) : 1 < p ≤ ∞}. Then C ′

t ∈ L(X ′
β) is power bounded and uni-

formly mean ergodic, but not supercyclic.

Proof By Theorem 6.6 the operator Ct ∈ L(X) is power bounded. Since (C ′
t )

n = (Cn
t )′, for

every n ∈ N0, it follows from [38, Sect. 39.3(6)] that alsoC ′
t ∈ L(X ′

β) is power bounded. The
operator Ct ∈ L(X) is also uniformly mean ergodic in X , again by Theorem 6.6. Since X is
barrelled (hence, quasi-barrelled), Lemma2.1 in [4] implies thatC ′

t is uniformlymean ergodic
in X ′

β . If X /∈ {�1, d1}, then X ′
β is reflexive with (X ′

β)′β = X (cf. the proof of Proposition 6.7)
and hence, (C ′

t )
′ = Ct . It follows from (6.9) that C ′′

t = Ct has plenty of eigenvalues so that
C ′

t ∈ L(X ′
β) cannot be supercyclic [16, Proposition 1.26]. Finally, suppose that X ∈ {�1, d1}.

Since Ct is compact with σpt (Ct ; X) = � (cf. Proposition 2.12 and Remark 3.3), it follows
that σpt (C ′

t ; X ′
β) = σpt (Ct ; X) = �; see [27, Proposition 9.10.2(2)]. Schauder’s theorem

implies that C ′
t ∈ L(X ′

β) is also compact and hence, again by Proposition 9.10.2(2) of [27],
now applied to C ′

t , we can conclude that σpt (C ′′
t ; X ′′

β) = σpt (C ′
t ; X ′

β) = �. So, C ′′
t ∈ L(X ′′

β)

has plenty of eigenvalues which implies that C ′
t is not supercyclic. 
�

Remark 6.9 The dynamics of C1 ∈ L(X), with X /∈ {�1, d1} belonging to one of the sets in
Theorem 6.6, is quite different. Consider first the Banach space case. For 1 < p < ∞, the
operator C1 ∈ L(�p) is neither power bounded nor mean ergodic, [5, Proposition 4.2]. Since
{z ∈ C : |z − p′

2 | <
p′
2 } ⊆ σpt (C ′

1; �p′
) with 1

p + 1
p′ = 1, [40, Theorem 1(b)], C1 ∈ L(�p)

cannot be supercyclic, [16, Proposition 1.26]. Similarly, C1 ∈ L(ces(p)), for 1 < p < ∞,
is not mean ergodic, not power bounded and not supercyclic, [13, Proposition 3.7(ii)]. Also,
C1 ∈ L(dp) is not mean ergodic and not supercyclic, [19, Propositions 3.10 & 3.11]. Since
power bounded operators in reflexive Banach spaces are necessarily mean ergodic, [43], C1

cannot be power bounded in dp . Turning to Fréchet spaces, for 1 ≤ p < ∞ the operator
C1 ∈ L(�(p+)) is not mean ergodic, not power bounded and not supercyclic, [8, Theorems
2.3 & 2.5], as is the case for C1 ∈ L(ces(p+)), [14, Proposition 5], and for C1 ∈ L(d(p+)),
[21, Proposition 3.5]. For (LB)-spaces, with 1 < p ≤ ∞, the operator C1 ∈ L(ces(p−)) is
not mean ergodic, not power bounded and not supercyclic, [12, Propositions 3.4 & 3.5], as
is the case for C1 ∈ L(d(p−)), [21, Proposition 3.8]. Finally, the dynamics of C1 ∈ L(ω) is
the same as for Ct ∈ L(ω), with t ∈ [0, 1); see Theorem 6.1 above and [8, Proposition 4.3].

The dynamics of C1 acting in �(p−) is covered by our final result.

Proposition 6.10 Let p ∈ (1,∞]. The Cesàro operator C1 ∈ L(�(p−)) is not mean ergodic,
not power bounded and not supercyclic.
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Proof In view of Proposition 5.5(i) the proof follows in a similar way to that of [8, Theorem
2.3]. For the sake of completeness, we indicate the details.

By the discussion prior to Proposition 6.7 we know that (�(p−))′β � �(p′+). Proposition

5.5(i) implies that 1+p′
2 > 1 belongs to σpt (C ′

1; �(p′+)), where 1
p + 1

p′ = 1. So, there exists

a non-zero vector u ∈ �(p′+) satisfying C ′
1(u) = 1+p′

2 u. Choose any x ∈ �(p−) such that
〈x, u〉 �= 0. Then

〈
1

n
(C1)

n(x), u

〉
=

〈
x,

1

n
(C ′

1)
n(u)

〉
= 1

n

(
1 + p′

2

)n

〈x, u〉, n ∈ N.

This means that the sequence { 1n (C1)
n(x)}n∈N ⊆ �(p−) cannot be bounded in �(p−).

Accordingly, C1 is not mean ergodic and not power bounded.
Applying again Proposition 5.5(i), we see that C ′

1 has a plenty of eigenvalues. So, C1

cannot be supercyclic, [16, Proposition 1.26]. 
�
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