The Journal of Geometric Analysis (2022) 32:149
https://doi.org/10.1007/s12220-022-00887-2

®

Check for
updates

Invertibility of Frame Operators on Besov-Type
Decomposition Spaces

3

José Luis Romero'?2 . Jordy Timo van Velthoven'3(® - Felix Voigtlaender*

Received: 13 May 2019 / Accepted: 26 January 2022 / Published online: 21 February 2022
© The Author(s) 2022

Abstract

We derive an extension of the Walnut—Daubechies criterion for the invertibility of
frame operators. The criterion concerns general reproducing systems and Besov-type
spaces. As an application, we conclude that L? frame expansions associated with
smooth and fast-decaying reproducing systems on sufficiently fine lattices extend to
Besov-type spaces. This simplifies and improves recent results on the existence of
atomic decompositions, which only provide a particular dual reproducing system with
suitable properties. In contrast, we conclude that the L? canonical frame expansions
extend to many other function spaces, and, therefore, operations such as analyzing
using the frame, thresholding the resulting coefficients, and then synthesizing using
the canonical dual frame are bounded on these spaces.
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1 Introduction

Given a countable collection (g;) ey of functions g; : R4 — C and a collection
(Cj) jes of matrices C; € GL(d, R), we consider the structured function system

(Ty 8)) jesyec;zt = (8¢ =) jes yec,za> (1.1)

and aim to represent a function or distribution f as a linear combination

F=Y 2 ciyTrg (1.2)

jel yec;zd

In many important examples of this formalism, the functions g; are obtained through
affine transforms (in the Fourier domain) of a single function g. For instance, in
dimension d = 1, the well-known wavelet [19] and Gabor systems [34] are obtained
as

gj(x) =217 g2 x), jez, C;=2, (1.3)
g(x), Jj € Bz, Cj=a. (1.4)

2wijx

gix)=e

For d > 1, anisotropic wavelet systems provide additional important examples, see
e.g., [2,12,47].

We are interested in the ability of (1.1) to reproduce all functions or distributions
f in various function spaces by a suitably convergent series (1.2). For the Hilbert
space L>(R?) this task is significantly easier: it amounts to establishing the frame
inequalities

A2 =3 ST |(f 1 Bgi)P VFeLlP®Y). (1.5)

jel yec;zd

Indeed, the norm equivalence (1.5) means that the frame operator S : L*(R?) —
L*(RY),

SF=3" > (fIT8)Tg

jeJ yECjZd

is bounded and invertible on L%(R9), and consequently (1.2) holds with ¢;, =
(571717, 8)).

The validity of the frame inequalities is closely related to the covering properties
of the Fourier transforms of the generating functions g}, which is encoded in the
Calderon condition:

Z|detC||g,| =1, ae. (1.6)
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This connection is most apparent in the so-called painless case, in which the supports
of the functions g; are compact. Under this assumption, the expansion (1.2) is a local
Fourier expansion

F&=> " cjy e g (1.7)

jed yec;zd

In many important cases, the functions g; are not bandlimited, but have a well con-
centrated frequency profile, such as a Gaussian. Then (1.7) is an almost-local Fourier
expansion, that one still expects to be governed by (1.6)—and, indeed, under mild
conditions, (1.6) is necessary for (1.5) to hold [18, 30].

The formal analysis of non-painless expansions with a reproducing system (1.1)
relies on a remarkable representation of the frame operator in the Fourier domain,
namely

SFE) =) taE —a)fE —a), (1.8)

aeA

where 1,(§) = Y ey (o) \detl—Cj| 8;(§) & (£ + a); here, the translation nodes A C

R? and indices k(o) € J are determined by the matrices C j (see (5.2) below). For
Gabor expansions, the representation (1.8) is known under the name of Walnut’s
representation [63] while for wavelets it is attributed to Daubechies and Tchamitchian
[19,Chapter 3]. The theory of generalized shift-invariant systems [39, 53] establishes
the general form of (1.8) and exploits its many consequences. For example, tight
frames—that is, systems for which equality holds in (1.5)—are characterized by a set
of algebraic relations involving the functions #4; see [39].

1.1 The Walnut-Daubechies Criterion

The multiplier 7o associated withor = 01in (1.8) is precisely the Calderén sum appearing
in (1.6); that is,

_ ! P 2
() = Z mhﬁ’](é” .
jeJ

A powerful frame criterion arises by comparing the representation of S given in (1.8)
to the diagonal term F~! (zq - f), and by estimating the corresponding discrepancy. In
the model cases of Gabor and wavelets systems, these criteria are again attached to the
names of Walnut and Daubechies, and are particularly useful for studying Gaussian
wave-packets, which have fast-decaying frequency tails, but do not yield tight frames.
A general version of the Walnut—Daubechies criterion also holds for generalized shift-
invariant systems under mild assumptions [17, 45]; this criterion is greatly useful in
the construction of anisotropic time-scale decompositions—see e.g. [20].

The price to pay for the flexibility of the Walnut—Daubechies criterion is that it
does not produce an explicit dual system implementing the coefficient functionals
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f + cj., in (1.2). Rather, it only yields an L? norm estimate which is sufficient to
establish (1.5) but does not imply the convergence of (1.8) in other norms. In contrast,
explicit constructions of frame pairs, that is, frames where the coefficient functionals
are given by

Ciy =<f | Ty hj)

for another reproducing system {; : j € J}, naturally extend to many other Banach
spaces besides L*(R?). These spaces are determined by the concentration of the
Fourier support of the generators g;, and are generically called Besov-type spaces
[56,Chapter 2] [58]. The model case is given by (1.3), where the functions g\] form a
so-called Littlewood-Paley decomposition.

The goal of this article is to derive a variant of the Walnut-Daubechies criterion
which implies that the frame operator is invertible in such Besov-type spaces.

1.2 Besov-Type Decomposition Spaces

For the informal definition of Besov-type spaces, fixacover Q = (Q;);cs of afull mea-
sure open subset in the Fourier domain R?. We impose a mild admissibility condition
by limiting the number of overlaps between different elements of Q—see Section 3
for the precise condition. Given a suitable partition of unity (¢;);<; subordinate to 9,
together with a suitable (so-called Q-moderate) weight function w : I — (0, 00),
the space D(Q, L”, 22, for P, q € [1, o0], is defined as the space of distributions f
satisfying

(wi - |7 @i - Pliee) e,

”f”D(Q,LP,f?U) = H(Hf_l(w 'f)”Lp)iel

< 00,

A - H 2
(1.9)

where F~! denotes the inverse Fourier transform. Provided that an adequate notion of
distribution is used in the definitions, the spaces D(Q, L?, 29y form Banach spaces
and are independent of the particular (sufficiently regular) partition of unity used to
define them.

The construction of Besov-type spaces follows the so-called decomposition method
[56,Chapter 2], [58,Section 1.2], yielding an instance of the so-called spaces defined
by decomposition methods [55], or decomposition spaces [23, 57] in more abstract
settings. This is why we also use the term Besov-type decomposition spaces. Uniform
Besov-type spaces, associated with the cover Q consisting of integer translates of a
cube, are known as modulation spaces [22], while a dyadic frequency cover yields the
usual Besov spaces [27, 49] —see also [56,Section 2.2]. When the cover is generated
by powers of an expansive matrix, one obtains anisotropic Besov spaces [8, 12, 13, 56].
We remark that the range of spaces defined by (1.9) does not include Triebel-Lizorkin
spaces [28].
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1.3 Overview of the Results

We state a simplified version of our main results for systems of the form (1.1) with
generating functions g; € L (R4 N L*(RY) withg € C OO(Rd) given by

:|detAj|—1/2-f—1(§osjf‘)=|detA,-|1/2 i (g o A%, (1.10)

for (invertible) affine maps §; = A;(-) +b; and translation matrices C; = § A" with
8 > 0. The parameter § > 0 is a resolution parameter that controls the density of the
translation nodes in (1.1).

To define Besov-type spaces adapted to the frequency concentration of the system
(gj)jes, we also consider an affinely generated cover Q = (Q;)jey of the form
Q; = AjQ+b;.If gis mostly concentrated inside the basic set Q, then (1.10) implies
that gAj is localized around Q ;. Under these assumptions, the Calderén condition reads

0<A< Z |§(Sj_1§)|2 <B<oo, ae., (1.11)
jelJ

which means that (g;) je is approximately a partition of unity adapted to Q.
The following is our main result, proved in Section 7.3.

Theorem 1.1 For each affinely generated cover Q=(A;j0+bj)jes =(S;jQ)jeyof
an open, co-null set O C Rd and each Q-moderate weight w = (w;) jej, there exists
a constant Cy o, with the following property: Suppose that (g;)jey is compatible
with Q in the sense of (1.10) and that the Calderon condition (1.11) holds. Moreover,
suppose that

1

d+T1
Mo :=sup Y max{l, A7 A7) max |(0°)(ST (SeNPTV ds ) < oo
0 laj=d+1 J

lGJ]eJ

and that M := max { sup; ., YjesMij, supicy D icy M; ;} < oo, where
M j = Li - / 1+ 1871 (S:&D* ™ max |(0°2)(S; ' (Si§))] d§
0 l|<d+1

and L; j = max{wj, w-} (max{l, A7 A} 1%} max({1, A YA }) Yori,je
J. Choose § > 0 such that

d+1 2

Ca.0wM{™ M8 <A.

Then the frame operator associated to (Tg 1) 8j) jej rkezd s well-defined, bounded,
F jed,

and invertible on D(Q, LP, ¢%) for all p,q € [1,00]. The value of the constant
Ca.0.w is given in Theorem 1.5 below.
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The quantities My and M; in Theorem 1.1 control the interaction between the
generators g; and the elements of the cover Q. In contrast to the classical L? Walnut—
Daubechies criterion, the derivatives of g are now involved. We also prove a more
technical version of Theorem 1.1 in which the generators need not exactly be affine
images (in the Fourier domain) of a single function, but only approximately so. This
is important, for example, to describe non-homogeneous time-scale systems, which
contain a low-pass and a high-pass window. We refer the reader to [62] for a detailed
discussion of concrete examples and calculations that can be used also in our frame-
work.

Although the constant C4 ¢ ,, in Theorem 1.1 is explicit, it is too large to be used
as a guide for concrete numerical implementations. We also derive a version of the
criterion with more favorable constants, but which only provides expansions on L>-
based Besov-type spaces; see Sect. 5.5.

A result closely related to Theorem 1.1 was recently obtained by the third named
author in [62]—see the discussion below. While our techniques are significantly differ-
ent from those in [62]—and, indeed, we regard the simplicity of the present methods a
main contribution—we remark that we make use of several auxiliary results obtained
in [62].

Under the conditions of Theorem 1.1, the coefficient and reconstruction operators

C:f ((f | Ty gj>>jej,yeC~Zd and 7:c= (‘Jyy)je],yeC_,-Zd = Z Z iy Tr8j
Y jelyec;zd

(1.12)

define bounded operators between the Besov-type space D(Q, L?, £%,) and suitable
sequence spaces (see Sect. 4). As a consequence, the invertibility of the frame operator
on the spaces D(Q, L?, ¢%) implies that the L?-convergent canonical frame expan-
sions

f:Z Z (S_lf | Tygj>Tygj=Z Z (f | Tygj)S_lTygj (1.13)

jel yec;zd jel yec;zd

extend to series convergent in Besov-type norms (or weak-x-convergent for p =
oo or ¢ = 00). In more technical terms, the canonical Hilbert-space dual frame
{S_ITV gi:jelJ,yeC jZd}provides a Banach frame and an atomic decomposition
for the Besov-type spaces D(Q, L”?, Z?U). This is a novel feature of Theorem 1.1:
other results on the existence of series expansions, based on so-called oscillation
estimates, show that the coefficient and reconstruction maps (1.12) are respectively
left and right invertible on the Besov-type spaces, but do not yield consequences for the
Hilbert space pseudo-inverses ¢ =819 and 2" = €S~ [24, 33, 62]. In contrast,
Theorem 1.1 concerns ¢, 27— see Corollary 7.6—and implies that operations on
the canonical frame expansions (1.13) that decrease the magnitude of the coefficients,
such as thresholding, are uniformly bounded in Besov-type norms. More precisely, if
foreach j € Jand y € C jZd, we are given a function ®; ,, : C — C satisfying
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|®;.,(x)] < C x|, then the maps

fHZ Z /V S f|TVgJ>)Ty3j

jel yec;zd

and

fHZ Z Jr((f ] TVgJ»S_lTygj

jel yec;zd

are bounded (possibly non-linear) operators on all of the spaces D(Q, L”, £%). In
particular, frame multipliers with bounded symbols—see e.g. [7]—define bounded
operators on Besov-type spaces.

1.4 Related Work

The theory of localized frames. The uniform frequency cover {(—1, 1) +k : k € Z¢}—
which gives rise to Gabor systems (1.4)—is special in that every reproducing system
(1.1) satisfying the frame inequalities (1.5), and mild smoothness and decay conditions,
provides also expansions for other Banach spaces (the precise range of spaces being
determined by the particular smoothness and decay of the generators). Indeed, the
theory of localized frames [4, 5, 35] implies that the frame operator is invertible on
modulation spaces. Similar results hold for L? spaces [6, 43]. Thus, in these cases, the
classical Walnut—Daubechies criterion has consequences for Banach spaces besides
L>—without having to adjust the density —and Theorem 1.1 does not add anything
interesting.

The key tool of the theory of localized frames is the spectral invariance of cer-
tain matrix algebras. Such tools are not applicable to general admissible covers as
considered in this article. Indeed, it is known that the frame operator associated with
certain smooth and fast-decaying wavelets with several vanishing moments fails to be
invertible on LP-spaces [46,Chapter 4]. In connection to this point, we mention that
the Mexican hat wavelet satisfies Daubechies criterion, but the validity of the corre-
sponding L? expansions was established only recently with significant ad-hoc work
[15].

Almost painless generators and homogeneous covers. There is a well-developed liter-
ature related to the so-called painless expansions on decomposition spaces. The first
construction of Banach frames for general decomposition spaces was given by Borup
and Nielsen [11] using bandlimited generators. This construction was then comple-
mented with a delicate perturbation argument to produce compactly supported frames
[48]—see also [16, 44]. The constructions in [48] for Besov-type spaces are restricted
to so-called homogeneous covers, which are generated by applying integer powers of
a matrix to a given set. This restriction rules out some important examples such as
inhomogeneous dyadic covers and many popular wavepacket systems.
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Invertibility of the frame operator versus existence of left and right inverses. The
first construction of time-scale decompositions proceeded by discretizing Calderdn’s
reproducing formula through Riemann-like sums [29]. A similar approach works for
the voice transform associated with any integrable unitary representation and is the
basis of the so-called coorbit theory [24]. To some extent, those techniques extend
to any integral transform, provided that one can control its modulus of continuity
[38]. Such an approach was used by the third named author to construct compactly
supported Banach frames and atomic decompositions in Besov-type spaces [62]. The
main result of [62] is qualitatively similar to Theorem 1.1, but only concludes the
existence of left and right inverses for the coefficient and synthesis maps, acting on
respective Banach spaces. In contrast, we show that the Hilbert space frame operator
is simultaneously invertible on all the relevant Banach spaces. The advantage of the
present approach is that we are able to show that the Hilbert spaces series—which
are defined by minimizing the ¢> norm of the coefficients in (1.2)—extend to series
convergent in Besov-type spaces, and thus many operations on the canonical frame
expansion are also shown to be bounded in Besov-type spaces. On the other hand, there
are situations in which there exists a left inverse for the coefficient operator (or a right
inverse for the reconstruction operator), but the frame operator is not invertible. For
example, a wavelet system generated by a smooth mother wavelet without vanishing
moments can generate an atomic decomposition for the Besov spaces B, (RY) of
strictly positive smoothness s > 0 without yielding a frame [62,Proposition 8.4].
Such examples are not covered by our results.

Quasi-Banach spaces. We do not treat the quasi-Banach range p, g € (0, oo], which
is treated in [62]. We expect the tools developed in [62] for treating the quasi-Banach
range to be also applicable to the present setting, and to yield an extension of our main
results to the quasi-Banach range.

1.5 Technical Overview and Organization

Our approach is as follows: we consider the Walnut—Daubechies representation (1.8)
of the frame operator and bound the discrepancy between Sf and the diagonal term
F! (to . f) in a Besov-type norm. To this end, we estimate each Fourier multiplier #,
with a Sobolev embedding, and control the inverse Fourier multiplier 1/7( by directly
bounding the terms in Faa di Bruno’s formula.

The main estimates are derived in decreasing level of generality. We first consider
very general covers Q = (Q;);e; and an abstract notion of molecule, which models
the interaction between the generators g; of the system (7, g;) ;e yec,z¢ and the
elements Q; of the cover Q. Here, the associated index sets / and J do not need
to coincide. We then provide simplified estimates for affinely generated covers. The
limiting cases p, g = oo involve delicate approximation arguments that may be of
independent interest.

The paper is organized as follows: Sect. 2 introduces notation and preliminaries.
Besov-type spaces are introduced in Sect. 3. Section 4 treats the boundedness of the
coefficient, synthesis and frame operators on suitable spaces. Section 5 is concerned
with the invertibility of the frame operator and provides estimates for the abstract

@ Springer



Invertibility of Frame Operators on Besov-Type... Page90of72 149

Walnut—Daubechies criterion. These estimates are further simplified in Sects. 6 and 7
for affinely generated covers and suitably adapted generating functions. Several tech-
nical results are deferred to the appendices.

2 Notation and Preliminaries
2.1 General Notation

Welet N :={1,2,3,...}, and Ny := N U {0}. For n € Np, we write n := {1, ..., n};
in particular, 0 = ¢. For a multi-index 8 € N4, its length is |B]| = Z?:l |Bil-

The conjugate exponent p’ of p € (1, 00) is defined as p’ := % Welet 1’ :=
and o0’ := 1.

Given two functions f, g : X — [0, 00), we write f < g provided that there exists
a constant C > 0 such that f(x) < Cg(x) forall x € X. We write f =< gfor f < g
and g < f.

The dot product of x, y € RY is written x - y := Zfl: 1 Xi yi- The Euclidean norm
of a vector x € R? is denoted by |x| := /x - x. The open Euclidean ball, with radius
r > 0 and center x € R?, is denoted by B, (x), and the corresponding closed ball is
denoted by B, (x). More generally, the closure of a set M C R4 is denoted by M.

The cardinality of a set X will be denoted by |X| € Ny U {oo}. The Lebesgue
measure of a Borel measurable set E C R will be denoted by A(E). Given a subset
M C X, we define its indicator function 1y : X — {0, 1} by requiring 1;(x) = 1
if x € M and 1;(x) = 0 otherwise.

For a matrix M € C'*7 | its Schur norm is defined as

1M || chur = max{supZ|M,,| supDMm} € [0, c0].
iel jeJ jet iel

A matrix M e C/*J satisfying | M||schar < 00 is said to be of Schur-type. A
Schur-type matrix M € C’*/ induces a bounded linear operator M : £7(J) —
P, (cj)jes + (Zje] M; jcj)icp» With [Mllerer < [|M||schur for all p e
[1, oc]; this is called Schur’s test. For a proof of a (weighted) version of Schur’s test,
cf. [37,Lemma 4].

2.2 Fourier Analysis
The translate of f : R? — Cby y € R? is denoted by Ty f(x) = f(x—y). Wedenote
by R? the Fourier domain of R?. Modulation of f:RY > Chbyé e R is denoted

by M f (x) := ¢2™i5% f(x). The Fourier transform F : L'(R?) — Co(RY), f > f
is normalized as

Fer= [ rwemin i
R4
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for & € R, Slmllarly normahzed we define F : L (Rd) — Co(RY). The inverse
Fourier transform F~' f := F(=) € Co(RY) of £ e L' (R?) will occasionally also
be denoted by f Similar notation will be used for the (unitary) Fourier-Plancherel
transform F : LZ(RY) — L2(@d).

The test space of compactly supported, smooth functions on an open set O C R¢
will be denoted by C2°(0O). The topology on C2°(O) is taken to be the usual topology
defined through the inductive limit of Fréchet spaces; see [54,Sect. 6.2] for the details.
The sesquilinear dual pairing between D(O) := C2°(0O) and its dual D’'(O) is given
by (f | §)p.p = f (@) for f € D'(O) and g € CZ(O).

The Schwartz space is denoted by S(R?) and its topological dual will be denoted
by S’(R?). The canonical extension of the Fourier transform to S’(R?) is denoted
by F : S®RY) — S'(RY), that is, (Ff, g)s'.s = (f. Fg)s.s for f € S'RY)
and g € S(Rd) We denote bilinear dual pairings by (-, ), while (- | -) denotes a
sesquilinear dual pairing, which is anti-linear in the second component.

Lastly, for p € [1, 00] we define FLP(RY) := {f: f € LP(RY)} c S'(RY),
equipped with the norm || f|lzzs := [|F ' fllLr. Here, note that || f - gllFrr <
Il fll721-1Igll 7L, Where the exact nature of the product f g is explained in more detail
in Definition 5.5. Furthermore, for any invertible affine-linear map S : R? — R, one

has | f o Sl g1 = 1 fll 711

2.3 Amalgam Spaces

Let U C R? be a bounded Borel set with non-empty interior. The Amalgam space
Wy (L, L) is the space of all f € L (RY) satisfying

I f lwy oe,Lty = /Rd I fllLoe@+x) dx < 00.

The (closed) subspace of Wy, (L= LY consisting of continuous functions is denoted
Wy (Co, LY.

The space W(L>®, L") := Wy (L>, L") is independent of the choice of U, with
equivalent norms for different choices. In particular, if A € GL(Rd ), then

I f lwyy ooty = [det Al - || f o Allw, zoo L1y » (2.1)

an identity that will be used repeatedly. It is readily seen that the space Wy (L, L)
is an L!'-convolution module; that is, if f € LY(R9) and g € Wy(L*>®, LY, then
the product f % g € Wy (L, L"), with || f * gllw, z 11y < IfILrllglwy e, 1),
simply because of || f gl < (1% [y = lgllrewy]1) ().

Lastly, there is an equivalent discrete norm on W (L, L'), namely

L ez ery = Y IMppqo g - fllzee.

neZd
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The global component in this norm is denoted by ¢! rather than L' to distinguish it
from || - [ly,, (Lo, £1)- The norm || - [l (¢, ¢1) is simply the restriction of || - ||y (fo0 g1
to Wy (Co, LY.

The reader is referred to [26, 40] for background on amalgam spaces and to [21] for
a far-reaching generalization that includes the combination of smoothness and decay
conditions.

3 Besov-Type Spaces

This section introduces decomposition spaces, and related notions such as covers,
weights and bounded admissible partitions of unity (BAPUs).

3.1 Covers and BAPUs

Definition 3.1 Let O # ¥ be an open subset of RY. A family Q = (Q;);es of subsets
Q; C O is called an admissible cover of O if

(i) Qisacoverof O, thatis, O = J;c; Qi:
(i) Q; #@foralli € I,
(ili) Ng :=sup;¢; |i*| <oo,wherei*:={ el : QN Q; # W} fori el.

A sequence w = (w;);e; in (0, 00) is called a Q-moderate weight if

Wi
Cyp,Q :=sup sup — < oQ.
iel teix W

For a weight w = (w;);ey in (0, 00) and an exponent g € [1, o], we define
6,1 = e = (@ier € €' el = llwi - cierllen < 00}
The significance of a Q-moderate weight is that the associated Q-clustering map is

well-defined and bounded. The precise statement is as follows; see [61,Lemma 4.13].

Lemma3.2 Let g € E, oo]. Suppose that Q = (Q;)ier is an admissible cover of
an open subset O C R? and that the weight w = (w;)iecs is Q-moderate. Then the
Q-clustering map

Lo : 4 (1) — £4(I), (ci)ier = (¢})ier,

where ¢ i= i Cg , is well-defined and bounded, with |T'gllys _, 4 < Cyy 0 - No.

The next definition clarifies our assumptions regarding the partitions of unity that
are suitable for defining the decomposition space norm.

Definition 3.3 Let Q = (Q;)ies be an admissible cover of an open subset ¥ # O C
RY. A family ® = (¢;);ie; is called a bounded admissible partition of unity (BAPU),
subordinate to Q, if
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(i) @i € CX(0) C SRY) foralli € I

(i) Y e 0i(€) =1forall & € O;
(iii) ¢; () =0forallé € O\ Q; andalli € I;
(iv) Co = sup;c; |F 1ol 1 < oo.

The cover Q is called a decomposition cover if there exists a BAPU subordinate to Q.

Given a decomposition cover Q = (Q;);cs of an open set d = O C R4 , it will be
assumed throughout this article that a BAPU ® = (¢;);cs for Q@ = (Q;);er is fixed.

Definition 3.4 Let O # ¥ be an open subset of RY. A family Q = (Q;);es of subsets
Qi C O is called an affinely generated cover of O if, for each i € I, there are
A; € GL(d,R) and b; € R? and an open subset Q; C R? with Q; = A; (Q) + b
satisfying the following:

(i) Q is an admissible cover of O;

(ii) the sets (Q;)ie 1 are uniformly bounded, that is,

Ro :=sup sup [§| < o0;
iel SGQ;

(iii) forindicesi, £ € I with Q;N Q¢ # ¥, the transformations A; (-)+b; and A¢(-)+by
are uniformly compatible, that is,

Co :=sup sup ||Ai_1Ag|| < o0

iel Lei*

and moreover, for each i € I, there is an open set Q;’ c R4 such that

(iv) the closure Q_;’ C Q) foralli € I;
(v) the family (A;(QY) + bi)ier covers O; and
(vi) thesets {Q} : i € I} and {Q} : i € I} are finite.

Remark 3.5 An affinely generated cover is also called an (almost) structured cover in
the literature, see for instance [61] and [11] for similar notions.

In the sequel, the map S; : RY - R? will always denote an affine linear mapping
Er> A; &+ b; forsome A; € GL(d,R) and b; € R4,

Definition 3.6 Let Q = (S;(Q))),_, be an affinely generated cover of O, and let
® = (¢i)ics be a smooth partition of unity subordinate to Q. For i € I, define the
normalization of ¢; by (pib = @; o S;. The family ® = (¢;);c; is called a regular
partition of unity, subordinate to Q, if

Co.b.0 = sup [8%¢; [l 1 < 00 3.1)

iel
for all multi-indices « € Ng.
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The following result shows that every affinely generated cover is a decomposition
cover.

Proposition 3.7 ([60,Corollary 2.7 and Theorem 2.8]) Let Q = (S,(Q;))ie[ be an
affinely generated cover of O. Then, the following hold:

(1) Every regular partition of unity ® subordinate to Q is also a BAPU subordinate
to Q.
(2) There exists a regular partition of unity ® = (¢;);c; subordinate to Q.

3.2 Besov-Type Spaces

We introduce Besov-type spaces following the approach in [56], which relies on the
space of Fourier distributions. Since we only treat the Besov-type scale of spaces,
we allow for rather general covers. More restrictions would be necessary to include
the Triebel-Lizorkin scale, because the corresponding theory relies on inequalities for
maximal functions; see [55,Sect. 3.6], [56,Sect. 2.4.3], and also [47].

Definition 3.8 Let O # @ be open in R9. The space Z(0) := F(C(0)) is called
the Fourier test function space on O. The space Z(O) is endowed with the unique
topology making the Fourier transform F : C2°(0) — Z(O) into a homeomorphism.

The topological dual space (Z(0))’ of Z(O) is denoted by Z'(O) and is called the
space of Fourier distributions. The (bilinear) dual pairing between Z’(O) and Z(O)
will be denoted by (¢, f)z/.z == (b, fz = (¢, f) = ¢(f) for ¢ € Z'(O) and
f e Z).

The Fourier transform ¢ € D' (QO) of a Fourier distribution ¢ € Z'(0) is defined
by duality; i.e.,

F:7(0)—> D), ¢+ Fp:=¢:=¢oF,

which entails (F¢, f)pp = (¢, Ff)z.zfor¢ € Z/(O) and f € CX(O).

Using the Fourier distributions as a reservoir, a decomposition space is defined as
follows:

Definition 3.9 Let p, g € [1,00]. Let @ = (Q;)icsr be a decomposition cover of
an open set § # O C R? with associated BAPU (¢;)ics. Let w = (w;);es be O-
moderate. For f € Z'(0), set

1 £lpio.ery = | AF i - Pollovien|, €10, 001, (32)

)

and define the associated decomposition space D(Q, L7, EZ,) as
D(Q, L7, ¢4) = {f € Z'©O) i If lp.irh) < oo}.
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Remark 3.10 The norm (3.2) is well-defined: If f € Z'(O), then f € D'(0),
whence ¢; - fis a (tempered) distribution with compact support. By the Paley-
Wiener theorem [54,Theorem 7.23], it follows therefore that F _1(<p,- . f) is given
by a smooth function. In addition, D(Q, L?, £3,) is a Banach space and independent
of the choice of the BAPU (¢;);<s, with equivalent norms for different choices; see
[61,Corollary 3.18 and Theorem 3.21].

Remark 3.11 Our presentation follows [61, 62] and relies on the original approach of
[56, 58], specially in the use of Fourier distributions, which is essential for the more
technical aspects of our results. More abstract versions of Besov-type spaces replace
the Fourier transform by an adequate symmetric operator [57] or use a more general
Banach space of functions on a locally compact space in lieu of the Fourier image of
LP [23]. This latter (far reaching) generalization is particularly useful to model signal
processing applications, such as sampling.

In the sequel, we will often prove our results on the subspace So(Rd) =
f_l(Cfo((’))) c S(RY) of the space D(Q, L?, ¢%), and then extend to all of
D(Q, L?, £1) by a suitable density argument. These density arguments rely on the
following concept.

Definition 3.12 Let / be an index set, and let w = (w;);e; be a weight. For a sequence

F = (Fy)jes of functions F; € LP(R?), we write || Fllyg (., ) = H(||F,-||Lp),-€,|\% €
[0, oo], and set

e4(I; LP) == |F e [LP(RD]': IF g 7oy < 00} -

Let Q@ = (Q;)ier be a decomposition cover of an open set O C R with BAPU
® = (¢j)ier, and let F = (F;);c; be a family of functions F; : RY — [0, 00). A
Fourier distribution f € Z'(0) is said to be (F, ®)-dominated if, for all i € I,

F i - )l < Fi. (3.3)
We next state our density result; its proof is postponed to Appendix B.

Proposition 3.13 Let Q = (Q;)ies be a decomposition cover of an open set ) # O C
R? with BAPU ® = (¢;)icr and let w = (w;)ies be a Q-moderate weight. Then

(1) The inclusion So (Rd) cD(Q, L?, 1) holds for all p,q € [1, oo].
(i) If p,q € [1, 00), then Sp(R?) is norm dense in D(Q, L, £1).
(iii) Ifp,q € [1,00]and f € D(Q, L?, 01, then there exist F € ¢4,(I; LP) satisfying

2
1Fllg 1. < Co ITQI% o - 1flpig 1ot

and a sequence (g,)neN of (F, ®)-dominated functions g, € So (RY) such that
gn — f, with convergence in Z'(O).
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Remark 3.14 The inclusion Sp (R?)  D(Q, LP, ¢4) c Z'(O) in Proposition 3.13(i)
should be understood in the following sense: Clearly Sp(RY) ¢ S(RY) — S'(RY),
where as usual a function f € S(R?) is identified with the distribution ¢ > [ f-¢dx.
But since Z(0) — S(RY), each f € S'(RY) restricts to an element of Z’(O); in
particular, each f € Sp can be seen as an element of Z'(O) by virtue of (f, ¢) 2.z =
[ f-¢dx. Under this identification, the Fourier transform F f* € D'(O) is just the
usual fe S(RY), interpreted as a distribution on O.

As a companion to the above density result, the following Fatou property of the
decomposition spaces D(Q, L7, Eqw) will be used. For the proof, see [31,Lemma 36].

Lemma3.15 Let Q = (Qi)ier be a decomposition cover of an open set ) # O C
RY. Let w = (wi)ies be a Q-moderate weight, and let p, q € [1, oo]. Suppose that
(f)nen is a sequence in D(Q, LP, £1) such that liminf,_, « || f ”D(Q,Ll’,zﬂ,) < 00

and f, — f € Z'(O), with convergence in Z'(O). Then f € D(Q, LP, £L), with
associated norm estimate ||f||D(Q’Lp’[qw) < liminf,_ ”fn”D(Q,LP,K?U)'

3.3 The Extended Pairing

We will use the following extension of the L?-inner product.

Qeﬁnition 3.16 Let Q = (Q;)iecs be a decomposition cover of an open set ) # O C
R?. Let ® = (¢;)ie; be a BAPU subordinate to Q. For f € Z'(0) and g € L'(RY)
with g € C®(RY), define the extended inner product between f and g as

(flglo=Y (Flei 8D . (3.4)

iel
provided that the series on the right-hand side converges absolutely.

Remark3.17 (i) For f e L*(RY) satisfying f = 0 almost everywhere on Rd \ O
and for g € L'(R?) N L*(RY) with g € C®(R?), the extended inner product
defined above coincides with the standard inner product on L?. Indeed, since

l9i(6)] < llgillFL1 = Co and thus 37, |¢i(§)] < Ng Co, we can apply the
dominated convergence theorem to see that

(f18o=) (flei-8)pp= ZfA F&) ¢i®) 3¢) d
iel ier VR
= /@ FOZTE Y pi6)ds = /O F© 2@ ds
iel
=(F18)e={f18).
(i1) In general, it is not clear whether the extended inner product defined above is

independent of the chosen BAPU. However, as we will show in Lemma 4.4, the
extended pairing is independent of this choice under suitable hypotheses.
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4 Boundedness of the Frame Operator

In this section, we present conditions under which the frame operator associated with a
generalized shift-invariant system is well-defined and bounded on Besov-type decom-
position spaces. These conditions involve the interplay between smoothness and decay
of the generators and the underlying frequency cover. See also [52,Sect. 2] and [62]
for related estimates.

4.1 Generalized Shift-Invariant Systems

Definition 4.1 Let J be a countable index set. For j € J, let C; € GL(d,R) and
gj € L2(RY). A generalized shift-invariant (GSI) system, associated with (g i)jed
and (C;)jey, is defined as

(Ty gj)je],yeCjZd = (g,-(- - y))jeJ,VECjZd'

Throughout the paper, we assume the following standing hypotheses on the system.

Standing hypotheses. The generators (g) jes of (T} g)) je . yec,z¢ Will be assumed

to satisfy g; € L'(RY) N L2(R?) and g € C“(@d). Moreover, we will use the
function tg := 3, | det C; |=11g;1? for which we assume that there exist constants
A, B > 0 such that

1 _
A< 1§ E))P <B forae & eR. 4.1
 |det (|

Remark 4.2 The assumption (4.1) is automatically satisfied for any generalized shift-
invariant frame (T, &j) je J.yeC;zd for L2(RY), with frame bounds A, B > 0, if it

satisfies the so-called «-local integrability condition (5.1) introduced below. For a
proof, see [30,Theorem 3.13 and Remark 5] and [39,Proposition 4.1].

Given the GSIsystem (T, g;) je ;. ec,z4- the associated frame operator is formally
defined as '

S:D(Q. LY, £4) > D(Q L. t4), fr> Y Y (f|TeingioTeng,-
Jj€J kezd

For analyzing the boundedness and well-definedness of the frame operator, the fol-
lowing terminology will be convenient.

Definition 4.3 Let Q@ = (Q;);es be a decomposition cover of an open set O C R4
with BAPU (¢;)ies. Let w = (w;)ies and v = (v;)es be weights. The system
(Ty 8))jes.yec,;z¢ is said to be (w, v, ®)-adapted if the matrix M € C'*/ defined
by

w; Vj 1 -
M; ;= max{v—f, ;f} et Cj12 - [[(@i % &7) © Cjllwr.rny 4.2)
J i
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is of Schur-type.

Lemma4d.4d Let Q = (Q))ier be a decomposition cover with BAPU ®. Let w =
(w;)ier be a Q-moderate weight and let the weight v = (v;) jey be arbitrary.

() If (T, 8j)jel, yeC;zd is (w, v, ®)-adapted, then (T, 8j)jel, yeC;zd is (w, v, V)-
adapted for any BAPU W subordinate to Q.

(ii) If (T, g])jej’yecjzd is (w, v, ®)-adapted, then the extended inner product (f |
Tc;k 8j) o is well-defined and independent of the choice of the BAPU ®, for any
p.q €l,00], any f € D(Q, LP, ¢1), and all j € J and k € 7°.

Proof We assume throughout that ® = (¢;);c; and ¥ = (¥;);c; are two BAPUs

subordinate to Q.

We first show thatif (7, 8j)jes.yec;ud is (w, v, ®)-adapted, then (7, gj)jej’yecjzd
is also (w, v, W)-adapted. For this, note that (f * g)(Cx) = |detC]| - ((f oC)x(go
C))(x) forany f € L'(RY), g € L'(RY) N L>(R?), and C € GL(d, R). Using this,
together with v; = ¢ v;, yields

||(% *gj)oC; HW(L°°,L1 Z ” F ¢:) Wz *gf °Cj HW(L°° LY

_ Z | det C;] - H Yy on] * [(‘/\7/6 *gj)on]”

W(L>®,L!
Lei* ( )

< Y 1det Gyl - 1% 0 Cjllpr - (g % 7)o Cillwere 1)
Lei*
SC'C\IJ'Z“(@*gj)OCj”W(Loo’gl)s (43)

tei*

where C > 1 is given by the norm equivalence || - [y o0 ¢1) < || - llwzoo, L1y
The matrix entries M; ; in (4.2) satisfy

w; U; o
M; ;= max{—, L} [det C;1"* - | (¢ % 8) 0 C; |y oo 1
Uj wi ’
Likewise, let us define

w; Uj ~
N ;= max{v—f, ;{} | detC;|"*. (i % g;) 0 Cj HW(LOO’M.
1

J

Using the moderateness of the weight w and the equivalence £ € i* <= i € £*, we
obtain that

D Nij=CCyy Y. max[ = ]'detcﬂl/z”(‘?’f*gﬂ °Cillwe o
iel iel Lei* Wi

<C CyCy.0- ZZmax{Ij— —}|detC] ]/ZH(W*gj)OCJHW(LOOzl)
el ietl* J

< C2CyCy gNg Y My < C*CyCyy gNQII M lIschur < 00
lel
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for all j € J. Similarly,

w; Vj -
ZNi,j <C’Cy - ZZmaX{U—;, Eji}ldetCﬂl/ZH(W *g;) onHW(LOQ’EI)
jeJ jeJ Lei*

< C2CyCuo- Y Y M j < C*CyCy oNQl M |Ischur < 00
Lei* jed

forall i € I.In combination, these two estimates show that N = (N j)ier, jes is of
Schur-type.

Finally, let p, g € [1,00] and f € D(Q, LP,0%), as well asj € Jand k € 74
be arbitrary; we show that the extended product (f | Tc;k gj)o is well-defined and
that (f | Tc;x gj)o = (f | Tk g5)w- To show this, set Bj; = |det Cj|"/2 - ||(¢; *
gj) o Cjllwcy.e1)- Since (T gj)jej,yecjzd is (w, v, ®)-adapted, Schur’s test shows
that B : ¢%(I) — ¢1(J), (¢i)ier — (Ziel Bj ci) - is well-defined and bounded.
Define d; := | F~'(¢i - f)llLr and ¢; := ||.7-"_1(<p;‘ - f)llLr, and note that 0 < ¢; <
Y yei+de = (Tgd)i, whence ¢ = (¢;)ier € £a,(I), since d = (dj)ie; € L4,(I) as
feDQ,LP, ).

As the final setup, let p’ € [1, 00] denote the conjugate exponent to p, and
set g 1= Tc;kgj- Since | fll,y = I flwcy,ery forall f € W(Co, £") and since
@i * & = Tc;k (gi * g;), it follows that

IF " @i ve @l < Cu - I1Gi % gll, = Cu - | det C;1MP - |[(g; % gj) 0 Cjll
< Cy - |det C;|"7" - 11(g; * 1) © Cjllwicy.en
1 1
=Cy ~|deth|7_5 -Bj,,'.

Using that ¢; = ¢*¢;, and g € C* (@d), we next see

(F1eive@)ppl =16} Tl eivids.sl=1F @)1 F@ived), ]
< 1F N Pliee NF @i ve DI

1_1
<Cy-ci-|detCj|> P -Bj;,

where the right-hand side is independent of £. Given this estimate, it follows immedi-
ately that

—~ . 1.1
Y3 UF | @i ve@)p.pl < CuNg - |detC;1277 - (Be); < 00,

iel Lei*
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Therefore, we can interchange the sums in the following calculation:

(flge=) (Flei@pp=Y Y (flevi@poD

iel iel lei*
=Y Y (flevwdpp=Y (f1v@pp=(f]8mu.
Ltel iet* el

This calculation implies in particular that both (f | g)e and (f | g)y are well-
defined. O

4.2 Sequence Spaces and Operators

The frame operator can be factored into the coefficient and the reconstruction opera-
tor. In this subsection, we investigate the boundedness of these operators on suitable
sequence spaces.

Definition 4.5 Let (Ty &) jc;.yec;ze be a generalized shift-invariant system and let

P, q € [1,00]. Foraweightv = (v;) jes and asequence c = (c,((j))jej’kezd € (CJXZd,
define

1_1 P
(vj-|deth|P z.||(c,£”)kezd||gp)jej € [0, 0o].

lellypa = ‘
Yz

Finally, define the associated coefficient space Y7 as
d
P = [c e C % ellypa < oo}.

LetD(Q, L?, ¢1)bea decomposition space. Givena GSIsystem (7}, gj)jej’yecjzd

and an associated coefficient space Y7, the reconstruction or synthesis operator is
formally defined as the mapping

YD DQLP ), () jespeza > Y. . o T g, (44)
JjeJ kezd

while the coefficient or analysis operator is formally defined by

. P g4 P.q j
(g . D(Q,L ,Ew) - Yv ’ f = <(f | TCjk gj)q))jej,kezd ’

where (-, -)p denotes the extended pairing defined in Sect. 3.3.

4.3 Boundedness of Analysis and Synthesis Operators

For proving the boundedness of the operators & and %', we will invoke the following
lemma.
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Lemma4.6 Let g € W(Co, £ (R?) and M € GL(R?). Then the map

Dyg i ¢ = (ci)pepd = Z ck Ty g
kezd

is bounded from £2°(Z%) into L (R?), with the series converging pointwise absolutely.
Furthermore, for any p € [1, oo], the mapping Dy ¢ : P74y — LP(RY) is well-
defined and bounded, with ||Dp gll¢p—r < |det M |V/P . |go Mlw (oo o1y-

Proof For the case M = idpa, this follows from [1,Lemma 2.9] —see also [14]. For
the general case, simply note that Dy o c(x) = (Dide,goM(c))(M_lx). ]

The following technical lemma allows us to use density arguments for the full range
p,q € [1,00].

Lemma4.7 Let p,q € [1, oo]. Suppose the system (T, gj)jej,yecjzd is (w,v, P)-

adapted with matrix M as in (4.2). Then, for any F € £%,(I; LP), there is a sequence
0 = (0)k)jeskezd € Y24 such that

161lypa < 1M lIschur - 1Tl g 0 - 1F g (1110,

and [(f | Te;k 8j)ol <0k forall j € J, k € 7% and every (F, ®)-dominated f €
Z'(0O).

Moreover, if (fu)nen is a sequence of (F, ®)-dominated Fourier distributions
fn € Z'(O) satisfying f, — fo € Z'(O) with convergence in Z'(O), then
(fu | Te;kgido — (fo | Tejxgjo forall j e J k € Z4.

Proof Let f € Z'(O) be (F, ®)-dominated. Using (p_fgo,- = ¢; and the estimate (3.3),
we see that

|<f| i - FITc;k gj])DaD| = |(‘ﬂz*f‘ f[TCjk (@i *gj)])sas}

< Z ‘(}“‘l((pg 21 Te ik (¢i *81'))3/,8}

tei*
< / Fy(x) - (Tc;r |g7 * g51) (x) dx =: Z Gijk,t s
Lei* R? Lei*
(4.5)
and thus
1 Tegbel = | P | 0 FiTci gl p| = 303 gk =07
iel iel Lei*
(4.6)

with ¢; j x,¢ and 0  being independent of f.
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Next, define a measure (; j x on R4 by du; jk(x) = (chk | @i *gj|)(x) dx. Then

Gijke = /R g P00 Ty ) < WFELp g g W

= ||F, T, > . l/p/
= WFellru 0 1Tk (@i % g I

<13t 1P N FL Lo Gy 0 - 1@ 5 8)) 0 Clll o 1) -
4.7
There are now two cases. If p = oo, then the estimate (4.7) and || - [[zoo(y; ;) <
| - || Lo yield that
1.k Orezallex < 1det Ci1YP | Fyll Lo gay - 11(65 % 87) 0 Ciilly zoc 1)
If p < oo, then (4.7) and Lemma 4.6 together show that
p / = ‘ qp/r
Do &k 1At @i % 8)) 0 Cilly o g1y - D /Rd(Fz(x))p
kezd kezd
(Tep i * gj1) () dx = | det Cj1P/7" |G * g ) o C 1107
Cjk (pl*g] X X € J (pl*g] © J W(Lco’gl)

. Ad(FE(X))p . [DC.ivl‘Ei*gj\(l)kEZd](-x) dx

’ - 1+ /
< | det CjIP7" - 1@ % g7) 0 Cilly PLP N FE g -

Hence, [|(¢;j k.0)gezaller < 1det i7" (@ % g7) © Cllwpoe g1y - | Fell Lo for any
p €[1, o0l

Define ¢ € ¢4,(1) by c¢ := || F¢llLr. Then, forall j € J,

11
v |detCj|7 2 |10 k)ezd ller

1_1
<D i ldetCylr T (G k. Okezaller

iel Lei*
1_1 -1
<> [u,- |det C;1772 |det C;1' ™7 |I(g % &) © Cjllwro.ety ch]
iel Lei*
<Y M j-w;-(Tgo)i, (4.8)
iel

where M; ; is defined as in Eq. (4.2). Next, since (7), gj)je‘]yyecjzd is (w, v, ®)-
adapted, Schur’s test shows that M : £9(1) — €9(J), (di)icr —> (Zie[ M,-,jd,-)jej
is well-defined and bounded, with norm |M|lgs—¢s < ||M||schur- Consequently, we
obtain

16,0 jeskezellype < [M(w-To@) ] 4(s) = 1M lIschur - IT Qg eg, - llcll, -
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But ”C”e‘,f) = F||,Z:]10(,;Lp), and thus the first part of the proof is complete.
For the proof of the second part, first note

(fo | @i FlIckgillop —— (fo | @i ~FlTck gjlp D

since ¢; - F[Tc;k g1 € C°(O) and since f, — fo in Z'(O) which implies ﬁ — ]"5
in D'(O). Next, since the f,, are (F, ®)-dominated, Eq. (4.5) shows that

[(Fa l @i - FITcix gDl < ) Gijke <7 Y uillG ik Orezaller =: vij,

Lei* Lei*

while Eq. (4.8) shows that ) ", _; y; ; < oc. Thus,
{(fal Tejgj)o —— (folTekgj)o

by definition of (- | -)¢ and by the dominated convergence theorem. O
We now prove the boundedness of the coefficient and reconstruction operators.

Proposition 4.8 Let D(Q, L”, tL) be a decomposition space and let YI*? be the
sequence space associated to the GSI system (T, g;) jc J.yec;zd as per Definition 4.5.
Suppose that (T, gj)jel,yecjzd is (w, v, ®)-adapted (where ® is a BAPU for Q) with
matrix M as in (4.2). Then

(1) Forall p,q € [1, 0o], the reconstruction map

YD1 DQ. L7 88, () jcrpezi > D Y ) Teng;
Jj€J kezd

is well-defined and bounded with || @||YU”“’—>D(Q,LP,E?U) < || M||schur- Furthermore,
the defining double series converges unconditionally in Z'(O).
(ii) Forall p,q € [1, o], the coefficient operator

. P g4 P.q j
€ :D(Q, L ,Ew)_> Yyt fr= <<f|TCjkg/>¢)jeJ,keZd

is well-defined and bounded with ||C€||D(Q’Lp’%)_>yvp~q < ”M”SChur'”FQ”@,’;—%Z;
(iii) If W is another BAPU for Q, and if f € D(Q, L, ¢%), then (f | Tcik gj)w is
well-defined and satisfies (f | Tc;k gj)w = (f | Tc;k 8j)o for all j € J and
k ezl
Proof To prove (i), let ¢ = (c,Ej))jEJ’kezd e Y[ be arbitrary, and set ¢/ :=
(C]((j))kezd for j € J. Then ¢ e ¢7(Z%). Moreover, if d = (d});je; is defined
1 1 .
as dj :=|detC;|7 "2 - |V |pr, then d € €(J) and [|d||g = |[c|lypa. Finally, let
D] = (1 ez for j € J.
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We first prove the unconditional convergence of the double series defining Zc. Since
the Fourier transform F : Z'(0) — D’(O) is a linear homeomorphism, it suffices to
show that the double series ) jeJ ZkeZd c,(cj )}" [Tc_,-k gj] converges unconditionally
in D'(O). To prove this, let K C O be compact. Since ) ;,.; ¢; = 1 on O, the
family ((pi_l((C \ {0}))561 forms an open cover of O D K. By compactness of K,
there is a finite set Ix C I for which K C U @7 (C\ {0) C Ujey, Qi-
Note that 1§ := UZelK ¢* C I is finite. Furthermore, for j € I \ I}, note El\1at
Q;NK C Uie,K 0;NQ; =¥,whencep; = 0onK.Thus,any g € C°(O) C S(RY)
withsuppg C K canbe writtenas g =) ,c; i & = D ;e I 9i 8- A direct calculation
using Lemma 4.6 therefore shows

33 e [(FITek 851 8o

JjeJ kezd

<33 16”1 e FiTcig)). g)s s

iely jeJ kezd

<> Z/Rd 1Y 1e” | (Tek 16 * g1) () dx

ielg jeJ keZd
< DD IR - 1 De;ging il

ielg jeJ

1 - .
<8l Y Y 1detCil7 [(@ixg)oC]ly e gry I ller
ieI;; jedJ

~ -1

=gl - Z [wi Zvjdj Mi,j]
ielg jeJ

~ -1

<18l - Idllgs - M llschur -+ Y wi™" < 00 (4.9)
iel}

Since ¢ +— |[Igll,,» is a continuous norm on CZ°(0) and since g € C*(O) with
supp ¢ C K was arbitrary, the desired unconditional convergence follows.
Next, we show that 2 : Y9 — D(Q, LP, ¢1) is well-defined and bounded.

Fori € I and j € J, define B; ; := |detC.,~|% (@i * gj) o Cjllwe.¢1)- The
assumption that (T, g;) je; yec,z¢ 18 (w, v, ®)-adapted yields by Schur’s test that
the map B : €3(J) — €i,(I), (dj)jes (Zje/ Bij - d;),_, is bounded with
IBllop < llM|lschur- The series defining Z¢ being unconditionally convergent yields

Floi-70=>3 ¢ F @i FiTckgil) =Y Dc;ging, ¢
J€J kezd JjeJ
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Therefore, an application of Lemma 4.6 shows

1y . Go 1S %o . ()
|7 @i 20|, <D 1det Cjl7 - 11(Gi * g) 0 Cillwre o1y - e [ler
=

=Y Bijdj=Bd) <,
jeJ

whence |7 clipg.1r.e) < IBllyg < | MIIschur - 1dllgg = | M lschur - llcllypa.

To prove (ii), let f € D(Q, LP, ¢1) be arbitrary. Define F; := |F~!(¢; f)| for
i € I.Then, F = (F})ijes € £3(I; LP) and ||F||£Z](I;Lp) = ||f||D(Q’Lp’ZZ)). Clearly,
f is (F, ®)-dominated. Therefore, Lemma 4.7 yields 6 = (0 k) jey rezd € Y7 sat-
isfying the estimate | ( f | Tcjk gjlol <0jforall j € Jandk € 74, and furthermore
||9||ny‘1 < IM||schur - ||FQ||£Z,—>£"w : ”FHZ‘{L,(I;LP)' Hence, ¢ : D(Q, L?, EZ)) g lew
is well-defined and bounded, with the claimed estimate for the operator norm.

Assertion (iii) is a direct consequence of Lemma 4.4. O

Proposition 4.8 shows in particular that the reconstruction operator 7 : Y7 —
D(Q, LP, K?U) is continuous. However, in case max{p, g} = oo, the convergence in
Y% is a quite restrictive condition. To accommodate for this, we will often employ
the following lemma.

Lemma 4.9 Under the assumptions of Proposition 4.8, the following holds:
Foreachn € N, let ¢ = (C.E.’?])()je‘]’kezd € Y9 be such that cﬁ",)( 0 Gk € C
forall j € J andk € Z°. Suppose there exists a sequence 6 = 0.0 jes kezd € vl

satisfying |c§-’?,)<| <Ojrforal j e J ke 74, and n € N. Then, the reconstruction

Z'(O
c® L) De.
n—o0

operator 9 satisfies 9

Proof Let f € Z(0©). Then K := suppF~!f C O is compact. Since (<pl._1((C\
{0}))ier isanopen coverof K, thereis a finite set o C 1 satisfying K C U, ¢y, <pl-_1((C\
{0} C Uie[o Q;. This easily implies Q; N K = ¥ fori € I\ Iy, where Iy :=
Iy := Uypeg, ¢ C 1 s finite. Thus, ¢; -F7'f =0fori € I\ Iy, and hence
Flf= Zielf @; F~ f. Therefore,

(Tex 8. fls.s = (FlTewgil. F' flss = > o Fllcugil. F' flss
iely

=D (T (@i v g, fls.s-

iE]f
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For v = (v k) ey keza € Y29, it follows, therefore, by the convergence in Z'(O) of
the series defining Zv that

(D, flzz=)_ > vik(Tex g fls.s

Jj€J kezd

=D > vialTew @ixgp, fls.s - (4.10)

iely jel kezd

Next, Lemma 4.6 shows that

D 0k Tejk @i % 8)). s8] s[d @1 D [076 - (Te 161 % 8j1) )] dx

keZd R kezd

<Wfll - ” DCj,|gZ,-*gj|((ijk)keZd)”LP

<y - 1det €M P -1 % 87) 0 Cillyy oo ety ¥ »
where we defined y; := ||(0; )z |ler in the last step.

1 1
For brevity, let uj := vj - |det C;|7 2. Note that since 6 € Y., we have y =
(Yj)jes € 01 s £2°, which yields a constant C; > 0 such that u; y; < C; for all
j € J. Using this, we see

Z Z Z 0j.k UTck (9i * gj), f)s.sl

iely jed kezd

_ wy 1 -
< U Y (w7 D2 20 1det €1 - 1@ * 87) 0 Cllwany - 4]

icly jed
M;, —1
=C Al Yo Y = = il - (Yo wr!) - 1M lsenur < oo
icly jeJ icly

Finally, since |c(.")| <0;rforallje J, ke 74 andn € N, and since ") —— ¢; s
Jj.k Js Jk 5 oeg SO

applying the dominated convergence theorem in Eq. (4.10) shows that
(2¢™, f)z 2 —= (e, flz.z,

as desired. O

Corollary 4.10 Under the assumptions of Proposition 4.8, the following holds: The
frame operator S .= P o % : D(Q, LP, 01y - DQ, LP, ¢d) is well-defined and
bounded.

Furthermore, if (fy)pen C D(Q, LP,0L) is a sequence satisfying f, — f €
Z/(0), with convergence in Z'(0), and for which there exists F € £4,(I; L?) such
that all f, are (F, ®)-dominated, then f € D(Q, LP,EZ,) and Sf, — Sf with
convergence in Z' (0).
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||F||€?U(I;Lp) foralln € N, Lemma 3.15 yields f € D(Q, L?, ¢L), wherec := € f €
Y71 Next, Lemma 4.7 shows that there is a sequence 6 = 0j.6) jeskezd € Yl
such that if we set ¢ := % f,, then |c§'?,1| < Ojxforall (n,j, k) e NxJ x Z4.
The same lemma also shows that cy',)( — cjyforall j € Jandk € 7. Therefore,

Lemma 4.9 shows that Sf;, = 2 ¢ — % ¢ = Sf with convergence in Z'(0). O

Proof S is well-defined, bounded by Proposition 4.8. Since |l fullpg 1r ¢4y =<

5 Invertibility of the Frame Operator

5.1 Representation of the Frame Operator

The frame properties of generalized shift-invariant systems are usually studied under a
compatibility condition that controls the interaction between the generating functions

and the translation lattices of the system. Specifically, we will use the so-called local
integrability conditions [39, 41, 59].

Definition 5.1 For an open set O C R9 of full measure, let
Bo@®R?) = {f e L>(RY) : fe Loo(@d) and supp fc @) compact}.

A generalized shift-invariant system (7} g;) ¢ J.yeC;zd is said to satisfy the a-local
integrability condition (a-LIC), relative to OF, if, for all f € Bo(RY),

Y | det C,| wec—t i

1 PN
> > A@ IFEFE+agE)EE +a)ds <oco. (5.1
Cj Z

Given (T, 8j)jel.yec;zd» We set A = Ujej CJ._ZZ" andk(a) :={jeJ : ac
Cj_’ Zd} fora € A. For @ € A, we define the functions

ta:@d—MC, &> Z

J€K (o)

/et C)| gj(€)gj¢ +a. (5.2)

Note that ¢, € L”(@d ) for all « € A by (4.1). Furthermore, #,(§ — @) = 1_4(§).

Under the «v-local integrability condition, the following (weak-sense) representation
of the frame operator can be obtained; this follows by polarization from the proofs of
[39,Proposition 2.4] and [41,Theorem 3.4].
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Proposition 5.2 Suppose (T, gj)je.]’yecjzd satisfies the a-local integrability condi-
tion (5.1), relative to O°. Then, for all fi, f>» € Bp (Rd),

Z (il Tekgi)Tckgj | f2)= f HE) FE + )ty (&) dE
aeA

(j ke xzd

_Z T Gt FO] f2) 12 (5.3)

aeA

where the series converges absolutely; in fact,

Z/ 171(6) (& + o)l Z |dtc TaC [ BOGE Tl <00 54
J

aeA

Proposition 5.2 yields an analogous representation of the frame operator on
D(Q, LP, 1), at least on the subspace Sp (RY).

Corollary 5.3 Under the assumptions of Proposition 5.2, the series Zaer FT,
(ta f)] converges unconditionally in Z'(O) for any subset Ay C A, and any f €
So(RY).

Furthermore, if Q is a decomposition cover of O, with subordinate BAPU ®, if w is
Q-moderate, and if v = (v;) jey is a weight such that (T, gj)je‘,yyecjzd is (w, v, ®)-
adapted, then the frame operator S : D(Q, LP, ¢y - D(Q, L?, Eqw)fulﬁllsfor each
f € SoRY) the identity

SF=Y_>(f 1 TciugpoTewgi =2 > (f1Teikgi)e Tejk g
J€J kezd j€J kezd

=Y F ' Tuta P]. (55)

aeA

Proof Since 1, € LR’ and f € SRY), we have T, (1o f) € L'(RY) —
S'RY) — D(O), and hence F~ T, (ty f)] € Z'(0). The Fourier transform
F : Z'(0O) — D'(O) is a linear homeomorphism; hence, it suffices to prove that the
series Zae Ao Ty (tg f) converges unconditionally in D’ (O). To see this, let K C O be
compact. Define f| := f € S@(Rd) C B@(Rd) and set 5 := F g € Bo(RY).
By Egq. (5.4), the constant Cg := > ,cx Jaa |f(§)| 1 + oz) |ty (§)| d is finite.
Now, let € C2°(O) be arbitrary with supp ¢ C K. Then

Y (Tutte . ¥)pp < ||w||Leo/A It (n — @) F(n — )] - Lk () dn
R4

aeNg aeA
= CK ”w”L"O < OQ. (56)
Since || - ||z is continuous with respect to the topology on CZ°(0), and since ¥ €

C2°(O) with suppy C K was arbitrary, the estimate (5.6) simultaneously yields
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that ), Ao Ta (e f) € D'(0), cf. [54,Theorem 6.6], as well as the unconditional
convergence of the series in D' (O).

For the remaining part, note if f € Sp(RY), then (f | Teikgjdo =(f | Tcik 8j) 12
by Remark 3.17. This proves everything but the last equality in Eq. (5.5). To prove this,
let ¢ € Z(O). Then ? = F-lg € C°(0), and hence g € Bo (R?). This, together
with Eq. (5.3), shows

(Sf.@)zz=(SF 182 =Y (F'[Tuta /)] 12)2

aeA

= (X F [T D],

aEA
and hence (5.5) follows. m]
5.2 Towards Invertibility

According to Corollary 5.3, on the set Sp (RY), the frame operator can be represented
as

Sf=Tof +Rf, (5.7)
with
Tof =F (10- ) (5.8)
and
RE=F'( Y Tulta- D), (5.9)
aeA\(0}

for f € So(RY). In the following, we estimate the norms of TO_l and R as operators on
the decomposition space D(Q, L7, 21y, This will be used, together with the following
elementary result, to provide conditions ensuring that the frame operator is invertible.

Lemma 5.4 Let X be a Banach space, and let S : X — X be a linear operator that
can bewrittenas S = To+ R, where Ty, R are bounded linear operators on X. Finally,
assume that Ty is boundedly invertible and that

—1
1Ty " Ix—-x - IRIIx>x < 1.

Then, S : X — X is also boundedly invertible.

Proof We have S = Ty + R = Tyo(idy — (=T, 'R)). But | — Ty 'Rllxx <
||T0_1||X_>X - IRllx—>x < 1, so that idy — (—To_lR) is boundedly invertible by a
Neumann series argument. This implies that S is boundedly invertible as a composi-
tion of boundedly invertible operators. O
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5.3 Estimates for Fourier Multipliers

The operator Tj is a Fourier multiplier, and we aim to estimate its inverse. As a first step,
we prove a general result concerning the boundedness of Fourier multipliers on Besov-
type spaces; see Proposition 5.7 below. More qualitative versions of that proposition
can be found in [56,Sect. 2.4.3], [58,Sect. 2.3] and [23,Theorem 2.11]. Corresponding
results for Triebel-Lizorkin spaces hold under more stringent assumptions on the
decomposition cover; see [56,Sects. 2.4.2 and 2.5.4] and [55].

In contrast to [56,Sect. 2.4.3], we consider Fourier symbols with limited regularity.
This entails certain technical difficulties because of our choice of the reservoir Z'(0),
where Z(0) = F(C(0)). More precisely, if f € D(Q, L?, ¢y ¢ Z/(0), then
f € D'(0) is a distribution, and can be multiplied by a function 1 € C*(0). We
need, however, to make sense of the product with more general functions #, by fully
exploiting the fact that f € D(Q, L7, ¢, To this end, we introduce the following
notion:

Definition 5.5 Let p € [1, 0o]. For f € FL'(R?) and g € FLP(RY), we define the
generalized product of f and g as

fOg:=FI(F'H«F '9)e FLP(RY) c S'(RY).

Remark 5.6 The definition makes sense because of Young’s inequality: (F~!f)
(F _lg) eL? (Rd). Furthermore, our definition indeed generalizes the usual product:
if f e S(RY) and g € S'(RY), then f - g = F[(F~' f) % (F~'g)] —see, for instance
[54,Theorem 7.19].

We can now derive an estimate for Fourier multipliers on decomposition spaces.
The proof is deferred to Appendix C.

Proposition 5.7 Let Q = (Qi)iel be a decomposition cover of an open set ) = O C
R?, and let (¢;)icr be a BAPU subordinate to Q. A continuous function h € C(O) is
called tame if

Cp, :=sup |F (@i - h)ll 1 < o0. (5.10)

iel
If h is tame and if f € D(Q, LP, £L) for certain p, q € [1, 0o] and a Q-moderate
weight w, then the series
@y f =Y F i) © (¢i )] (5.11)
iel

converges unconditionally in Z'(O). Furthermore, the operator ®, satisfies the fol-
lowing properties:

(i) ®5:D(Q, LP, £4) = D(Q, LP, £},) is bounded, with || P4 |- p 0. 1.r 1) > D(0.Lr.¢%)
< NéCq;Ch for arbitrary p, q € [1, co] and any Q-moderate weight w.
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(1) If (f)nen C Z'(O) is (F, ®)-dominated for some F € €4,(I; L) andif f, — f
with convergence in Z'(O), then also ®y, f,, — ®y, f with convergence in Z'(O).
In addition, there is G € €3 (I; LP) such that ®, Jfn is (G, ®)-dominated for all
n € N and such that ”GHZ@Q;LP) < N2QC¢Ch . ||Fz||eZJ(I;LP)-A

(i) If f € D(Q, LP,td) and f € C.(O), then Oy f = F ' (h- f).

(iv) If g, h € C(O) are tame, then so is g - h, and we have ®, P, = Dg,.

Remark One can show that if C}, is finite for one BAPU (¢;);c7, then the same holds

for any other BAPU. Still, the precise value of the constant Cj, depends on the choice
of the BAPU.

5.4 Estimates for the Remainder Term R

The following proposition provides a general condition under which R defines a
bounded operator on D(Q, L7, K%). Simplified versions of these are derived in Sect. 6.

Proposition 5.8 Let Q = (Q;)ier be a decomposition cover of an open set O C R¢ of
Sfull measure, with associated BAPU ® = (¢;)icr. Let w = (w;)ic; be Q-moderate.
Suppose the system (T, &j) je J.yec;zd satisfies the a-local integrability condition
(5.1), with respect to O°. Moreover, suppose that, for all i, £ € I,

N,',[ = ﬂ Z

e, Eavo)

1 < 00 (5.12)
L

f_l(wi(-+04)~ta~<pe)

and that the matrix N = (N; ¢)iee; € C'™*! is of Schur-type. Then, for all p,q €
[1, oo], the “remainder operator R” defined in (5.9) satisfies

”Rf”D(Q,LP,/Z"w) < INllschur ”FQ”%(U—%%(U ”f”D(Q,LP,e?‘,) Vfe S(’)(Rd) .

Proof The assumptions yield, by Schur’s test, that the operator

N: (D) — e, (cmew(z[ > ||¢i(~+a)-ra-¢e||an}-cz) :

tel “aeA\{0} iel

is bounded, with ||N||ZZ,(I)—>£3,(I) < |IN||Schur-

Let f € Sp(R?) be arbitrary. For any £ € I, define ¢, := lo; - f||]:Lp and
O¢ = llo¢ - fllFLr, where @) = 3 . Let ¢ = (¢i)ier and 0 = (6))ies-
Then 0 < c¢ < 3 o6 = (T ). and hence [lcllg < ITallpg . - 161l =
”FQ”[qw‘)e?u : ”f”D(Q,LP,K‘,’U) < 00.

Since f € So(RY), we have f € C2°(0), and hence f = Y rer P f =
Y ve1 9o @) f,where only finitely many terms of the series do not vanish. Therefore,
by the unconditional convergence of the series defining Rf (see Corollary 5.3), we
see

@i'E}‘:(Pi' Z Ta(ta'f)zz Z W'Ta(fa'ﬁl’fi'ﬁof'f)-

aeA\{0} tel ach\{0}
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Hence, foralli € I,

loi - RFIFLr < > N - T (o - 00 - 05 - DllFeo

tel aeA\{0}

<> D i) o @il llgf - Fllrer = Nei,

tel aeA\(0)
and thus
IRfllpeg.rregy = I(lei - RFFLP) iyl
< INcllyg < INllschur ITQN g gt | Fllpgo. 106t
as claimed. O

Corollary 5.9 Assume that the hypotheses of Proposition 5.8 are satisfied. Further-
more, assume that the function to defined in (5.2) is continuous on O and tame (see
Proposition 5.7), so that the operator 4, : D(Q, L?, 1y = D(Q, LP, 01) is well-
defined and bounded. Finally, assume that (T, gj)jejyyecjzd is (w, v, ®)-adapted
Sfor some weight v = (v}) jey.

Define Ty := ®y,. Then the frame operator S : D(Q, L7, 1y - DO, LP, ¢d) is
well-defined and bounded and satisfies S = Ty + Ry with a bounded linear operator
Ry : D(Q, LP, ¢y - D(Q, L, ¢l) satisfying

”RO||D(Q,L1’,ZZ,)—>D(Q,LP,ZZ, = Cp,q”N”Schur ”FQHZ‘&(U—%%(U’

where N € C'*! is as in (5.12), and Cpy = 1ifmax{p,q} < ccand C,, =
Co ||FQ||§¢, _ o Otherwise.

Proof Corollary 4.10 shows that the frame operator S : D(Q, L7, Yy -
D(Q, LP, ¢1) is well-defined and bounded, and hence so is Ry := S — Tp. Note
for f € Sp(RY) that Ty f = F~'(ty - f) by Proposition 5.7(iii). Therefore, Corol-
lary 5.3 shows for f € Sp(R?) that Ry f = Rf with Rf as in Eq. (5.9). Thus, if
max{p, g} < oo, the density of Sp(R%) in D(Q, L?, £%) (Proposition 3.13), com-
bined with Proposition 5.8, shows the claim.

Now, suppose that max{p, ¢} = oo, and let f € D(Q, L, £%) be arbitrary. Then,
Proposition 3.13 yields a sequence (g,)nen C So(Rd) and some F € ¢4(I; LP)
such that g, — f with convergence in Z’(0), and such that each g, is (F, ®)-
dominated, where ||F||E?U(I;Lp) <Cpyq- ||f||D(Q’L,,’qu) with C), ; as in the statement
of the current corollary. By Proposition 5.7(ii), we get Tog, — To f with convergence
in Z’'(0). In addition, Corollary 4.10 shows that S g, — S f in Z'(O). Therefore,
Rgn=Rogn =S —Tygn — (S—To)f = Rof, while Proposition 5.8 shows

IR gn”D(Q,Lp,gz) = ||N||Schur||FQ||e’/ ¢ ||gn||D(Q,Lp,e‘1

w w w

< Cp,q||N||Schur||FQ”[‘]L_>@Z} ”f”D(Ql,Pjﬂ,) .
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Lemma 3.15 yields ||R0f||D(Q,Lp,[Z)) = Cp q”N”Schur”FQ”eZ,H[‘{ﬂ||f||D(Q,Lp,zZ,)
O

In many cases, instead of verifying that the matrix N defined in Eq. (5.12) is of
Schur-type, it is easier to consider the matrix N defined next.

Corollary 5.10 Let Q@ = (Q;)ics be a decomposition cover of an open set O C RY
of full measure with BAPU ® = (¢;)ics, and let w = (w;);jc; be Q-moderate. Let
(Ty gj)je J.yeC;zd be a generalized shift-invariant system. Suppose that the matrix

= (Ni.¢0)i.ter given by

~ w; 1
N; p:=max {1, — _
¢ X{ w(}z |det Cj| 2
jeJ o

eCj_’Zd\{O}

—l(m- —)- g & —a) ~w>H
Ll
(5.13)

is of Schur-type. Then (T}, &) je J.yeC;zd satisfies the a-local integrability condition
relative to OF, and | N ||schur < ”ﬁ”Schury where N is as defined in Eq. (5.12).

Proof By assumption, || N ||schur < 00. We first show that

C—esssupzmmc| Y 1EG®&E+w <oco.  (5.14)
jel

§€0 aeC;'zd

To show this, first note that since O C R is of full measure, SO is
=[teR? : t4acO, Vjel, Va e €27,

since Oy = Uje] Uaecj—rzd (O — @) is a countable union of null-sets. If & € Oy

and j € J,a € Cj_tZd are arbitrary, then & + « € O and hence Ziel piE+a)=1,
whence 1 < ), ;l¢i(§ + «)|. Now, let £ € Oy C O be arbitrary and choose
ip € I suchthat& € Q. Then, Ziei{; @¢(&§) = 1. Thus, using the estimate || f[|sup <

IF=L £l 1, we see that

l -~ ~
2 | det Cj| Y 1§@EE + )
jeJ J

eC?’Zd \{0}

Z ZIdetC| Z 187 (&) i (6 + )& (E + ) (§)]

iel teif jeJ ozeC/."Zd\{O}
Y Nie = Ng- N lIschur < 0.
Leif,iel

In combination with our standing assumption (4.1), this proves (5.14).
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Now, the monotone convergence theorem and (5.14) show for arbitrary f €
Bo(RY) that

ZIdetC| Z /|f(§)f(§+a)g/(§)gj(§+a)|d§

<l [ 1F@1ds < oo,

since fe Loo(]ﬁd) and supp fc O is compact. This shows that (7}, gj)jej,yecjzd
satisfies the a-LIC.

Finally, recall that 74,(§) = 3" ¢, (o) | det Cj| 7! &(€) g + ), where k(a) =
{jeJ:ace Cj_tZd}. Therefore, the matrix entries N; ¢ defined in (5.12) satisfy

Ni,zﬁmax{l,%} > ldet ;|7 | F N @i+ @) - G5 &5 ¢+ o) w)|
acA\{0} jex (o)

Thus, || Nlschur < |V |Ischur, as claimed. |

5.5 Invertibility in the Case (p, q) = (2, 2)
In this subsection, we focus on the special case (p, g) = (2, 2), where the following
identification holds; see [61,Lemma 6.10].

Lemma 5.11 Let Q = (Q;)ies be a decomposition cover of an open set ) #= O C Re,
and let w = (w;)jes be a Q-moderate weight. Then there is a measurable weight v
O — (0, 00) withv(§) < w; forallé € Q; andi € I. Furthermore, D(Q, L2 ) =

1(L2((9)) with equivalent norms, where the norm || f || £- H(L2(0)) = ||f||L2((’)) is

used on F~(L2(O)) = {f € Z/(0) : f e LXO)}.
We will also make use of the following two lemmata.

Lemma5.12 Let ) # O C R be an open set, let v : O — (0, 00) be a weight func-
tion, and let ty be as in Eq. (5.2). Then, the Fourier multipliers Ty : f‘l(L%(O)) —
FULZO), f > F w0 f) and

JFNL0) - FTNLNO), fe F g )

are well-defined and bounded, with || T, ||0p <A~ cmd||T0||0p < B,where A, B > 0
are as in (4.1).

Proof If f € F~1(L%(0)), then

1 17 1
1Ty fllF-1 20 =ty - flirzo) < Mg o) - 1 fll7-122(0y)-

The argument for 7j is similar. O
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Lemma5.13 Let O C RY be an open set of full measure and let v : RY (0, 00)
be vo-moderate for some symmetric weight vo : R? — (0, 00); that is, v(E + 1) <
Cy-v()-vo(n) forall&, n € R4 and some C, > 0. Then the operator R defined in
Eq. (5.9) satisfies

IR 71 z20p—F 120y < Co-esssup Y (@] - v0@).  (5.15)
£€0  4ea\(0)

Proof Since O is of full measure, we have F~ (Lz((’))) F- (LZ(R")) up to
canonical identifications. Let g € Lz(Rd) and f € F~ (Lz((’))) besuchthat ||g|l;2 <
I and || f|l - 120y = < 1. Using the estimates v(§) < Cy - v(§ — ) - vo(e) and

lab| < %(lal* + |b|?) and the identity f (8 — @) = 1_4(£), it follows that

f@d 8@ vE) - Y | - fE—a)|ds

aeA\{0}
=C X w@ [ (il 1e®)) - (1 0l 2 107 - o) de
«eA\{0) R
Cy -
=5 2 vo(a)/Ad|z_a<5)|~|g<s>|2+|ta<s—a>|~|(vf)<s—a>|2ds
«€A\{0) R
Cy
=5 (f > WA @) - le@)? ds
B peavion
/ > w@lal)- |<vf>(n>|2dn>
aeA\{0}

< Cy - ess sup Z vo (@) |ta (§)] -
£€0 yen\(0)

Since this holds for all g € L2(@d) with | g|l;2 < 1, the series

Yo -y fE-—w= Y [Tut- )]E =[RF]E)

aeA\{0} aeA\{0}

is almost everywhere absolutely convergent, and

IRFIF120n = o Y [Tata D], <Coresssip 3 wo@ @,

acA\(0) §€0 4ea\(o)

forall f € F~1(L3(0)) with || fll z-1(12(0y) < 1. This proves the claim. o

Using the previous lemmata, the following result follows easily. See
[45,Theorem 3.3] for a similar result in LZ.
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Proposition 5.14 Let Q = (Q;);er be a decomposition cover of an open set O C R¢
of full measure, and let w = (w;)je; be Q-moderate. Suppose (T, gj)jej’yecjzd
satisfies the a-local integrability condition (5.1) relative to OF. Finally, assume that

C, - ess sup Z [ty (&) - vo(a) < A, (5.16)
5€0 yen\(o)

where A > 0 is as in (4.1), where v : RY — (0, 00) is a measurable weight that
satisfies v(§) < w; forall & € Q; and i € I, and where vy : RY — (0, 00) is
assumed to be a symmetric weight satisfying v(§ +n) < Cy - v(§) - vo(n) for all
£, neR4

Then, the frame operator S : S (Rd) — L%(R?) associated to (T, gj)jej’yecjzd
uniquely extends to a bounded linear operator Sy : D(Q, L?, ézw) — D(Q, L2, 5120).
This extended operator is boundedly invertible.

Proof Lemmas 5.12 and 5.13 show, respectively, that the operators Ty and R defined
in these lemmas yield bounded operators on F~! (L%(O)), so that So := To + R :
}"I(L%(O)) — f’l(L%((’))) is well-defined and bounded. As seen in Proposi-
tion 5.2, we have S f = Sf forall f € So(R?) C Bo(R?). Furthermore, Sp(RY) C
D(Q, L?, Ei) =F~! (L%(O)) is dense (see Proposition 3.13 and Lemma 5.11); there-
fore, Sp is the unique bounded extension of S.

Finally, conditions (4.1) and (5.16) together with Lemma 5.12 and Lemma 5.13
yield that

-1
1Ty 712 on—F-1@2©o) - IRIF-1@20n-F-11200) < 1-

Hence, Sy = To-+ R is boundedly invertible on F -1 (L% (O)) by Lemma 5.4. Using the
norm equivalence || - || -1 (L20)) = II- ”D(QszlﬁJ provided by Lemma 5.11, it follows

therefore that also Sy : D(Q, L?, ézw) — D(Q, L2, 63)) is boundedly invertible. O

Remark 5.15 The formulation of Proposition 5.14 is rather technical, because, under
those assumptions, the formula defining the frame operator might not make sense
for f € D(Q, L?, Ezw). Indeed, the hypothesis are satisfied for every tight frame,
even if g; ¢ D(Q, L? €). If, in addition, (Ty §))je; yec;z¢ is assumed to be
(w, v, ®)-adapted for some weight v, then Proposition 4.8 applies and we can conclude
unambiguously that S : D(Q, L2, E%U) — D(Q, L2, E%)) is well-defined, bounded and
boundedly invertible on D(Q, L2, Ezw).

Remark 5.16 1f (T, g;) jej.yec;ze is atight frame for L*(R?) with lower frame bound
A > 0, which furthermore satisfies the «-local integrability condition, then the mul-
tipliers ¢, € Loo(@d) satisfy #,(§) = Ay for ae. & € R and all & € A, cf.
[41,Theorem 3.4]. The condition (5.16) is then obviously satisfied. The placement
of the absolute value sign outside of the series defining the multipliers #, allows for
cancellations, which can be very important [45].
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6 Concrete Estimates for Affinely Generated Covers

In this section, we simplify the results of Sect. 5 for the case that the decomposition
cover Q is affinely generated. The results obtained here will be further simplified in
Sect. 7.

In the sequel, we will repeatedly use O-localized versions of the generating
functions g; of the system (T, gj)jej,yecjzd. Precisely, given a family (g;)jes of

generating functions g; € L! (Rd) N LZ(R") and a family (S;);e; of invertible affine-
linear maps S; = A; () + b;, we let

g = Idet A7 (Mo gj) 0 AT = FN(gi 0 Si) for (i, j)elxJ, (61)

) that]-"gl.u’j =gjoSi.

6.1 Boundedness of the Frame Operator

As a first step, we provide a sufficient condition for a system to be adapted (see
Definition 4.3). The proof makes use of the following self-improving property of
amalgam spaces, which is taken from [62,Theorem 2.17].

Lemma6.1 Let f € S'(RY) withsupp | C A[—R, R1¢ +& for some A € GL(d, R),
& € R?, and R > 0. Then, there exists a constant C = C (d) > 0 which only depends
on d € N such that

”f“WA*f[fl,l]d(Loc’L') <C-(1+R". I fllpr-

Proposition 6.2 Let Q = (Ai Q) +bi)iel be an affinely generated cover of O C R4,
and let ® = (¢;)ic; be a regular partition of unity subordinate to Q. Let w =
(wj)ier be Q-moderate, and let v = (v;) jes be a weight. Suppose that the system

(Ty 8j)jes.yec;zd satisfies, for (i, j) € I x J,

G wi v <1+||c;.A,-||)d/ P 10| de
jii=maxy—, L §—— 2 max c < 00
b o wi | 1det G2 J g ioizd B

and that G = (G j)iel,jes € C"™/ is of Schur-type. Then, (T, gj)jEJ,VECjZd

is (w, v, ®)-adapted. Consequently, the frame operator S : D(Q, LP ,ZZ,) —
D(Q, LP, t1)yis well-defined and bounded.

Proof We will estimate ||(¢; * g;) o Cjllwcy.er for (i, j) € I x J. Choose r > 1
such that a; C [—r,r]? for all i € I. The norm equivalence || - lwico.ety < II -
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lw

gt (Co.LY) yields an absolute constant K1 = K;(d) > 0 satisfying

(@i % gj) 0 Cillwcy,ery = K- 1@ * gj) o Cillw_, (oL
-1 <
= Ky |det Gl - Ngi % 8jllw,. |\ (Co.Lh)
J ’

fori € I and j € J. Here, we used Eq. (2.1) in the last step. Define P; ; := r -
||C;A,' [l ¢ ¢o. Since supp ¢; C A;(Q}) + b, it follows that

supp F(g; * g;) C A; [—r, 1 + b; = C;’(C; - Ail-r, 1)
+bi C C7'[=P; j, Pijl* +bi .

Therefore, Lemma 6.1 yields a constant K» = K»(d) > 0 such that

||(€0vi*gj)0Cj||wc,e1 <KiKy-(1+ P ;) - |detCj| l'||-7 l(‘Pi'gj)||11~
(Co, ")
(6.2)

Next, recalling the notion of the normalized version goib = @; o S; of ¢; (Definition 3.6),
we see

77 0 - 6) s = 157 w050+ @0 0) s = 17760 6 )

whence Lemma A.2 shows that

_ ~ d+1
|7 e - &) = max [0 (¢} - Fei ),

7d |9|<d+1

Now, since gol.b vanishes outside of Q, it follows that |(8°‘g0ib) &) =<K;3-1 0! (&) forall

IS R4 andany o € Ng with |o| < d+1, where K3 := max|q|<d+1 SUp; ¢; ||8°‘<pl.b||Loo.
An application of the Leibniz rule therefore yields

0
CCRIRIGIEDY <ﬂ) (67 ®)| - [0 1F e 1)

B=o
< 2d+1K3 i ]IQ;/' &) |vm3§_1 |(8V[.7:glu]])(€)|

<

forany 6 € Ng with |#] < d + 1. Integrating this last inequality and combining it with
(6.2) yields

(1+ ||C;Ai||>d/
0

0 b
[det C;| max | (3°[F¢; 1)()] de

>k 0:)o C; <
(@i * g;) ]||W(co,zl)_ 61211
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for a constant K = K(Q, d, ®) > 0. Therefore, the matrix entries M; ; defined in
Eq. (4.2) satisfy

R Wi Yj V2 (5 % o ,
0< Ml,/ = max - | det C/| ”(‘pl *gj) ° C/”W(C(),Zl)
Uj wy
t d
w v (1+||C,-Ai||)/ .
< K. {_,—}— "[Fg.! . d
= Komax o @, Sy WIII;:;LK [Fsg; ;1)) d&

—K-Gij.

This implies || M [|schur < K - [|G [|schur < 00, so that (T}, gf)jeJ,yeC,Zd is (w, v, ®)-
adapted. ' o

6.2 The Main Term

In this section, we provide a simplified bound for the operator norm of TO_l
D(Q, LP, £}) — D(Q, LP, £3).

Proposition 6.3 Ler Q = (S;(Q)))ier be an affinely generated cover of an open set
O c R? of full measure. Let ® = (¢;)ics be a regular partition of unity subordinate
to Q. Suppose the system (T, gj)jejyyecjzd satisfies

supZ(|detC| ‘

iel jed

2
Jmax [9"1Fg] 1 |

Ld+1(Ql’.)> <o00. (6.3)

Then, the function ty defined in Eq. (5.2) is continuous on O and tame, and Eq. (4.1)
holds for all & € O. Furthermore, for all p, q € [1, o] and any Q-moderate weight
w = (w;);ey, the operator

To := @y : D(Q, LP, ¢1) — D(Q, L?, £9)

with @4, as in Proposition 5.7 is well-defined, bounded, and boundedly invertible, with

d+1
M
—1 2 -1
175 p@.0.e9)> D@1ty = Ca - NgCa-[ max Copq-4 ’<Z> ’

| <d+1
(6.4)
where A > 0 is as in (4.1) and
c- 3.(d+1)3/2.2d+1 07 (d+l)2 d+1 65
4= 7d N2+ d) ' ©.5)

Proof We divide the proof into four steps.

Step 1. We show that the series defining #y converges locally uniformly on O, that
Eq. (4.1) holds pointwise on O, and that #; is tame.
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Tosee this, sety; := |g;|*/| det C;],andnoteto = Y, y;j and that y; € C®(RY)
thanks to our standing assumptions regarding the g ;. Now, for arbitrary i € /I, recall
that goib = ¢; o §; vanishes outside Q7, so that the Leibniz rule shows

0%(¢; - (vjoSD)@®)] = > (g) 1094, ©)110° (v} 0 $)(©)]

B«

< co-|detCiI7" D () - 8| Fg; I
<co-detCjl™ -1 (§) - max 371 Fg;;1*(6)]

for ¢g := 24+l max|y<d+1 CQ,,, and arbitrary o € Ng with || <d + 1.
Therefore, using the notation I := {0} U {(d + 1) eg: £ € d} (where (ey, ..., eq)
denotes the standard basis of RY), Lemma A.2 shows because of |¢; - Vil prr =

b
lg; - (vj o S)ll 711 and L5 < 1 that

i yillzr < max [8(¢] - (v 0 S)) | 1 < co- | det ;1"

max |8"|}"giu’j|2|’

[v|=d+1 LY(Q) (6.6)
<cc-detC<_1H max 8”]—"?.2‘ ,
=] i lv|<d+1 [0"1 il | LIT(Q)

where ¢; = ¢1(Q, d) > 01is a constant satisfying || - iz < c1-ll-llga+i(gr forall

i € I, which exists since the (Q;),-E 7 are uniformly bounded. Estimate (6.6) implies
that

sup Y lli - ¥jllsup < sup Y llgi - vjll 1 < cocr - M < oo,
iel jed iel jeJ

where M is as in (6.3). This guarantees the locally uniform convergence on O of
the series 70 = }_;; v;j. Indeed, if § € O is arbitrary, then § € Q; for some i € I
where Q; is open; furthermore, Y ,;« ¢¢ = 1 on Q; and hence Y., 7/ llL>(0;) <
> it 2eei l9e - villsup < 00, which shows that the series o = i:jej y; converges
uniformly on Q;. By locally uniform convergence, we see that gy is continuous on O.
Eq. (4.1) shows that A < fp < B almost everywhere on O; since O is open and #y
continuous, this estimate necessarily holds pointwise on O.

Finally, since supp ¢; C O is compact, we see @; fo = ;je 7 @iyj with uniform
convergence of the series, and hence w_ith convergence in L! (Rd), since all summands
have support in the fixed compact set Q; C O. Thus, F~!(¢; 19) = Zjej F Yy Vi),
which leads to the estimate sup;; 1F Yo o)1 < Sup; g Zje] loi - yillzpr <
coc1 - M < oo. Thus, fy is tame, so that Proposition 5.7 shows that 7o = @, :
D(Q, LP, ¢ly — D(Q, LP, ¢1) is well-defined and bounded.

Step 2. In this step, we prepare for applying Lemma A.4; we cannot apply it directly,
since fy might not be C9+1 Thus, we will construct a sequence (gn)nenN of smooth
functions approximating #y. We will then apply Lemma A.4 to the gy in Step 3.
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For the /gonstruction of the (gn)nen, first note that J is infinite; indeed, we have
g € Co(RY) for all j € J since g; € L'(R?); thus, (4.1) can only hold if J is
infinite. Since J is countable, we thus have J = {j,: n € N} for certain pairwise
distinct j, € J. With this, define gy = Z;quzl Vi, € Coo(@d). As seen in Step 1,
gN — to locally uniformly on O. Since 0 < A < 19 < B on O, this easily implies
GyN — % locally uniformly on O, where we defined

(enGN~', ifgn(§) #0,

Gy:0—-> R €~
N § 0, otherwise.

Thus, ¢; - Gy — ¢; - 15" in L'(RY), and hence F~'(¢; Gy) — F ' (¢; - 151)
uniformly as N — oo. Therefore, Fatou’s lemma shows that

1F (@i - 15 DIt < liminf | F~ (@ Ga)llz1 = liminf [lg) - (G 0 Si)ll 11
N—oo N—o0
6.7)

Step 3. We next estimate lim inf v [|l¢; - (G o S)[| 11. Define
N
(N) . o—1
KM 571H0) = 10,00), € X;m?;%’il 0% (v, 0 S (®)].
n=

Let V; C O be open and bounded with Q; € V; C V; € O and let ¢ € (0, 1). Since
gN — to uniformly on V; andfp > A > O on O D V;, there is Ngo = No(i,e) € N
such that gy > (1 —e)A =: A, on V; for all N > Ny. Note that Kl.(N)(é‘) >
YNy (SiE) = gn(SiE) = A, for £ € ST'(Vi) and N > No.

Define U; := S; ' (V;), fix €@ € U; and € € d, set

=geR: " ... 6206898 euy

and, for N > No,let fiy : U — [A,, 00), & > (gnoS)E s o 6001 & 6o

&é ), noting that }f]f,m)(géo)ﬂ < K™M(EO) for all m € d + 1. Hence, Lemma A.4
shows for all m € d + 1 that

-

‘W §=5© dgm le=¢ fN(E)‘

< Caar- A -max (A7 KVED), (63
(A;l . Kj(N)(g(o)))m}

< Capr - A7 (KM ED))

(Gn o S,)(E)‘ ‘

d+1

where Cy41 is as in Lemma A 4.
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Since & O ¢ U; was arbitrary, we have thus shown, for all £ € U; and N > N,

m ) L A=d+D) (e (N) d+1
max max |0 (G 0 S)(E)| < Cayr1 - Al (K, ©) .

Finally, since goib = ¢; o §; vanishes outside of Q; = Si_l(Qi) C Sl-_l(V,') = U;, the
Leibniz rule shows

07" (¢ - (Gy o SD)®)] =Y (':) 19" (€)1 105 (G © S)(©)]
s=0

_ d+1
< coCay1 - A7 @D (KN ()

1o (€)
forall £ € @d, Led,0<m<d+1,and N > Ny. Thus, Lemma A.2 shows

b
||</7,- “(Gno Si)”]:L]

d+1 b
s T 187" (¢; - (Gn o SD)| 11
0<m=<d+1
d+1 —(d+2) || - (N) jd+1
< a0 Ca+1 - Ae ”Ki HLd“(Qj)

<L ot A7 (Y jderc; ! | max Jo17g] ;2 | o
= g ORI : I a2 1 8 g
jeJ i
d+1 —(d+2
SﬂT'COCd+l‘As( bomdt

Since this holds forall N > Ny = Ny(i, ¢), and since A, = (1 —¢)A where e € (0, 1)
is arbitrary, we thus see by virtue of Eq. (6.7) that

_ _ d+1 _
1F " (i - 19 DIt < —a 0Ca+1 - A @2 M < oo

for all i € [I. Hence, f, U is tame, and Proposition 5.7 shows that CI>t0_1
D(Q, LP, ¢y — D(Q, LP, ¢1) is well-defined and bounded, with operator norm
bounded by the right-hand side of Eq. (6.4).

Step 4. Proposition 5.7(iv) shows CI>tO_|d>,0 = 9 = @,0d>t()_|, where 1 : O —

R, & — 1. Directly from the definition of ®1 in Proposition 5.7, we see ®1f = f

forall f € D(Q, L?, ¢}). Hence, Ty : D(Q, LP, £%) — D(Q, L?, £%) is boundedly

invertible with TO_1 =&, O
0

6.3 The Remainder Term

The next (technical) result provides an estimate of the operator norm of the remainder
term Ry : D(Q, L7, ¢L) — D(Q, L?, ¢l) considered in Corollary 5.9. Here, we
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. . o
makeluse of a normalized version g ; of the generators (g;) jes of (T}, g;) jed.yeC;zds
namely

g9 :=|detBj|7"/*- (M_; g) o B}

for invertible affine-linear maps U; = B () +c;; note that g = | det B;] 1/2 -gjoUj.

Lemma 6.4 Ler Q = (5;(Q)))ier = (Ai (Q}) +bj)icr be an affinely generated cover
of an open set O C R? of full measure. Let ® = (¢;);e1 be a regular partition of unity
subordinate to Q, and let w = (w;);e1 be a Q-moderate weight. Let (T, gj)jej’yecjzd
be a generalized shift-invariant system. Furthermore, assume that (T, &) j< J.yec;zd
is (w, v, ®)-adapted for some weight v = (v}) jey, and assume that the function ty
introduced in Eq. (5.2) is tame.

Suppose that there is a family (U ) je s of invertible affine-linear maps U; = B;(-)+
cj and a weight v = (vj) jey such that the Fourier transform ofg;? = | det B; |~1/2.
(M,Cj gj)o B;’ can be factorized as fg;? =hj1-hjowithhji,hj; € Cd“(@d)
satisfying

max 0% 2()| < C'- (1 +1ED"D for £ e RY.

Moreover, suppose that Y = (a; jX; j)iel,jes and Z = (b; jX; j)icl, jes are of
Schur-type, where

a;,; = max {1, '{j—j{} | det B} C;|~" max {1, 1A (b — )19t

max {1, |A;" B, |4} Ch A"

and
bij = max{l, ¢-} max{1, |A; (bi — ¢j)|} max{1, |A;" B;||**")
max{[|C} Ail, [[CA; |9F1),
and

Xij=max {1, ||B; A+ o R [0%h; (U} Si(©))] dé .

Then, for all p,q € [1, co], the operator Ry : D(Q, LP,qu) — D(Q, LP,EZ)) of

Corollary 5.9 is bounded, with || Ry ||0p < CoCpy ||FQI|£Z)_)quH ’(C/)z' 1Y Ischur | Z || schur
where

2d+2
Coim 24 (3) 7 1 (d+ D¥max {1, RS} max CZ (6.9)
0= T P it 2% '

with Rg = max;es SUpgco |§| and Cp 4 = 1 if max{p,q} < oo and Cp 4 =
Co - HFQHEZJ—%% otherwise.
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Proof For brevity, set v(x) := max{l, x} for x € [0, 00), and note v(xy) < v(x) v(y).
This implies v(w;/we) < v(w;/v;) - v(vj/we), an estimate that we will employ
frequently.

According to Proposition 5.8 and Corollary 5.10, it suffices to estimate

wp 3 T ( ) vein and Lo

i€l el jel kezd\jo)

sup > Y Y v ( ) ek (6.10)

tel ier jel kezd\(o)

L

where K; ¢ j i := |det C;|7" - | &7 - &5 (- — C;’k) c@i (- — C;’k) - Qg ||_7:L]. In order
to do so, note that g; = | det Bj|_1/2 . (]—"g}?) o U]TI. Hence, since J—"g;? =hj1-hj>
by assumption, the term K; ¢ ; x can be estimated as follows:

Kioju=|deeBiC; [T (FeSoui!) 7, i (Fg o) (Teory00) WH}.LI

IA

1 _ _
| det B.C | HTCJ_,,k(gpi.(hj,lon )).(hjﬁonj 1.

' H‘/’z ' (EOU?I) Ter (hj'ZOU.fl)"fL'
1 2
:|detB}Cj| K,(])k Ké.])k

Using the preceding estimate, one can bound L from Eq. (6.10) as follows:

Li =sup Z Z (13) il j.k

i€l jej el kezd\ (0}

2 1
<supz (Z Z <Z>Kél)k> |detBC|1 () sup Ki(,j),k

i€l jer | Meel gezdy\jo) keZd\ (0}

vj 2 — 1
S(SUPZV(*'/) Z Kéj)k> SUPZ<( )IdetBCI1 sup Ki(,j).k>'

il ger NP ez iel kezd\{0}
6.11)
A similar calculation gives
L2<<supz ( ) ) Kf),k)
el We/ | o) I

(6.12)

supZ(u( >|detBtC/|_1 sup K(])>

jel el v kezd\(oy

The remainder of the proof is divided into four steps:
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Step 1. Estimates for Kl(ll)k and Kézj) .- ForjeJandk € Z9, set Hjy :=hj -
T, BTk hj.Since T (goU h=( 57! Eg)onTlforanyé eR%andg : R? — C,
it follows that

-1 PN -1 _ g -l
(hjloU ) —c; ’k(hj»onj )Z(hj’l.T—Bj_lcj_tkhj’z)OUj =Hj,kaUj .
Using the normalization go? = @; o S; of ¢;, a direct calculation shows

K o=lei (hjaoUs") T e (20 U5

Now, define ¢; : R [0, 00), & > maxq|<q+110%hj 1(§)|. By applying Leibniz’
rule, combined with the assumption maxjq|<g+1 8%k, 2(€)] < C’ - (1 + |g])~@+D
and the identity Z,s< ( ) =20l we see

)
o (HioUtos)| . (6.13)

09 H; 1 (6)] <211 €' (1+ & = B 'CRD ™MD ¢58) (6.14)

forall @ € Ng with ] < d+ 1 andall £ € RY, This, together with Lemma A.3,
yields that, foralln e d andm € {0, ...,d + 1},

)[am( woU: o) (g)‘

< By A" -a™ - max |7 H; (U (Si€))]
BeNG with |B]=m ’

< @) max {1, 1B AT g (U (Si6)) (1 + 107 (Si(§))
— B k)T
J J :

Since @ is a regular partition of unity, we have |8“<p @) = Coou ]lQ (&) for

all £ € RY and a € Ng. Thus, setting C; := @d)dtic’ . max|y|<d+1 Co, ¢, and
invoking Leibniz’s rule once more, we see that

|[3d+1((p? . (mo Uj_l o Sl))](5)|
d+1

d
—Z( :; )|3d“ "o, €] - [0 (Hj—k 0 U 0 81)(6)]
m=0
< Crmax {1, [B; A1 1o &) (U (Si@n) (1+1U; (Si(8)
+B;'C k)T
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Clearly, the same overall estimate also holds for |[<,o[.b -(Hj ko Uj_1 o S)H1(&)] itself
instead of its derivative ’8,‘3"’1 ((plb -(Hj —x o Uj_1 o Si))($)|. Thus, setting

Cri=(@4d/m)" (@ + 1) -C'- max Co ¢,
| <d+1

we can apply Lemma A.2 and Eq. (6.13) to conclude

FL! Sdnid] el Haa( (m(’U S)>HL1

< Co-max (1, B} 41 fQ/ &i(U5 ' (8i6))

kD _

b N
i,j.k =™ ||*i (HJ—kOU S)

(1107 e + Bj—lcj"k|)*("’“)ds,

where [ := {0} U {(d + 1) - e, : n € d}. By similar arguments as for k!
obtains

l]k, one

2 —
K < Co-max {1, B7 Ag 4+

‘/Q/ gj (U]'_I(SZ("E))) (14 IUJ._l(SE(g)) _ Bj—lcj—tkl)—(d+1) de.
¢

Step 2. Estimating the supremum over k € Z¢ \ {0}. Note that [§] < |A™'|| - |A&],
and thus |A&| > |A~"|| =" - |&| for any £ € R and A € GL(R?). Hence,

|U].—1(S,~(g)) + BJ._ICj_’k| = |BJ.—1(S,~ () —cj) Bj—lcj—’k|
=B A+ A7 (b —cp) £ ATICTR)| (6.19)
> |A7 B &+ AT b — ) £ ATICHK.

This implies for arbitrary i € 1,& € Q;, kezd \ {0}, and j € J that

It A~ 1<1+|A_1C k< 1+ |+ A7 0~ ,)iA_lc k| + 1&]
+ 147 by = ¢p)]
<3 max{l, Rg}max {1, A7 (b — eI} (1 + 1€ + A7 (b —¢j) £ A7 CTTk])
<3 max{l, Rg}max {1, |A; (b; —cj)|}(1+||A; Bj||-|Uj (SiE)+B; cj ’k\)
<3 max{l, Rg}max {1, [A7 ' (b; — c;)I}
-max {1, 147" B} (14 |U7 (Si€) £ B; ' C;k])
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Setting C3 := 3¢*! - max {1, RdQ+1 }. the preceding estimate implies

1 g @D
sup (l+|Uj (S:E) £ B;IC; k|)
keZd\(0)

< Cymax {1, [A;7 (b — cp)[** max {1, 1471 B; | “F 1€l A !

foralli € I,£& € Q;, and j € J. Using this, and the estimates for Ki("j) i that we
derived in Step 1, we see that

sup K}"’j{k < C2C3max {1, |A; (b — c)|9F ! max |1,
kezd\{0}

A7 B I HIC A X (6.16)
-1
= C2C3|d€tB;Cj|(v(wi/vj)) Zi

forn e {1,2},i el,and j € J.

Step 3. Estimating the sum over k € Z¢ \ {0}. Estimate (6.15) implies

L4 UG SiE) + B C k| = L+ AT BT 16 + A7 (b — cj) + A7 C k|
— -1
> (max{1, 147" B;Il})
1+ 1E+ AT i — ) + AT CE).

By combining this estimate with Corollary D.2, we see for any & € Q that

Yo (T siEn + Bj_ICj_’k|)_(d+l)
kezd\{0}
< max{1, |47 BT DT A+ 15+ AT B — e+ AT CTRDTEHD
keZ4\{0}
<@+ 12 max{1, A7 BT
(U 1€ + A7 (b = e - max {[|CF A, 1€ A 14F!)
< (d+ 1272+ Rg) - max{1, |A; ' B |9
smax(1, A7 (b — eI} - max {IIC A I, 1€ A 14F ).

Here, we used in the last step that || < Rg since £ € Q;.
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(n)

By combining this estimate with the estimate for K; ik

n € {1,2} and arbitrary i € I and j € J that

(n)
Z Kl .k
keZ4\{0}
< Cymax {1, |IB; 4,1}

from Step 1, we see for

‘/,fj(Uj_l(Si(é))) Z (1 +|Uj—1(5i(§))+Bj—1cj—tk|)—(d+1) d
Qi kezd\{0}
< Cqmax{l, [|A; B 1971y max{1, |A;” (b —cpl}- max{”cfA I, ||C’A ”d+1}

=C4-(U(Uj/wl')) ! “Yi, (6.17)
where we defined Cy := (d + 1) - 2374 . (2 + Rp) - C>.

Step 4. Completing the proof. Combining the two estimates (6.11) and (6.12) with the
estimates obtained in Equations (6.17) and (6.16), we conclude that

L1<<supz < ) Z Ke;k) supZ( < >|detB C]| sup Kz(])k>
J€J per keZd\{0) el ey keZd\{0}
< C2C3C4 ||Y lIschur 1 ZlIschur < Co - (C )2 1Y Ischur I Z1Ischur -
The estimate Ly < Co - (C")2 - ||Y |Ischur | Z || schur is obtained similarly. Hence, an

application of Corollaries 5.9 and 5.10 gives || Rollop = CoCp,qlITll 4 9 - (C)? .
1Y [l schur | Z [l schur, as desired. O

7 Results for Structured Systems
In this section, we provide further simplified conditions for the boundedness and
invertibility of the frame operator. For this, we will assume throughout this section

that the family (g;);es of functions g; € Ll(Rd) N Lz(Rd) defining the system
(Ty 8j) jes.yec;ze Possess the form

gj =ldetA;|'? My [go A (7.1)
for certain A; € GL(d,R) and b; € R9 and a fixed g € LYR?) N L*(RY) satisfying
7 e C (R,

Observe that (7.1) can be written as g; = |det Aj|_1/2 - Fl@o S;]), where
Sj = Aj(-) +bj.
7.1 Simplified Criteria for Invertibility of the Frame Operator

In this subsection, we give simplified versions of the estimates for the operator
norms of Tofl and Ry, under the assumption that the generators (g;)jes of the sys-
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tem (T gj) jes.yec,z¢ have the form (7.1) and that the lattices C ;74 are given by
Cj=9¢ AJT’ for a suitable § > 0. We begin with a simplified version of Proposition 6.3.

Proposition 7.1 Let Q = (Sj (Q’j)) e = (Aj (Q/j) +bj) jej be an affinely generated
cover of an open set O C RY of full measure. Let ® = (¢;) jey be a regular partition
of unity subordinate to Q. Let (T, gj)je‘]’yecjzd be such that Cj :=§- A;tfor some
8 > 0and gj = |det Aj|"/? - My [g o A"] for some g € L'(RY) N L2(R?) with
7 € C®°RY). Suppose that there is some A' > 0 satisfying A’ < >jes |’g\(Sj_lé§)|2
for almost all & € O, and that

1/(d+1)
Mo = supZ|:max{l, ||A;1Ai||d+1}.<fQ max |(a“§)(s_;'(s,-s))|2("“)ds) ]

iel jed : loe|<d+1

< 0.

Then the function ty defined in Eq. (5.2) is continuous on O and tame, and the
estimate A" <} |§(Sj_1§)|2 holds for all & € O. Furthermore, for any p,q €
[1, o] and any Q-moderate weight w = (w}) je, the operator

TO = CDI() ZD(Q, Lp, Ez)) — D(Q, va ZZ;)

with &y, as defined in Proposition 5.7 is well-defined, bounded, and boundedly invert-
ible, with

Mo )d+1 . 5d

-1 _
175 (0.0~ pioinehy = Ca NaCo [ max Cova]-(4) 1.<A/

loe|=d+

where Cly = Cq - 2d) 4V with Cy as in Eq. (6.5).

Proof We apply Proposition 6.3. For this, note that since C; = § - A;’ and §; =
| det Ajl_l/2 -go Sj_l, the Q-localized version gl.u.j of g; defined in (6.1) satisfies
]-"gf’j =gjoS; =|det Ajl_l/2 -go Sj_1 o §; and, moreover, | det le_l . |‘7-"g§j|2 =

§ . 3% o Sj_1 o ;. Leibniz rule entails the pointwise estimate

|8%181%(®)| =

3”(8() ~§(E))\ <Y g (§) [P 8] |09 P 26)| < 200

((maxjag <41 |a“§@>|)2
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forany o« € Nd with |a| < d+ 1. Since sj—ls,- = A;lA,-(.)+ A;l(b,- —b;), itfollows
by the chain rule as in Lemma A.3 that, for any v € Ng with [v| <d + 1,

et C;| 7! |0"|1Fg; ;17 )| < 574a |1 AT A" max, ‘(a“|§|2)(sj—1(s,-s))
<87 ad)" max {1, ||A]T1A,~||d+1}

-1 2
( max [ D(S7'i9)])

la|<d+1

for & € R Using this, we can estimate the constant M from Proposition 6.3 as

follows:
g2
max |av|]-'gl-,j| \ Ld+1(Q’.)>

[v|<d+1

M = sup X:(|detC.,~|1 ’

ieJ jed

<5 1 a)¢t!. supZ [max{l, ||A]T1Ai||d+l}

ieJ

jeJ

0! le|<d+1
— Sfd (2d)d+l . MO:

with M as defined in the statement of the current proposition.
By assumption, we have A’ < Zje] |§(Sj_1$)|2, and thus

&) =) |detC;| g &P =5 g7 HP = A 57
jeJ jeJ
foralmostall ¢ € O and hence for almostall & € R?. Therefore, Proposition 6.3 shows
that 7 is continuous on O and tame, that the preceding estimate holds pointwise on O,

and that the operator Ty : D(Q, L?, £1) — D(Q, LP, £1)) is well-defined, bounded,
and boundedly invertible with

_ 2 _
175 p0.o. b8~ Di@.rr.y < @D Ca - NGCo - [ max CQ,(D,(X] (A

lor|<d+1
d+1
) Mo .84
A’ '

This completes the proof. O

Our next aim is to present a simplified version of the technical Lemma 6.4. For this,
we will use the following result whose proof we postpone to Appendix D.2.
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Lemma7.2 Let g € C‘”l(@‘l) be such that there exists a function o : RY [0, c0)
satisfying |0°g(£)| < 0(€)-(1+]&))~“*V forallg € RY anda € Nd with |a| < d+1.
Then, setting

hE) =1+ EDHTD20@), ) = (1 + [~V
we have g = hy - hy on R%. Furthermore, hy, hy € C4*1(RY) satisfy the estimates

max [8%h2(£)] < C'- (1 + €DV max [9%h1(8)] < C'-0(&) (1.2)
le|<d+1 lor] <d+1

forall £ € RY, where C' = (12-d+ 1)2)d+1'

Proposition 7.3 Let Q = (Sj(Q/j))jej = (Aj(Q’j) +b;) jej be an affinely generated
coverof anopen set O C R? of fullmeasure. Let ® = (¢;) jej be a regular partition of
unity subordinate to Q, and let w = (w;) jej be Q-moderate. Let (T, gj)je‘]’yecjzd

be such that C; :=6 - A;tforsome §e€(0,1]and g; := |detAj|1/2 “Mp,[g o A’i]
for some g € LY (RY) N L%2(RY) satisfyiné: g€ g w(@d ). Assume that the function tg
defined in Eq. (5.2) is tame. Assume that Y = (Y; ;)i jey is of Schur-type, where

~

Yiji=Kij- /Q ;<1 + IS SODTT max 10721 (Si6)dE,

with

w; Wi _ _
Kij = max{w—l_, w—{}(max{l, AT (b — bj)l} max {1, |47 A1)
j i

d+1
max {1, ||A171A,~||2}> i

Thenthe system (T, gj)jejyyecjzd is (w, w, ®)-adapted. Furthermore, forany p, q €

[1, o], the operator Ry : D(Q, L7, 11y — DO, LP, ¢d) defined in Corollary 5.9 is
well-defined and bounded, with

4 2 T2
||RO||D(Q,Ll),zz))_)D(Q,Lp,[j{)) =< COCp,q(C/) ||FQ||(5‘1 -0l <67 ”Y”Schurv

w

with Cy as in (6.9), C" as in Lemma 7.2 and C, 4 = 1 if max{p,q} < oo and
Cpg = CCI)”FQ”?q otherwise.

— 1

Proof To show that (T}, g;) je s, ec;z¢ is (w, w, ®)-adapted, we use Proposition 6.2.
Letussetv; := w; for j € J. Note that Fg; ; = gjoSi = |det A;|7!/2-go 505,
An application of the chain rule as in Lemma A.3 shows, for any o € Ng with
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|| < d + 1, that
|0°1F 8] ;1] < [det Aj|7'/2 -l AT A max. 7 (S (5:8))]

< |det Aj|12 @t max(l, AT AT 4157 (S ©)D!

- nax |(8“'7(S (Si&NI.

and hence fQ} max|a‘5d+1|30t[]-'gl.u’j]($)|d<§ < |detAj|—1/2 - dt! max(1,

||Aj71 AN Y Kf]!. Thus, the matrix entries G; ; introduced in Proposition 6.2
satisfy

w; w Y
Gij <8 2" max {—’, —J} max{1, |AT A 191 + S| AT A DY L
Wi w; J J K,‘,j

<Cus-Yij,

forasuitable constant C4 s > O whichisindependentofi, j € J.Thus ||G||schur < 00.

To finish the proof, we will show the claimed bound on ||R0||D(Q Ly z,,,)—>D(Q Lr.d%)-
For this, we will apply Lemma 6.4 with the choices I = J, B; = Aj, ¢; = b;
and v; = w;. In this setting, we have go =g for all j € J. By defining
o : Rl > [0,00), & > (1 + [E)IH] MaXja|<d-+1 |8°‘g(§)| we clearly have
109°8E)] < 0(&) - (1 + |E)~@HD forall & € RY and « € NZ with || < d + 1.
Hence, by Lemma 7.2, we can factorize § = hy - hy with hy, hy € Cd+1(Rd) sat-
isfying (7.2). This shows that the first hypothesis in Lemma 6.4 is satisfied, and it
remains to show that the matrices Y = (Y; )i jes and Z = (Z; ;)i jes of Lemma 6.4
are of Schur-type. For this, note that |det(B;Cj)|_1 = |det(A§.8A]7t)|_1 =64 and
ICsAill =8 ||A]TlA,- | < ||A;‘A,- |l, since § < 1. Therefore,

max{[|CL A, IC5 A 194"}y < q8IlAT Aill - max{1, | AT A; ||}
< smax(l, A7 A"

foralli, j € I.Itis now readily verified that Y; ; < C’-§- Y; jandZ; ; < C'-§- Y j for
i, j € J.where C'isasinLemma7.2. Hence, | Y |lschur | Z llschur < (C')2-82- ||1/||Schur

Therefore, applying Lemma 6.4 completes the proof. O

The factor max{1, |Ai_l (bi — b;)|} that appears in defining K; ; in Proposition 7.3
can be inconvenient. In particular, it does not appear in [62], which makes it difficult
to translate existing concrete examples from [62] readily to the present setting. For
this reason, we supply the following.

Lemma 7.4 The matrix entries 171 j introduced in Proposition 7.3 satisfy 0 < 17, j =<
(1+ RQ)*! .Y, where

V.o 7. =l/q. o —1,¢.
Yi = Li, -/Q;(1+|S,- (SiD*T max [GDS;(Si8))IdE
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and L; j = max{
J.

L ) (max(1, A7 A1) max(1, A7 A P) T for i e

Proof Since sj—l(s,-s) = A;I(A,»s + b — b;) forall € € RY, it follows that

A7 B = bl =147 A AT B — bl < 1A A 11 (147 Aig + A7 (i = b))
+1a714;8)
< 1A A1 (187 SO+ Rl AT A4)

< (1+ Rg) -max{l, A7 Ajl1} - max{1, |47 A;ll} - (14157 (S;6)D

for & € Q;. Using this, the estimate 17,] < 1+ RQ)”I‘H . /Y\,] follows directly
from the definitions. O

7.2 Invertibility of the Frame Operator

The next result summarizes our criteria for the invertibility of the frame operator
obtained in this section.

Theorem 7.5 Let O = (S Q' ))]EJ (A (Q )+ bj)jey be an affinely generated
cover of an open set O C R? of full measure. Let ® = (¢;) jey be a regular partition
of unity subordinate to Q, and let w = (w;) jey be Q-moderate. Suppose that
(i) The system (T, gj)je‘]’yecjzd is such that g; := | det Aj|1/2 “Mp,lg o A’j]/fznd
Cj:=8-A7" forsomes > 0and some g € Ll(Rd)mLOO(Rd) withg € C®(RY);
(ii) Thereisan A" > 0 such that A’ < Z/el |g(S éj)| for almost all ¢ € O;
(ii1) The matrix Y = (Y, ,j)i,jed is of Schur-type, where Yl ,j as in Lemma 7.4;
(iv) The term My defined in Proposition 7.1 is finite.
Then the system (T, gj)je‘/’yecjzd is (w, w, ®)-adapted, and for p, q € [1, ], the

frame operator S : D(Q, LP, 01y — D(Q, L?, ¢1) associated to (T, gj)je‘]’yecjzd
is well-defined and bounded.

Finally, for given p,q € [l,00], let Cq. 0w = max{[supjej)n(Q’j)]*diH,
[KdKQ,w]l/(d"‘Z)}, where

72 . (d + 1)>/2 . 2d+2
Kq i= (zd)(d+1)2(8d)2d+2 25445 (g 4 1)8d+10., d+1n

3d
%(d+1)2 d+1
In(2 +d)
and Kg ., = ||FQ||;;Y o NG max{1, C3}(1 + Ro)**™* maxjgj<it1 CY) 4 - Then,

if 8 > 0 is chosen such that

d+1 —~ 1

)
Ca. 0w M™ - (I lenar) ™ - 5 < 1, (7.3)
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then the frame operator is also boundedly invertible as an operator on D(Q, L?, £1).

Proof We proceed in two steps.

Step 1. Suppose that § < 1. Since A" < 3., |fg?(Sj_1§)|2 for almost all £ € O, and
since M is finite, an application of Proposition 7.1 shows that #( is continuous on O
and tame and that Ty := @, : D(Q, LP, £},) — D(Q, LP, £1,), with &, as defined
in Proposition 5.7, is well-defined, bounded, and boundedly invertible, with

—1 d+1 _
175 ipo.rr.etyopio.rreny < CV - MEF - (A)~@H) . 5

for arbitrary p, g € [1, oo]. Here, c .= (2d)<d+1)2 Ca NéCq; ‘MaX|g|<d+1 CQO, d,a>
with Cy as in Eq. (6.5).

Lemma 7.4 shows that [|¥[lschur < (1 + RQ)*T" |V ||schur < 00, with ¥ as in
Proposition 7.3. Therefore, Proposition 7.3 shows that the system (7, g;) j¢ J.yec;zd is
(w, w, ®)-adapted, and hence the frame operator S : D(Q, L?, £1,) — D(Q, L?, {1,
is well-defined and bounded for all p, g € [1, oo] by Corollary 4.10.

Lastly, it follows by Proposition 7.3 and Corollary 5.9 that the frame operator S
can be written as S = Ty + Rg, where

IRl p(Q, 0,9y 1r ey < €282 1V Iepur < € (14 RQYT2 - 82 17 ISy

where C? := CoCp 4(CH*|Tgllyg 40, with Co as in (6.9) and C” as in
Lemma 7.2, and with C), 4 := max{l, Co} - ||FQ||§(, R Here, we used the easily
verifiable estimate [|I'g || A s 1.

w

Therefore, for arbitrary p, g € [1, oo], a combination of the above estimates gives

175 llop - I Rollop = CVCP (1 4+ RQ)> 2 - 827 ¥ |5y, - MG - (A)7HD

d+1
1/(d+2 = ~ 1§ d+2
_ [(C(I)C(Z)(l +RQ)2d+2) /(d+2) M '(||Y||§chur)"” .?]
ol 1§ qd+2
= I:Cd,Q,w ' M(;Hz : (”Y”%chur)wr2 ’ E] <L
Therefore, Lemma 5.4 implies that the frame operator S = Ty + Ry

D(Q, LP, L) — D(Q, L?, £1) is boundedly invertible, as claimed.
Step 2. In this step it will be shown that (7.3) already entails § < 1. To this end, first note

~ e PO 2 e
that A" < 3", 18(S7'mI? < (X;es 1867 'm)I)", and hence -, 18(S; 'n)| =
+/ A’ for almost every n € O. Thus, for any fixed i € J,

Pison = Y = [ SR sonlds = | VAas = VA -p.

jelJ ijelJ
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Next, by applying Jensen’s inequality, we see that the constant M introduced in
Proposition 7.1 satisfies, for each i € J, the estimate
de >1/(d+1)

/ ol ey 2(d41)
MOEZ(?»(Q,')/Q; a7 P S

jeJ
=[] Y / I8N ds
jes i
= G [ S s s P e
Qi jes
= [A(EPIV DT AT o)
— A/ . [)\'(Q;)]l/(d-’_l)

Overall, we see that

L BTRPN i 3 _
i = M - (1Y 5epar) T2 = A" supli(QD]T2 = C g, A
ie
and hence Cq,0 y - K - % > 6. Thus, if § satisfies Eq. (7.3), then 6 < 1. O

7.3 Proof of Theorem 1.1

Theorem 1.1, announced in the introduction, is just a reformulation of Theorem 7.5,
with the following identifications of notation: A = A’; B = B’; M1 = ||Y ||schur- U

7.4 Banach Frames and Atomic Decompositions

We now remark that, under the assumptions of Theorem 7.5, the system
(Tsp-1 8)) jes keze forms a Banach frame and an atomic decomposition ([33]) for
; .

the Besov-type spaces D(Q, L?, Z?U), and, moreover, the corresponding dual family

is given by the canonical dual frame.

Corollary 7.6 Suppose that the assumptions of Theorem 7.5 are satisfied, including

the assumption (7.3). Then the system (Tg 41, &) jej kezd forms a Banach frame and
; .

an atomic decomposition for all of the spaces D(Q, L?, £%), p,q € [1, o], with
associated coefficient space Y'? as in Definition 4.5. Precisely, the analysis and
synthesis maps

€ DQ L ) — YD f > ((f | Tyaoni 8100) joy g

k k
and 7 : YD — D(Q, LP 4. () peni >y > ¥ Ty 8]
Jj€J kezd
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are well-defined and bounded, and satisfy
(ST o D) o€ =idpg v, and Do (€ oS™") =idpg r )

Proof Theorem 7.5 shows that (TM ' g])jej rezd 18 (w, w, ®)-adapted. Thus, the

boundedness of €, Z follows from Proposmon 4.8. The remaining statements follow
from the invertibility of S = 2 o € proven in Theorem 7.5. O

7.5 An Example

We conclude with an example verifying the hypotheses of Theorem 7.5 for Besov-
type spaces associated with covers that have a geometry which is in a certain sense
intermediate between the geometry of the uniform and the dyadic covers. These covers
are an instance of the non-homogeneous isotropic covers from [56,Sect. 2.5] and
[58,Sect. 2.1]; the corresponding spaces are also known as a-modulation spaces [32].
For similar calculations of other concrete examples, we refer to [62].

For fixed & € [0, 1), the a-modulation space with parameters p, g € [1, oo] and
s € Ris defined as Mg (R?) := D(Q, L, ¢? | ), where the cover Q) of R is
given by

(@) . (o) ()
QW = (A" 0 +b; ),eZd\{O}’

where A(“) = /% idpa, b(“) = [j|% j, andQ = B,(0), with & := 7% and
r > rog = ro(d, @). Under th1s assumption on r, one can show that 0@ s indeed an

affinely generated cover of Rd see [10,Theorem 2.6] and [62,Lemma 7.3]. Finally,
the weight w*® is given by w(s ) = |j|*/4= for j € Z?\ {0}. In the following, we
will simply write O, A, and b for Q@ A(“) and b(a) and fix some r > ro(d, «).

Fix so > 0. In the followmg, we will only con51der ‘smoothness parameters”
s € [—s0,50]. Take g € L LR N L2(RY) such that § g€ C*®(R?), and assume that
there are ¢, C > 0 and N > 0 such that

g€ =c Y[l <r and Jnax 0°8@E)| < C- (1 + D" vEeR

(7.4)

We will determine conditions on N (depending on d, «, sg) which ensure that the
prerequisites of Theorem 7.5 are satisfied. In fact, it will turn out that it is enough if
N > 4d + 3+ v where 7 := Me[o 00).

To show this, note because of Q) = B,(0) forall i € 74\ {0} that

S71(8i0)) = Br, ;& ;) where R; ;= (il/Ij))* r and & ;= (il/1j)* i - .
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Thus, applying the change of variables n = Sj_1 (S;&), combined with the estimate
(7.4), yields

o —1 gy n2d4+2 @ “1,c
Zij = fQ;(l_HSj (S:&)D |ar|r§11§r] [0 §](Sj (Si€))d&

i\ _
=(’—. / A+ D+ max [[0981(n)|dn
] Br, ; (&.)) lo|<d+1

190 2d+2—N
5C<—) f (1 + [+ ap,

l7] Br, ;i)

A similar computation shows

1

d+1
W = < max |(a“§)(sj—1(s,~g))|2("“)dg) :

Q! laj=d+1
13

1
i1\ _ L&
sc2(<f (4 2N Dan )
li] Br; ;(ij)

Using the notations

T S\ k
A= ( [ asm dn) and 5T = (m> A
’ B, (&.)) ’ |2 ’

fori, j e 74 \ {0} and k, M € R, T € (0, 00), we have thus shown

[l

Zij < CEEON-221 g 2 Ei[’%,2N(d+l)>dl?] 1.5)
This is useful, since [62,Eq. (7.13)] shows for M > d + 1 that
aﬁ.’f}.M’f' < C (14 |j—ipkitedtl=M v, i c7d\ (0}, (7.6)
where C' = C'(a,d, M, r, 7, |k|).
Now, using that wﬁs’a) =1j[*/0=9 and A ; =17jl*id, a straightforward computa-

tion shows that the quantity L; ; introduced in Lemma 7.4 satisfies

can2d+ Do+ L L .
(1j1/1i)> D% g < |,

L; j= Is|
> . N\ —3(d+1 —
(1j1/1i]) D0

< max {(|j|/|i|)", (|j|/|i|)*”},
if [i] > ||

@ Springer



Invertibility of Frame Operators on Besov-Type... Page 57 0f 72 149

where we introduced o : M € [0, oo) In combination with Equations (7.5)
and (7.6), we thus see that the matrlx elements Yl, j introduced in Lemma 7.4 satisfy

Y: . ~[dag, N—2d—2,1
0<Yi;=LijZ;<C-max{(1jl/lil)°, (1jI/1i1)"7} - &5 I
glo+dao,N=2d=2,1] gldey—o,N-2d—- 21]}
ij > Mg
<C.Cy-(14|j —i|)oHdeotd+1-(N=2d-2)

= C - max | g

=C-C-(1+]j— l-|)0+d<¥o+3(d+l)—N’

where C1 = C1(d, o, N, r, sp). From this, it is easy to see that ||?||Schur <C-Cy < 00,
provided that N > 4d +3 4+ o +dog = 4d + 3 + t, where C» = C(d, o, N, 1, 50).
We have thus verified condition (iii) of Theorem 7.5.

Next, we show that My < oo for My as defined in Proposition 7.1. The same

arguments as for estimating ¥; ; give

Viji=max {1, |A7 LAt wy

[d—f’ AN(d+1), d+1] [ (d+1 (d+1)) 2N(d+1),1/(d+1)]
Si,j

=
Ol
T

d d+1 1
< c?. Cy-(1+1j — i|)aoﬁ+d—+l(d+1—21v(d+1))

< C2 -Cx - (1 + |] _ l~|)1+a0<(d+l)—2N’

< c? max{

where C3 = Cs(a,d, N, r). From this, we see that the constant M introduced in
Proposition 7.1 satisfies My = ||V |schur < C2C4 < oo for a constant Cy =
Cy(a,d, N,r),assoonas N > 1+d(1+0l0) whichisimpliedby N > 4d+3+o+doy.
Thus, condition (iv) of Theorem 7 5 is satisfied.

Lastly, we verify condition (ii) of Theorem 7.5, that is, ) jezd\(0} | g(S é W= A

forall¢ € ]Rd where A’ := 2, withc¢ > 0asinEq. (7.4). To see this, note thatEq. (7.4)
implies |g]*> > ¢? 1o, where we recall 9 = B,(0). Hence, |g(Sj é§)|2 > cz]IQj,

since Q; = S§;Q. Finally, since Q@ — (Qj)jeZ"\{O} is a cover of @d’ we see
2 jezd\(0) |§(Sj_1$)|2 > 2 = A/, as claimed.
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Appendix A: Estimation of the L' norm
A.1: Sobolev Embeddings

In this appendix we give an explicit bound for the constant implied in the estimate
1F~ fl < max|q|<d+1 0% 1. Similar, but more qualitative results in the non-
commutative context can be found in [36, 51].

LemmaA.l Let d € N and a,c > 0. Define g : R? — (0,00),x >
(max{c, ||x||goo})7a. Then f]Rd g(x)dx < oo ifand only if @« > d, and in this case

g(x)dx = et
—/]R" 1-4

Proof Let u denote the Lebesgue measure on RY. We will use [25,Proposition 6.24],
which shows for measurable f : R¢ — C that

flfldu=f xr(B)dB.
R4 0

where A ¢ (B) = u({x eRY | f) > B }) . To compute the distribution function

Ag, first note that g(x) < ¢™* forall x € R4, and thus Ag(B) =0 for B > c™“. For

0 < B < ¢, note that g(x) > S is equivalent to ||x|l¢~ < B~'/%, whence to x €
£ RIS

Bg;”l/a (0). Therefore, for any g € (0, c™*), we compute Ay (8) = M(B/!,”f/a (0)) =

2- ,3"/"‘)", and thus

/ g(x)dxszkg(ﬂ)dﬂzzd_fc ﬁ—d/ozdﬁ’
R4 0 0

which is finite if and only if d/« < 1. In the latter case, a direct calculation shows
that

—ald ¢ d
o c 2 _(C—a)l—a_ld _

d - d
B=0 1 ~ 1 >

1
/ gx)dx =27 P
R4 1

o
yielding the desired result. O

The following result provides the announced estimate. For this, we use the usual
Sobolev space

WhI(RY) = {feLP(Rd) 0 9%f € LP(RY) Vo e Nd with |a| §k},

with norm || f[lye1 := 311 104 flip1
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LemmaA.2 Suppose f € WItLI(RY). Then F~' £ € LY(RY) with

d+1
IF < S

0
-max ||0 1,
= = max [0 £,

wherel := {0}U{(d+ 1)e; : £ €d} C N4 with (ek)Z:1 denoting the standard basis
of RY.

Proof Since S(Rd) c wétl 1(]Rd) is dense (see e.g. [3 E10.8]), and since
F~' f, = F~Lf uniformly if f, — f in Wt 1(Rd) — L (Rd) it suffices—in

view of Fatou’s lemma—to prove the estimate for f € S (Rd ). In this case, elementary
properties of the Fourier transform yield for all o € Nd and x € R? the estimate

X - FL o) = Qo) FL @ ool < @7 18% fll .

Next, using the auxiliary function ¢ : R — (0,00), x > (max{(27)7!,
llxlee })~@HD it follows that

IF 0] = g(x) - max{m) =D x4 |7 F )

= g(x) - max {(2n>—<d+” AFT L max [ 'f_lf(x)\}

< g(x) - max {(zm—(‘”“ Al max [y~ @D ||aZ+1f||L1]}
ed
=< g - o)~V max [0 £ 1. (A1)
€
Hence, it remains to compute the integral fRd g(x) dx. For this, note that an application

of Lemma A.1 (withc = 27) "' anda = d + 1) gives [ g(x) dx = l_id,]d ced—e =
24+l . (d + 1), and thus

d+1
IF 7 fllp <2 o @d+ 1) - @)=Y max 97 f |1 = f, -max [|0° £l 1,
oel T oel

which completes the proof. O

A.2: The Chain Rule

Lemma A.2 allows to estimate the FL! norm of f in terms of the L' norms of certain
derivatives of f.In many cases, we will have f = g o A, where we have good control
over the derivatives of g. In such cases, the following lemma will be helpful.

LemmaA.3 ([60,Lemma 2.6])
Letd,k € N, A € R4 and f e CK(R?) be arbitrary. Let (e1, ..., eq) denote
the standard basis of RY, let i, ..., iy € d, and define o = an:l e, € Ng.
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Then || = k, and

F(foA) = D (A Agi - @0, )AX)]  VxeR?

(A2)

A.3: The Norm of a Reciprocal

LemmaA.4 Let m € N and let U C R be open. Suppose that f € C"™(U) never
vanishes on U. Let A > 0, K > 0, and xo € U be such that

Ifxo) = A" and |fPGo) <K Vi<t<m.

Then the reciprocal F := 1/ f of f satisfies
i

dxt

F(x)
0

< Cp-A-max{AK, (AK)"}

X=X
forall 1 <€ < m, where the constant C,, satisfies, forall 1 < < m,

0.8 2

15cm§3\/ﬁ(ﬁ)m.

Proof Setting g : R\ {0} — R, > t~!, we have F = g o f. Therefore, the “set
partition version” of Faa di Bruno’s formula, see for instance [42,p. 219], shows for
1 <€ < m that

FOG) = Y [P (foon T %00,

wePy Bem

where Py C ZZK denotes the sets of all partitions of the set £ := {1, ..., ¢}. Phrased
differently, the set Py contains exactly those subsets 7 C 2¢ of the power set 2¢ for
which £ = |H7 and B # @ for all B € m. For each m € Py, we denote by |r|
the number of blocks of the partition determined by ; that is, || is the number of
elements of 7. Likewise, for a block B € m, we denote by | B| the size of the block,
that is, the number of elements of B.

Aninduction argument shows that g® (1) = (—=1)*-k!-+=**+D forallk € Ny. There-
fore, for arbitrary 7 € Py, it follows that |[g(™D(f(xo))| = |z |! - | f (xo)|"IHI7D <
¢!+ ATl since any 7 € Py satisfies £ =Yg |Bl = Y pc, 1 = |7|. Similarly, it
follows that

[TIF"® 60| <[] & =&

Berm Benm
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for all m € P,. Combining these observations shows that

|FO(x0)| < Z (¢1-A-(AK)'™) < A-max {AK, (AK)"} - €1+ |Py|,

weP,

where we used again that 1 < || < ¢ forw € Py. Since £! < m! and | P¢| < | P,,| for
£ < m, it suffices to show that C,,, := m!-| P, | satisfies the bound stated in the lemma.
Here, the cardinalities | P,, | are the so-called Bell numbers. For these, [9,Theorem 2.1]
provides the bound | P,,| < (m(z‘f;—fnl))'". Furthermore, the version of Stirling’s formula
derived in [50] shows that

m! < N2 e (m/je)y" - m <3 (mfe)" - m .

Combining these estimates gives the desired result. O

Appendix B: Proof of Proposition 3.13

(i) Let f € Sp(R?) and set K := supp fC O.Fori € I,theset U; := <pi_l((C \ {O})
is open. Moreover, since ) ;.;¢; = 1 on O, it follows that O = (J;; U;. By
compactness of K, there exists a finite subset /x C I satisfying K C |, e Ue C
UZEIK Q¢. Therefore, forany i € I satisfying Q; N K # @, necessarily ¥ # Q,NK C
Qi N Uper, Qr, and hence i € I = (Je, €*, which is a finite subset of 1. By

contraposition, we have Q; N K = ¢, and hence g¢; - fz 0, foralli € I\ I§.
Next, for each i € If, clearly ¢; - f € CSOA(O), and thus | F~1(g; - f)llLr < o0.
Therefore, setting M := max;e I1F~Ygi - f)llLr < oo gives

1o,y = | 1F ™ @ Diler)icy |, = [ODiery g < o0,

which shows that f € D(Q, L?, ¢1).

(ii) Let p, g € [1, 00). Recall the notation Co = sup;; ||.7:’1<p,-||L1 from Defini-
tion 3.3. Let f € D(Q, L?, ¢%) and ¢ > 0 be arbitrary. Note ¢ = (c;)ies € £L,(I),
where ¢; = |F~'(¢;i - f)llLr fori e I. Since el = I fllpo.Lr.eg) < o0 and
since ¢ < oo, there exists a finite set Iy = Ip(e, f) C I such that the sequence
¢:=c -1y, satisfies

| ™

-2
170 < (Co- Tl g ) -

For each i € I = Uy, €7, let ¢f == (I'gc)i = ) 4 c¢ and choose some
hi € S(RY) such that | F (g} - f) — hi|,, < 6-cf, where 8 := (¢/2) - (Co -
”FQllEi—%i)_z (14 ”CHIZi’U)_l' This is possible since we have p < oo, and since if
¢f = 0. then |~ (7 - Py < Xpen IF " (@e DIy = ¢f = 0.
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Define g; := hi € S(@d) fori € I§,and g; := 0 fori € I'\ I}. We claim that

|7~ i - F)=F gl = (T@+6-Tqc) (B.1)

i

for all i € I.To show this, distinguish the two cases i € 16“ andi e I\ I(’)k . In the first
case,

|7 i - ) = F il o = 177 @ P =iy < 8- ¢f = 8- (Tgo)

by choice of A;. Since, furthermore, (I'g ©); > 0, the estimate (B.1) holds in the first
case. For the second case, we have g; = 0. Furthermore, i ¢ I and thus £ ¢ Iy for
all £ € i*. Therefore,

|7t D) = F il = 177 @0 D
< Z []11\[0(5) : ”-7:_1«0@ : f)||Lp] = (FQE)i'

Lei*

As in the first case, we thus see that estimate (B.1) holds.
Define g := F~! ( Yl @i -g,-). Then g € So(RY) since g; = 0 for all but finitely
many i € /. Next, note that ¢; ¢ = ¢;, and hence

¢z~JC/—\g=¢e~(Z<pi~f—Zwi~gi)=<pe-Z[<pi~(</>§‘f—gi)]-

iel iel iel*

Using Young’s inequality, we thus get

1F e F=lr < 1F el Y (nf—lw,-nu NF e )= f—lg,»nm)
iel*

= Cczb . Z (FQE+8~FQL‘)i = C<21> . [FQ(FQ’E+8'FQC')]Z’

iel*

where the last inequality follows by (B.1). This finally implies

Lf = &lipa.Lrety < Co - ITall - (ITQ e
+8-ITgclly) < (Co ITalD? - (Tl + 8- llcllyg) < e,

which completes the proof of (ii).

(iii) Since Q is a decomposition cover, the index set / is countably infinite. Indeed, the
sets ((plf ! (C\ {0}))1‘E ; form an open cover of O. Since O is second countable, there
is a countable Iy C I such that O C Uie[o (pi_l(C \ {0}) C Uielo Q;. Finally, for
iel,wehaved # Q; C O C UZGIO Qy, and hence i € £* for some £ € Ij. In other
words, I C [y, €* is countable as a countable union of finite sets. Finally, if / was
finite, then ) ;_; ¢; € C.(O), in contradiction to O being open andto ), .; ¢; = 1
on O. Thus, we can write I = {i,: n € N} for pairwise distinct (i,,),eN-
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Foreachi € I, wehave f; :== F~ ' (¢; f) € LP(R?) with suppﬁ C suppy; C U;
for the open set U; := (gpl.*)’l(C \ {0}) C QF C O, since ¢Fp; = ¢;. Now, for
each fixed i € I, [61,Lemma 3.2] yields a sequence ( fi(n)) neN of Schwartz functions

such that | fl.(")| < |fi| and fl.(n) —— f; pointwise, and such that supp fl.(") C
n—oo

By /n(supp ¢;), where By, (supp ¢;) := {§ € R4 . dist(¢, supp ¢;) < n’l}. By choos-
ing N; € N with By, (supp ;) C U;, and by replacing fi(l)’ L fl_(N,-) by ‘fi(Ni)’ we

get suppfl-(") C Ui C Qf COforalli € [ andn € N.

S' (R4 . .
Note that we have fl.(") A fi. Indeed, if p < oo, then this follows from
n—0oo

LP S . .
fl.(”) ——> fi, which is a consequence of the dominated convergence theorem since
n— o0

|fi(n)| < |fil € L? and fi(") — f; pointwise. If p = oo and h € S(R?), then
™ -h — fi-h pointwise, and we have the estimate | £ -h| < | f-h| < || fillLo-|h| €
L', whence ( fl.("), h)s' s — (fi, h)s s by dominated convergence.

Now, define gy = Zflvzl fl.’(lN) e Sp(R?). We first verify that gy — f with
convergence in Z'(O). To see this, let ¥ € Z(O) be arbitrary. Then F~ 'y € CX(0),

so that K := supp F~ 'y C O is compact. Precisely as in the proof of Part (i), we
thus see that there is a finite set Ix C I such that Q; N K = @ foralli € I\ Ig.

Therefore, U; N K C QF N K = @, and hence fl-(") -F~ly =0, foralli eI\ Ig.
Now, choose Ng = No(K) € N such that I} C {i1,...,in,}. f N = Ny, we then
have

N —_—
(en-V)zz = @N. F ' Wiponp =Y AV F o)

n=1

= > (M F o).

iely
where the last equality follows since {i1, ..., iy} D I and fi(N) Fly =0fori e
I\ I Next, using that £, — f; in &' and noting that ="y = ¥, ¢ F 'y =
Yiers ¢i F ', we see that

(v Wz.z —— D (o FWporD

iell’g

= Z((ﬁiﬁ F ') po).p
ie[jg

= (/. F "¥)po)p

=(f. ¥z z.

Thus, gy — f with convergence in Z’(O).
N—o0
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Finally, we construct a sequence F = (F;);c; € £3,(I; L?) such that each gy Ais
(F, ®)-dominated. To thls end, set F; := Zee,** |gi| % | fe|, where fp := .7-"1(90(~f).

Note because of supp f;" ® Q;“n that ¢; - f.ELN) # 0 can only hold for i, € i**

1

Therefore, since | fi( )| < |fil, we get

) RRLICI

neN :ipei**

|7 i gn)| = ‘fl<</?i' Z fiiN)) <
neN :ipei**

<Y gl 1fel = Fi.

Lei**

Finally, setting ¢ = (c;)je; With ¢; = || F~(g; f)||Lp, we see because of i** =
Ujei J* that

WFilr < Y 1F il 1fel o < 3 D IF Yoilipn - fellie < Co - (T T Qo) -

Leir jei* tej*

Thus, F € ¢2(1; LP) with ||F||£q a:rry = Co ||FQ||[L, N ”f”D(Q,LP,eZJ)’ since
||f||D(Q,Lp‘g‘{U) = ||C||gﬁ, ]

Appendix C: Proof of Proposition 5.7

Before proving Proposition 5.7, we first collect a few properties of the “generalized
multiplication operation” © introduced in Definition 5.5.

LemmaC.1 Let p € [1,00]. For f, g € FL'(R?) and h € FLP(RY), the following
properties hold:

D) fOEOMN=(fOg Oh
Gi) If f € SRY), then f Oh = f - h.
(i) If p € [1,2], then f Oh = f - h.
(iv) We have supp(f © h) C supp f N supp h, where the support is understood in the
sense of tempered distributions.

Proof (i) Note that fv gelL (Rd) and € L”(Rd) Thus, Young’s inequality shows
for almost all x € R? that (|f| * (|g] * |h|))(x) < ooc. For each such x, a standard
calculation using Fubini’s theorem shows (( f x g)* h)(x) ( f * (g * h))(x) Hence,
both sides are identical as tempered distributions. Thus, (f © g) ©h = f © (g © h).
(ii) This was already observed in Remark 5.6.

(iii) It is well-known that if p € [1,2], then g * ¥ = ¢ - ¥ for ¢ € L' (R?) and
Yy eLP (Rd). Indeed, for ¢, v € S (]Rd), the identity is clear; furthermore, it follows
from the Hausdorff-Young inequality that as elements of L? (RY), both sides of the
identity depend continuously on ¢ € L IRy and ¢ € L?(R?). Therefore, f © h =
Fl f * h] = f-h.
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(iv) Let ¢ € C®(R9) with suppp C R \ supp f. There is ¥ € C®(RY) with
¢ =¢ Y and suppy C RY \ supp f. Furthermore, by combining Properties (i) and
(ii), we see that

V- (fON=yO(fOhN=U0NHOh=W- f)Oh=0.

Because of ¢ = - ¢, this entails (f © h, ¢)s. s = (¥ - (f O h), ¢)s.s = 0. Since
this holds for every ¢ € C“(Rd ) with supp ¢ C RY \ supp f, we see supp(f © h) C
supp f. The argument for supp(f ® k) C supp  is similar. O

With this preparation, we can now provide the proof of Proposition 5.7.

Proof of Proposition 5.7 Before proving the claims, we show that @ is well-defined,
with unconditional convergence in Z’'(O) of the defining series. For brevity, let ¥; :=
F@rh) O (i )] € S'(R?). This is well-defined since (5.10) implies ; 7 € FL',
and ¢} h = Zkﬁ o h € FLY(RY).

Since F : Z'(O) — D'(O) is an isomorphism, it is enough to show that
the series ) ,.; F; converges unconditionally in D’(0). To see this, note that
supp 1/f, C suppy; C Q; foralli € I, by Property (iv) of Lemma C.1. Therefore,
> ic; Fi converges unconditionally in D’(O) as a locally finite ! sum of (tempered)
distributions.

(ii) As above, let 1//1.(”) = f‘l[(wfh) ©) (goiﬁ)]. Note that ﬁ — fin D' (0), since
fo — fin Z'(O). Thus, setting ex : RY — C,& > 2% for x € RY, an
application of [54,Theorem 7.23] shows that

F @)@ = @if)en) = flgiex) = lim fulpiex) = lim F~(gi fu) ()

forall i € I andx € R?. Therefore, using that (F * G, ¢)s/ 5 = fRd Gx) - (p *
F)(x)dx with F(x) = F(—x) for F € L', G € L?, and the estimate | F~ ! (¢; f,)| <
F; € LP(R?), we get by the dominated convergence theorem

W™ Q) e.s = (F o)« F @i fo). 0)s.s
= /d F @i f) () - (¢ % @) (x) dx (C.1)

— 7: i Hx) - ((P*wl*h)(X)dX—(lﬁu )s'

n—o0

for all ¢ € S(Rd) and i € I. Here, we used that ¢ *W e L'RY) N LOO(Rd) C
LY (RY).

Now, let ¢ € Z(©) be arbitrary, so that F ¢y € C2°(0). Then there is a finite
set I, C I such that supp F g C EC foralli € I\ I,. Since supp Fy; C Qi

! Here, we use that if &y € O is arbitrary, then &y € Qy for some ¢ € I and hence gaZ‘ (&9) = 1. Thus,
={e€0: |<ij< &) >1/2} C QZf is an open neighborhood of &p; finally, if U N Q; # @, then also
UNQ; #9¥andhencei € £** = Jj¢p+ j*, proving that the family (Q;)iey is locally finite on O.
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and supp }'wi(") C Q. this implies (i, )7,z = (F¥i, Flo)pr.coo = 0 for all
i € I\ I,. The same holds for ; replaced by 1//1.("). Thus,

(@nfun0)zz = )W phss —= D Wi p)s.s = (@S, 9)z.z.

iel, i€l,
This shows that ®, f,, — ®;, f with convergence in Z'(O).

Finally, we see for £ € I directly by definition of 1/fi(") and by definition of the
“extended multiplication” © that

F- (ww“’))—f o0 F N @ihy « F~ @i fu) = F 1@ h) « F~ @i 90 )
=F (90 ) s F~ (@) F~ e ).

This shows that F~' ¢y %) = F~1(@# h) * F~ (i ¢¢ fn) = 0if € € I\ i*, since
then ¢; ¢y = 0. Therefore, since I]-"_1 (e fu)l < Fg, we see

F e @nfil = Y 1F e - )

iel*

<Y 1IF N =1 F ol 1F e )l
iet*

< Y AIF @ | F @)l * Fe =: Gy
iel*

In view of Young’s inequality, we see

1GelliLr < Y NF @l IF @l 1FeliLe < NGCoCh - I FellLe,

iel*

and hence ”GHEZJ(I:L”) < NéCq;Ch . ||F||ezj(1;”) < 00, so that indeed each &y, f,, is
(G, ®)-dominated.

(1) By applying Property (ii) to the constant sequence given by f, = f foralln € N
and with F; = |F~ 1((p, ), we see that <I>h f is (G, ®)-dominated for a function
G € L (I; LP) satisfying IG g 1.0y = NQCcpCh IE s 1.0y = NgCQ)Ch .
||f||D(Q Lr.0%) . This proves the claim.

(ii) If fec. (0), then ¢; feC.(0) C L2(Rd) so that (¢h) © (¢i = (¢*h) -
((p/,\f) O - hf see Lemma C.1(iii). Since hf € C.(0), it follows hf D el
h f], where only finitely many terms do not vanish. Hence, by definition of &, f,

Of =Y F @O @D =F [ Yo -hf|=F - D,

iel iel
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(iv) We have

17 (i - (@ W) o = 17 Npig - il < Y NF @i )l - 1F (e Wi

Lei*
< NgCy; Cp < 00,

so that g - h is tame. Part (iii) shows for f € Sp(R?) that S, f = _l(gf\)
Wthh in particular nnphes FlPg f1 € Cc(O). Thus, by Part (iii) again, ®; P, f =

“h - Flo, f1l = F~ (hgf) ®,, f. Finally, for arbitrary f € D(Q, L? ),
Proposmon 3.13 yields a sequence ( f;)nen C S@(Rd) which is (F, ®)- domlnated
for some F € ¢} (I; LP) and such that fn — fin Z'(O). By Part (ii), this implies
Do fn = Pgnf and @y f,, — P, f in Z'(O). Furthermore, there is G € oL, Lp)
such that each @, f;, is (G, ®)-dominated. Thus, a final application of Part (ii) implies

<I)ghf = nlggo (Dghfn = nln;o (Dh[@gfn] = cbh[q)gf]:

which completes the proof. O

Appendix D: Other Auxiliary Results
D.1: An Estimate for the series 3", ;4 (1 + |1 + Ak|)~@+V
LemmaD.1 Forn € RY and A € GL(d, R),

D A+ I+ Ak < (@ + 1) - 212 max{l, AT
kezd

Proof First, note that the function ® : R? — [0, o], x > ZkeZd(l—}-lx—i-kD_(d“'l)
is Z?-periodic, and hence [|®||sup = [®lg, )¢ lsup- For x € [0, D9, we have [[k]lo0 <
14+ lx +klloo <14+ |x+ k|, and thus 1 + ||k|lco < 2(1 4+ |x + k]|). Therefore,
O(x) < 29713 a1 + |lklloo) =D, In order to estimate this last term, we
rewrite it using [25,Proposition 6.24] as

o0
DA+ llklloo) @ =fo ke Z4 0 (1+Ilklloo)™“FY > A} da.
keZd

Let f:Z4 — (0, 1],k — (1 + [|k|loo)~“*tD. For A > 1, clearly {k € Z% : f(k) >
A} = . In contrast, for A € (0, 1),

keZ: fl)y>r)C {keZ : klo <2~ V/@HD _ 3
c fkezd ivnedikie (- 17D~y

L)L_l/(d"'l) _ IJ}] ;
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and thus [{k € Z9 : f(k) > A} < (1 + 2|2~ 1/@+D — lj)d <24 . }=d/Wd+D) \which
implies

1
Ox) < 2d+1 Z(l + ”k”OO)*(dJrl) < 21+2d/ kidiﬂ dr={d+1)- 21+2d
0
kezd

forall x € [0, )¢, whence ©(x) < (d + 1) - 21724 for all x € RY.
Now, let A € GL(d, R) be arbitrary. Then

T+lk+A gl < 1+ AT JAGk+ A7 )] < max {1, ]A7")]}-
(1+1AK+A""D)]),

and hence (1+]n+Ak[)~ "V = (1+]AGk+ A" )~ < max {1, ]a=1 o1}
(1 + |k+A_1n|)7(d+l). Overall, we see for arbitrary n € R? and A € GL(d, R) that

3 (1 + AR Y < max {1 AT )3 (1 kAT )T
kezd kezd
=max {1, |[A7" |} @Ay

< @d+1) -2 max {1, AT,

(D.1)

finishing the proof. O

As a corollary, we get the following estimate for the series where we sum over
k € 79\ {0} instead of k € Z7.

Corollary D.2 Forn € R? and A € GL(d, R), we have

DO A+ In+ AkDTD <@ 4+ 1) 22 (14 [y)) - max {JAT] JATH 4
keZ4\{0}

Proof We distinguish two cases.
First, suppose |A~'n| < 1. Then, noting that |k| > 1 for all k € Z< \ {0}, we get

the estimate |k +A~"n| > k| —|A~ "y = &4 1 a1y > Bl > IHE Next, note

that |x] = |[A~'Ax| < |A™"|||Ax|, and hence |Ax| > |A~"|| " |x| for all x € R<.
This implies
e 4 A=)
L+ n+ Akl = [Ak+n| = A7 - [k+A "l > T-(1+|k|)-
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Now, Lemma D.1 shows that

ST (I ARD D < 4T AT ST () k@D
keZd\(0) keZd\ (0}

S (d+ 1) . 23+4d . ||A—l||d+l
<(@d+1)- 22" (14 gy - max {JA7], JATHAT

For the other case, suppose |[A~'n| > 1. Then (1 + [n[) |[A='] > [|A7!] - ] >
|A=!y| > %, and

max{1, A9} < max {3(1+ [n) AT, A4
<41+ [n)) - max {[lA7"], AT

Now, an application of Lemma D.1 shows that

Yo A+ In+ Ak < (@ + D2 max {1, ] AT

KeZ\(O) < @+ 1272 (1 4 ) - max { A7), AT
Together with the first case, this shows that the claimed estimate always holds. O
D.2: Proof of Lemma 7.2

For brevity, set (§)) := 1+4& |2 for& e R9. With this notation, [62,Lemma 6.8] shows
for arbitrary 6 € R and o € Ng that there is a polynomial Py, € R[&, ..., &;] such
that, for all £ € Rd,

AU (EN? = (NI Py o (€)  and  |Ppo(8) < Coq - (1+1ED, (D.2)

where Cp.o = |a|!- [2(1 +d + |6])]%!. Since (1 + |E])* < 2K . (€)*/? for all k > 0,
it follows that

(14 gl qeyf=lel < olel . qeyo=lal/2 < plal . (g0 (D.3)

forallé € RY, 0 € Rand o € N¢. Next, for § = —1(d +1) and any o € N{ with
la] <d+1,

d+1pqlel .,
Coasiyrg = |a|!~[2(l+d+‘—T )]a <@+-[3-@d+ D]

<(3-d+ 1)

@ Springer



149 Page700f72 J.L.Romero et al.

Combining Equations (D.2) and (D.3) with the elementary estimate 1+|£| < 2((&)) 172,
we see that

a(xh — a(x —(d+1)/2
onax [0%ha(6)] = max [6% () |

d+1

2)d+1 ol gy~ —lal
< (3@ +1)%) |a1\2?1)j-1(1+|$|) (&n— 2

< (6(d+ DA EN T < (14 gD @D

For the estimate concerning hj, note that since Cyp, = C_g o, We also have
Casvpp < (B- @+ D) forall g e N¢ with |8] < d + 1. Hence, using
the Leibniz rule and Equations (D.2) and (D.3), it follows for arbitrary £ € R? that

max [9%h1 ()] < ) (Z) |08 (&)@ TD2] - [9" P g(&)]

J|<d+ feu

<o) - (14 &)~ 3" (;) Carnyzp (L+ [EDP (&) F 1

B=a
< (6- @+ D)™ oE) (1 + 1) ()@ Y (;)
p<a
< Co®),
which completes the proof. O
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