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Abstract
We derive an extension of the Walnut–Daubechies criterion for the invertibility of
frame operators. The criterion concerns general reproducing systems and Besov-type
spaces. As an application, we conclude that L2 frame expansions associated with
smooth and fast-decaying reproducing systems on sufficiently fine lattices extend to
Besov-type spaces. This simplifies and improves recent results on the existence of
atomic decompositions, which only provide a particular dual reproducing systemwith
suitable properties. In contrast, we conclude that the L2 canonical frame expansions
extend to many other function spaces, and, therefore, operations such as analyzing
using the frame, thresholding the resulting coefficients, and then synthesizing using
the canonical dual frame are bounded on these spaces.
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1 Introduction

Given a countable collection (g j ) j∈J of functions g j : R
d → C and a collection

(C j ) j∈J of matrices C j ∈ GL(d, R), we consider the structured function system

(Tγ g j ) j∈J ,γ∈C jZ
d = (

g j (· − γ )
)

j∈J ,γ∈C jZ
d , (1.1)

and aim to represent a function or distribution f as a linear combination

f =
∑

j∈J

∑

γ∈C jZ
d

c j,γ Tγ g j . (1.2)

In many important examples of this formalism, the functions g j are obtained through
affine transforms (in the Fourier domain) of a single function g. For instance, in
dimension d = 1, the well-known wavelet [19] and Gabor systems [34] are obtained
as

g j (x) := 2 j/2 g(2 j x), j ∈ Z, C j = 2 j , (1.3)

g j (x) := e2π i j x g(x), j ∈ βZ, C j = α. (1.4)

For d > 1, anisotropic wavelet systems provide additional important examples, see
e.g., [2, 12, 47].

We are interested in the ability of (1.1) to reproduce all functions or distributions
f in various function spaces by a suitably convergent series (1.2). For the Hilbert
space L2(Rd) this task is significantly easier: it amounts to establishing the frame
inequalities

‖ f ‖2L2 �
∑

j∈J

∑

γ∈C jZ
d

∣
∣〈 f | Tγ g j

〉∣∣2 ∀ f ∈ L2(Rd). (1.5)

Indeed, the norm equivalence (1.5) means that the frame operator S : L2(Rd) →
L2(Rd),

S f :=
∑

j∈J

∑

γ∈C jZ
d

〈
f | Tγ g j

〉
Tγ g j

is bounded and invertible on L2(Rd), and consequently (1.2) holds with c j,γ =〈
S−1 f | Tγ g j

〉
.

The validity of the frame inequalities is closely related to the covering properties
of the Fourier transforms of the generating functions ĝ j , which is encoded in the
Calderón condition:

∑

j∈J

1

| det C j |
∣∣ĝ j

∣∣2 � 1, a.e. (1.6)
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This connection is most apparent in the so-called painless case, in which the supports
of the functions ĝ j are compact. Under this assumption, the expansion (1.2) is a local
Fourier expansion

f̂ (ξ) =
∑

j∈J

∑

γ∈C jZ
d

c j,γ e−2π iγ ξ ĝ j (ξ). (1.7)

In many important cases, the functions g j are not bandlimited, but have a well con-
centrated frequency profile, such as a Gaussian. Then (1.7) is an almost-local Fourier
expansion, that one still expects to be governed by (1.6)—and, indeed, under mild
conditions, (1.6) is necessary for (1.5) to hold [18, 30].

The formal analysis of non-painless expansions with a reproducing system (1.1)
relies on a remarkable representation of the frame operator in the Fourier domain,
namely

Ŝ f (ξ) =
∑

α∈�

tα(ξ − α) f̂ (ξ − α), (1.8)

where tα(ξ) = ∑
j∈κ(α)

1
| det C j | ĝ j (ξ) ĝ j (ξ + α); here, the translation nodes � ⊆

R
d and indices κ(α) ⊆ J are determined by the matrices C j (see (5.2) below). For

Gabor expansions, the representation (1.8) is known under the name of Walnut’s
representation [63] while for wavelets it is attributed to Daubechies and Tchamitchian
[19,Chapter 3]. The theory of generalized shift-invariant systems [39, 53] establishes
the general form of (1.8) and exploits its many consequences. For example, tight
frames—that is, systems for which equality holds in (1.5)—are characterized by a set
of algebraic relations involving the functions tα; see [39].

1.1 TheWalnut–Daubechies Criterion

Themultiplier t0 associatedwithα = 0 in (1.8) is precisely theCalderón sumappearing
in (1.6); that is,

t0(ξ) =
∑

j∈J

1

| det C j | |ĝ j (ξ)|2.

A powerful frame criterion arises by comparing the representation of S given in (1.8)
to the diagonal termF−1(t0 · f̂ ), and by estimating the corresponding discrepancy. In
the model cases of Gabor and wavelets systems, these criteria are again attached to the
names of Walnut and Daubechies, and are particularly useful for studying Gaussian
wave-packets, which have fast-decaying frequency tails, but do not yield tight frames.
A general version of theWalnut–Daubechies criterion also holds for generalized shift-
invariant systems under mild assumptions [17, 45]; this criterion is greatly useful in
the construction of anisotropic time-scale decompositions—see e.g. [20].

The price to pay for the flexibility of the Walnut–Daubechies criterion is that it
does not produce an explicit dual system implementing the coefficient functionals
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f �→ c j,γ in (1.2). Rather, it only yields an L2 norm estimate which is sufficient to
establish (1.5) but does not imply the convergence of (1.8) in other norms. In contrast,
explicit constructions of frame pairs, that is, frames where the coefficient functionals
are given by

c j,γ = 〈
f | Tγ h j

〉

for another reproducing system {h j : j ∈ J }, naturally extend to many other Banach
spaces besides L2(Rd). These spaces are determined by the concentration of the
Fourier support of the generators g j , and are generically called Besov-type spaces
[56,Chapter 2] [58]. The model case is given by (1.3), where the functions ĝ j form a
so-called Littlewood-Paley decomposition.

The goal of this article is to derive a variant of the Walnut–Daubechies criterion
which implies that the frame operator is invertible in such Besov-type spaces.

1.2 Besov-Type Decomposition Spaces

For the informal definition ofBesov-type spaces, fix a coverQ = (Qi )i∈I of a fullmea-
sure open subset in the Fourier domain R̂

d . We impose a mild admissibility condition
by limiting the number of overlaps between different elements of Q—see Section 3
for the precise condition. Given a suitable partition of unity (ϕi )i∈I subordinate toQ,
together with a suitable (so-called Q-moderate) weight function w : I → (0,∞),
the space D(Q, L p, 


q
w), for p, q ∈ [1,∞], is defined as the space of distributions f

satisfying

‖ f ‖D(Q,L p,

q
w)

:=
∥
∥
∥
(∥∥F−1(ϕi · f̂ )‖L p

)
i∈I

∥
∥
∥



q
w

=
∥
∥
∥
(
wi ·

∥
∥F−1(ϕi · f̂ )‖L p

)
i∈I

∥
∥
∥

q

< ∞,

(1.9)

whereF−1 denotes the inverse Fourier transform. Provided that an adequate notion of
distribution is used in the definitions, the spaces D(Q, L p, 


q
w) form Banach spaces

and are independent of the particular (sufficiently regular) partition of unity used to
define them.

The construction of Besov-type spaces follows the so-called decomposition method
[56,Chapter 2], [58,Section 1.2], yielding an instance of the so-called spaces defined
by decomposition methods [55], or decomposition spaces [23, 57] in more abstract
settings. This is why we also use the term Besov-type decomposition spaces. Uniform
Besov-type spaces, associated with the cover Q consisting of integer translates of a
cube, are known as modulation spaces [22], while a dyadic frequency cover yields the
usual Besov spaces [27, 49] —see also [56,Section 2.2]. When the cover is generated
by powers of an expansivematrix, one obtains anisotropic Besov spaces [8, 12, 13, 56].
We remark that the range of spaces defined by (1.9) does not include Triebel-Lizorkin
spaces [28].
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1.3 Overview of the Results

We state a simplified version of our main results for systems of the form (1.1) with
generating functions g j ∈ L1(Rd) ∩ L2(Rd) with ĝ ∈ C∞(R̂d), given by

g j = | det A j |−1/2 · F−1(ĝ ◦ S−1
j ) = | det A j |1/2 · e2π i〈b j ,·〉 · (g ◦ At

j ) , (1.10)

for (invertible) affine maps S j = A j (·)+b j and translation matrices C j = δA−t
j with

δ > 0. The parameter δ > 0 is a resolution parameter that controls the density of the
translation nodes in (1.1).

To define Besov-type spaces adapted to the frequency concentration of the system
(g j ) j∈J , we also consider an affinely generated cover Q = (Q j ) j∈J of the form
Q j = A j Q+b j . If ĝ is mostly concentrated inside the basic set Q, then (1.10) implies
that ĝ j is localized around Q j . Under these assumptions, the Calderón condition reads

0 < A ≤
∑

j∈J

∣∣̂g(S−1
j ξ)

∣∣2 ≤ B < ∞, a.e. , (1.11)

which means that (ĝ j ) j∈J is approximately a partition of unity adapted to Q.
The following is our main result, proved in Section 7.3.

Theorem 1.1 For each affinely generated cover Q = (A j Q + b j ) j∈J = (S j Q) j∈J of
an open, co-null set O ⊂ R̂

d , and each Q-moderate weight w = (w j ) j∈J , there exists
a constant Cd,Q,w with the following property: Suppose that (g j ) j∈J is compatible
with Q in the sense of (1.10) and that the Calderón condition (1.11) holds. Moreover,
suppose that

M0 := sup
i∈J

∑

j∈J

max{1, ‖A−1
j Ai‖d+1}

(∫

Q
max|α|≤d+1

|(∂α ĝ)(S−1
j (Si ξ))|2(d+1) dξ

) 1
d+1

< ∞

and that M1 := max
{
supi∈J

∑
j∈J Mi, j , sup j∈J

∑
i∈J Mi, j

}
< ∞, where

Mi, j := Li, j ·
∫

Q
(1+ |S−1

j (Siξ)|)2d+2 max|α|≤d+1
|(∂α ĝ)(S−1

j (Siξ))| dξ

and Li, j := max
{

wi
w j

,
w j
wi

} · (max{1, ‖A−1
i A j‖2} max{1, ‖A−1

j Ai‖3}
)d+1

for i, j ∈
J . Choose δ > 0 such that

Cd,Q,w M
d+1
d+2
0 M

2
d+2
1 δ < A.

Then the frame operator associated to (TδA−t
j k g j ) j∈J ,k∈Zd is well-defined, bounded,

and invertible on D(Q, L p, 

q
w) for all p, q ∈ [1,∞]. The value of the constant

Cd,Q,w is given in Theorem 7.5 below.
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The quantities M0 and M1 in Theorem 1.1 control the interaction between the
generators g j and the elements of the coverQ. In contrast to the classical L2 Walnut–
Daubechies criterion, the derivatives of ĝ are now involved. We also prove a more
technical version of Theorem 1.1 in which the generators need not exactly be affine
images (in the Fourier domain) of a single function, but only approximately so. This
is important, for example, to describe non-homogeneous time-scale systems, which
contain a low-pass and a high-pass window. We refer the reader to [62] for a detailed
discussion of concrete examples and calculations that can be used also in our frame-
work.

Although the constant Cd,Q,w in Theorem 1.1 is explicit, it is too large to be used
as a guide for concrete numerical implementations. We also derive a version of the
criterion with more favorable constants, but which only provides expansions on L2-
based Besov-type spaces; see Sect. 5.5.

A result closely related to Theorem 1.1 was recently obtained by the third named
author in [62]—see the discussion below.While our techniques are significantly differ-
ent from those in [62]—and, indeed, we regard the simplicity of the present methods a
main contribution—we remark that we make use of several auxiliary results obtained
in [62].

Under the conditions of Theorem 1.1, the coefficient and reconstruction operators

C : f �→
(〈

f | Tγ g j
〉)

j∈J ,γ∈C jZ
d

and D : c = (c j ,γ ) j∈J ,γ∈C jZ
d �→

∑

j∈J

∑

γ∈C jZ
d

c j,γ Tγ g j

(1.12)

define bounded operators between the Besov-type space D(Q, L p, 

q
w) and suitable

sequence spaces (see Sect. 4). As a consequence, the invertibility of the frame operator
on the spaces D(Q, L p, 


q
w) implies that the L2-convergent canonical frame expan-

sions

f =
∑

j∈J

∑

γ∈C jZ
d

〈
S−1 f | Tγ g j

〉
Tγ g j =

∑

j∈J

∑

γ∈C jZ
d

〈
f | Tγ g j

〉
S−1Tγ g j (1.13)

extend to series convergent in Besov-type norms (or weak-∗-convergent for p =
∞ or q = ∞). In more technical terms, the canonical Hilbert-space dual frame
{S−1Tγ g j : j ∈ J , γ ∈ C j Z

d} provides aBanach frame and an atomic decomposition
for the Besov-type spaces D(Q, L p, 


q
w). This is a novel feature of Theorem 1.1:

other results on the existence of series expansions, based on so-called oscillation
estimates, show that the coefficient and reconstruction maps (1.12) are respectively
left and right invertible on the Besov-type spaces, but do not yield consequences for the
Hilbert space pseudo-inverses C † = S−1D andD† = C S−1 [24, 33, 62]. In contrast,
Theorem 1.1 concerns C †,D†— see Corollary 7.6—and implies that operations on
the canonical frame expansions (1.13) that decrease the magnitude of the coefficients,
such as thresholding, are uniformly bounded in Besov-type norms. More precisely, if
for each j ∈ J and γ ∈ C j Z

d , we are given a function  j,γ : C → C satisfying
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| j,γ (x)| ≤ C |x |, then the maps

f �→
∑

j∈J

∑

γ∈C jZ
d

 j,γ
(〈

S−1 f | Tγ g j
〉)

Tγ g j

and

f �→
∑

j∈J

∑

γ∈C jZ
d

 j,γ
(〈

f | Tγ g j
〉)

S−1Tγ g j

are bounded (possibly non-linear) operators on all of the spaces D(Q, L p, 

q
w). In

particular, frame multipliers with bounded symbols—see e.g. [7]—define bounded
operators on Besov-type spaces.

1.4 RelatedWork

The theory of localized frames. Theuniform frequency cover {(−1, 1)d+k : k ∈ Z
d}—

which gives rise to Gabor systems (1.4)—is special in that every reproducing system
(1.1) satisfying the frame inequalities (1.5), andmild smoothness anddecay conditions,
provides also expansions for other Banach spaces (the precise range of spaces being
determined by the particular smoothness and decay of the generators). Indeed, the
theory of localized frames [4, 5, 35] implies that the frame operator is invertible on
modulation spaces. Similar results hold for L p spaces [6, 43]. Thus, in these cases, the
classical Walnut–Daubechies criterion has consequences for Banach spaces besides
L2—without having to adjust the density δ—and Theorem 1.1 does not add anything
interesting.

The key tool of the theory of localized frames is the spectral invariance of cer-
tain matrix algebras. Such tools are not applicable to general admissible covers as
considered in this article. Indeed, it is known that the frame operator associated with
certain smooth and fast-decaying wavelets with several vanishing moments fails to be
invertible on L p-spaces [46,Chapter 4]. In connection to this point, we mention that
the Mexican hat wavelet satisfies Daubechies criterion, but the validity of the corre-
sponding L p expansions was established only recently with significant ad-hoc work
[15].

Almost painless generators and homogeneous covers. There is a well-developed liter-
ature related to the so-called painless expansions on decomposition spaces. The first
construction of Banach frames for general decomposition spaces was given by Borup
and Nielsen [11] using bandlimited generators. This construction was then comple-
mented with a delicate perturbation argument to produce compactly supported frames
[48]—see also [16, 44]. The constructions in [48] for Besov-type spaces are restricted
to so-called homogeneous covers, which are generated by applying integer powers of
a matrix to a given set. This restriction rules out some important examples such as
inhomogeneous dyadic covers and many popular wavepacket systems.
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Invertibility of the frame operator versus existence of left and right inverses. The
first construction of time-scale decompositions proceeded by discretizing Calderón’s
reproducing formula through Riemann-like sums [29]. A similar approach works for
the voice transform associated with any integrable unitary representation and is the
basis of the so-called coorbit theory [24]. To some extent, those techniques extend
to any integral transform, provided that one can control its modulus of continuity
[38]. Such an approach was used by the third named author to construct compactly
supported Banach frames and atomic decompositions in Besov-type spaces [62]. The
main result of [62] is qualitatively similar to Theorem 1.1, but only concludes the
existence of left and right inverses for the coefficient and synthesis maps, acting on
respective Banach spaces. In contrast, we show that the Hilbert space frame operator
is simultaneously invertible on all the relevant Banach spaces. The advantage of the
present approach is that we are able to show that the Hilbert spaces series—which
are defined by minimizing the 
2 norm of the coefficients in (1.2)—extend to series
convergent in Besov-type spaces, and thus many operations on the canonical frame
expansion are also shown to be bounded in Besov-type spaces. On the other hand, there
are situations in which there exists a left inverse for the coefficient operator (or a right
inverse for the reconstruction operator), but the frame operator is not invertible. For
example, a wavelet system generated by a smooth mother wavelet without vanishing
moments can generate an atomic decomposition for the Besov spaces Bs

p,q(Rd) of
strictly positive smoothness s > 0 without yielding a frame [62,Proposition 8.4].
Such examples are not covered by our results.

Quasi-Banach spaces. We do not treat the quasi-Banach range p, q ∈ (0,∞], which
is treated in [62]. We expect the tools developed in [62] for treating the quasi-Banach
range to be also applicable to the present setting, and to yield an extension of our main
results to the quasi-Banach range.

1.5 Technical Overview and Organization

Our approach is as follows: we consider the Walnut–Daubechies representation (1.8)
of the frame operator and bound the discrepancy between S f and the diagonal term
F−1

(
t0 · f̂

)
in a Besov-type norm. To this end, we estimate each Fourier multiplier tα

with a Sobolev embedding, and control the inverse Fourier multiplier 1/t0 by directly
bounding the terms in Faà di Bruno’s formula.

The main estimates are derived in decreasing level of generality. We first consider
very general covers Q = (Qi )i∈I and an abstract notion of molecule, which models
the interaction between the generators g j of the system (Tγ g j ) j∈J ,γ∈C jZ

d and the
elements Qi of the cover Q. Here, the associated index sets I and J do not need
to coincide. We then provide simplified estimates for affinely generated covers. The
limiting cases p, q = ∞ involve delicate approximation arguments that may be of
independent interest.

The paper is organized as follows: Sect. 2 introduces notation and preliminaries.
Besov-type spaces are introduced in Sect. 3. Section 4 treats the boundedness of the
coefficient, synthesis and frame operators on suitable spaces. Section 5 is concerned
with the invertibility of the frame operator and provides estimates for the abstract
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Walnut–Daubechies criterion. These estimates are further simplified in Sects. 6 and 7
for affinely generated covers and suitably adapted generating functions. Several tech-
nical results are deferred to the appendices.

2 Notation and Preliminaries

2.1 General Notation

We let N := {1, 2, 3, . . . }, and N0 := N ∪ {0}. For n ∈ N0, we write n := {1, ..., n};
in particular, 0 = ∅. For a multi-index β ∈ N

d
0 , its length is |β| = ∑d

i=1 |βi |.
The conjugate exponent p′ of p ∈ (1,∞) is defined as p′ := p

p−1 . We let 1′ := ∞
and ∞′ := 1.

Given two functions f , g : X → [0,∞), we write f � g provided that there exists
a constant C > 0 such that f (x) ≤ Cg(x) for all x ∈ X . We write f � g for f � g
and g � f .

The dot product of x, y ∈ R
d is written x · y := ∑d

i=1 xi yi . The Euclidean norm
of a vector x ∈ R

d is denoted by |x | := √
x · x . The open Euclidean ball, with radius

r > 0 and center x ∈ R
d , is denoted by Br (x), and the corresponding closed ball is

denoted by Br (x). More generally, the closure of a set M ⊆ R
d is denoted by M .

The cardinality of a set X will be denoted by |X | ∈ N0 ∪ {∞}. The Lebesgue
measure of a Borel measurable set E ⊂ R

d will be denoted by λ(E). Given a subset
M ⊂ X , we define its indicator function 1M : X → {0, 1} by requiring 1M (x) = 1
if x ∈ M and 1M (x) = 0 otherwise.

For a matrix M ∈ C
I×J , its Schur norm is defined as

‖M‖Schur := max

{
sup
i∈I

∑

j∈J

|Mi, j |, sup
j∈J

∑

i∈I

|Mi, j |
}

∈ [0,∞] .

A matrix M ∈ C
I×J satisfying ‖M‖Schur < ∞ is said to be of Schur-type. A

Schur-type matrix M ∈ C
I×J induces a bounded linear operator M : 
p(J ) →


p(I ), (c j ) j∈J �→ (∑
j∈J Mi, j c j

)
i∈I , with ‖M‖
p→
p ≤ ‖M‖Schur for all p ∈

[1,∞]; this is called Schur’s test. For a proof of a (weighted) version of Schur’s test,
cf. [37,Lemma 4].

2.2 Fourier Analysis

The translate of f : R
d → C by y ∈ R

d is denoted by Ty f (x) = f (x− y).We denote
by R̂

d the Fourier domain of R
d . Modulation of f : R

d → C by ξ ∈ R̂
d is denoted

by Mξ f (x) := e2π iξ ·x f (x). The Fourier transform F : L1(Rd) → C0(R̂
d), f �→ f̂

is normalized as

f̂ (ξ) =
∫

Rd
f (x) e−2π i x ·ξ dx

123



149 Page 10 of 72 J. L. Romero et al.

for ξ ∈ R̂
d . Similarly normalized, we define F : L1(R̂d) → C0(R

d). The inverse
Fourier transform F−1 f := f̂ (−·) ∈ C0(R

d) of f ∈ L1(R̂d) will occasionally also
be denoted by qf . Similar notation will be used for the (unitary) Fourier-Plancherel
transform F : L2(Rd) → L2(R̂d).

The test space of compactly supported, smooth functions on an open set O ⊂ R
d

will be denoted by C∞
c (O). The topology on C∞

c (O) is taken to be the usual topology
defined through the inductive limit of Fréchet spaces; see [54,Sect. 6.2] for the details.
The sesquilinear dual pairing between D(O) := C∞

c (O) and its dual D′(O) is given
by 〈 f | g〉D′,D := f (g) for f ∈ D′(O) and g ∈ C∞

c (O).
The Schwartz space is denoted by S(Rd) and its topological dual will be denoted

by S ′(Rd). The canonical extension of the Fourier transform to S ′(Rd) is denoted
by F : S ′(Rd) → S ′(R̂d), that is, 〈F f , g〉S ′,S = 〈 f , Fg〉S ′,S for f ∈ S ′(Rd)

and g ∈ S(R̂d). We denote bilinear dual pairings by 〈·, ·〉, while 〈· | ·〉 denotes a
sesquilinear dual pairing, which is anti-linear in the second component.

Lastly, for p ∈ [1,∞] we define FL p(Rd) := { f̂ : f ∈ L p(Rd)} ⊂ S ′(R̂d),
equipped with the norm ‖ f ‖FL p := ‖F−1 f ‖L p . Here, note that ‖ f · g‖FL p ≤
‖ f ‖FL1 ·‖g‖FL p , where the exact nature of the product f ·g is explained inmore detail
in Definition 5.5. Furthermore, for any invertible affine-linear map S : R̂

d → R̂
d , one

has ‖ f ◦ S‖FL1 = ‖ f ‖FL1 .

2.3 Amalgam Spaces

Let U ⊂ R
d be a bounded Borel set with non-empty interior. The Amalgam space

WU (L∞, L1) is the space of all f ∈ L∞(Rd) satisfying

‖ f ‖WU (L∞,L1) :=
∫

Rd
‖ f ‖L∞(U+x) dx < ∞.

The (closed) subspace of WU (L∞,L1) consisting of continuous functions is denoted
WU (C0, L1).

The space W (L∞, L1) := WU (L∞, L1) is independent of the choice of U , with
equivalent norms for different choices. In particular, if A ∈ GL(Rd), then

‖ f ‖WAU (L∞,L1) = | det A| · ‖ f ◦ A‖WU (L∞,L1) , (2.1)

an identity that will be used repeatedly. It is readily seen that the space WU (L∞, L1)

is an L1-convolution module; that is, if f ∈ L1(Rd) and g ∈ WU (L∞, L1), then
the product f ∗ g ∈ WU (L∞, L1), with ‖ f ∗ g‖WU (L∞,L1) ≤ ‖ f ‖L1‖g‖WU (L∞,L1),
simply because of ‖ f ∗ g‖L∞(U+x) ≤

(| f | ∗ [y �→ ‖g‖L∞(U+y)]
)
(x).

Lastly, there is an equivalent discrete norm on W (L∞, L1), namely

‖ f ‖W (L∞,
1) :=
∑

n∈Zd

‖1n+[0,1]d · f ‖L∞ .
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The global component in this norm is denoted by 
1 rather than L1 to distinguish it
from ‖ · ‖WU (L∞,L1). The norm ‖ · ‖W (C0,
1)

is simply the restriction of ‖ · ‖W (L∞,
1)

to WU (C0, L1).
The reader is referred to [26, 40] for background on amalgam spaces and to [21] for

a far-reaching generalization that includes the combination of smoothness and decay
conditions.

3 Besov-Type Spaces

This section introduces decomposition spaces, and related notions such as covers,
weights and bounded admissible partitions of unity (BAPUs).

3.1 Covers and BAPUs

Definition 3.1 Let O �= ∅ be an open subset of R̂
d . A familyQ = (Qi )i∈I of subsets

Qi ⊂ O is called an admissible cover of O if

(i) Q is a cover of O, that is, O = ⋃
i∈I Qi ;

(ii) Qi �= ∅ for all i ∈ I ;
(iii) NQ := supi∈I |i∗| < ∞, where i∗ := {
 ∈ I : Q
 ∩ Qi �= ∅} for i ∈ I .

A sequence w = (wi )i∈I in (0,∞) is called a Q-moderate weight if

Cw,Q := sup
i∈I

sup

∈i∗

wi

w


< ∞.

For a weight w = (wi )i∈I in (0,∞) and an exponent q ∈ [1,∞], we define


q
w(I ) :=

{
c = (ci )i∈I ∈ C

I : ‖c‖

q
w
:= ‖(wi · ci )i∈I ‖
q < ∞

}
.

The significance of a Q-moderate weight is that the associated Q-clustering map is
well-defined and bounded. The precise statement is as follows; see [61,Lemma 4.13].

Lemma 3.2 Let q ∈ [1,∞]. Suppose that Q = (Qi )i∈I is an admissible cover of
an open subset O ⊂ R̂

d and that the weight w = (wi )i∈I is Q-moderate. Then the
Q-clustering map

�Q : 
q
w(I ) → 
q

w(I ), (ci )i∈I �→ (c∗i )i∈I ,

where c∗i := ∑

∈i∗ c
 , is well-defined and bounded, with ‖�Q‖


q
w→


q
w
≤ Cw,Q · NQ.

The next definition clarifies our assumptions regarding the partitions of unity that
are suitable for defining the decomposition space norm.

Definition 3.3 Let Q = (Qi )i∈I be an admissible cover of an open subset ∅ �= O ⊂
R̂

d . A family  = (ϕi )i∈I is called a bounded admissible partition of unity (BAPU),
subordinate to Q, if
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(i) ϕi ∈ C∞
c (O) ⊂ S(R̂d) for all i ∈ I ;

(ii)
∑

i∈I ϕi (ξ) = 1 for all ξ ∈ O;
(iii) ϕi (ξ) = 0 for all ξ ∈ O \ Qi and all i ∈ I ;
(iv) C := supi∈I ‖F−1ϕi‖L1 < ∞.

The coverQ is called a decomposition cover if there exists a BAPU subordinate toQ.

Given a decomposition cover Q = (Qi )i∈I of an open set ∅ �= O ⊂ R̂
d , it will be

assumed throughout this article that a BAPU  = (ϕi )i∈I for Q = (Qi )i∈I is fixed.

Definition 3.4 Let O �= ∅ be an open subset of R̂
d . A familyQ = (Qi )i∈I of subsets

Qi ⊂ O is called an affinely generated cover of O if, for each i ∈ I , there are
Ai ∈ GL(d, R) and bi ∈ R̂

d and an open subset Q′
i ⊂ R̂

d with Qi = Ai (Q′
i ) + bi

satisfying the following:

(i) Q is an admissible cover of O;
(ii) the sets (Q′

i )i∈I are uniformly bounded, that is,

RQ := sup
i∈I

sup
ξ∈Q′

i

|ξ | < ∞;

(iii) for indices i, 
 ∈ I with Qi ∩Q
 �= ∅, the transformations Ai (·)+bi and A
(·)+b


are uniformly compatible, that is,

CQ := sup
i∈I

sup

∈i∗

‖A−1
i A
‖ < ∞;

and moreover, for each i ∈ I , there is an open set Q′′
i ⊂ R̂

d such that

(iv) the closure Q′′
i ⊂ Q′

i for all i ∈ I ;
(v) the family (Ai (Q′′

i ) + bi )i∈I covers O; and
(vi) the sets {Q′

i : i ∈ I } and {Q′′
i : i ∈ I } are finite.

Remark 3.5 An affinely generated cover is also called an (almost) structured cover in
the literature, see for instance [61] and [11] for similar notions.

In the sequel, the map Si : R̂
d → R̂

d will always denote an affine linear mapping
ξ �→ Ai ξ + bi for some Ai ∈ GL(d, R) and bi ∈ R̂

d .

Definition 3.6 Let Q = (
Si (Q′

i )
)

i∈I be an affinely generated cover of O, and let
 = (ϕi )i∈I be a smooth partition of unity subordinate to Q. For i ∈ I , define the
normalization of ϕi by ϕ

�
i := ϕi ◦ Si . The family  = (ϕi )i∈I is called a regular

partition of unity, subordinate to Q, if

CQ,,α := sup
i∈I

‖∂αϕ
�
i ‖L∞ < ∞ (3.1)

for all multi-indices α ∈ N
d
0 .
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The following result shows that every affinely generated cover is a decomposition
cover.

Proposition 3.7 ([60,Corollary 2.7 and Theorem 2.8]) Let Q = (
Si (Q′

i )
)

i∈I be an
affinely generated cover of O. Then, the following hold:

(1) Every regular partition of unity  subordinate to Q is also a BAPU subordinate
to Q.

(2) There exists a regular partition of unity  = (ϕi )i∈I subordinate to Q.

3.2 Besov-Type Spaces

We introduce Besov-type spaces following the approach in [56], which relies on the
space of Fourier distributions. Since we only treat the Besov-type scale of spaces,
we allow for rather general covers. More restrictions would be necessary to include
the Triebel-Lizorkin scale, because the corresponding theory relies on inequalities for
maximal functions; see [55,Sect. 3.6], [56,Sect. 2.4.3], and also [47].

Definition 3.8 Let O �= ∅ be open in R̂
d . The space Z(O) := F(C∞

c (O)) is called
the Fourier test function space on O. The space Z(O) is endowed with the unique
topologymaking the Fourier transformF : C∞

c (O) → Z(O) into a homeomorphism.
The topological dual space (Z(O))′ of Z(O) is denoted by Z ′(O) and is called the

space of Fourier distributions. The (bilinear) dual pairing between Z ′(O) and Z(O)

will be denoted by 〈φ, f 〉Z ′,Z := 〈φ, f 〉Z ′ := 〈φ, f 〉 := φ( f ) for φ ∈ Z ′(O) and
f ∈ Z(O).
The Fourier transform φ ∈ D′(O) of a Fourier distribution φ ∈ Z ′(O) is defined

by duality; i.e.,

F : Z ′(O) → D′(O), φ �→ Fφ := φ̂ := φ ◦ F ,

which entails 〈Fφ, f 〉D′,D = 〈φ,F f 〉Z ′,Z for φ ∈ Z ′(O) and f ∈ C∞
c (O).

Using the Fourier distributions as a reservoir, a decomposition space is defined as
follows:

Definition 3.9 Let p, q ∈ [1,∞]. Let Q = (Qi )i∈I be a decomposition cover of
an open set ∅ �= O ⊂ R̂

d with associated BAPU (ϕi )i∈I . Let w = (wi )i∈I be Q-
moderate. For f ∈ Z ′(O), set

‖ f ‖D(Q,L p,

q
w) :=

∥∥∥(‖F−1(ϕi · f̂ )‖L p )i∈I

∥∥∥



q
w

∈ [0,∞] , (3.2)

and define the associated decomposition space D(Q, L p, 

q
w) as

D(Q, L p, 
q
w) :=

{
f ∈ Z ′(O) : ‖ f ‖D(Q,L p,


q
w) < ∞

}
.
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Remark 3.10 The norm (3.2) is well-defined: If f ∈ Z ′(O), then f̂ ∈ D′(O),
whence ϕi · f̂ is a (tempered) distribution with compact support. By the Paley-
Wiener theorem [54,Theorem 7.23], it follows therefore that F−1(ϕi · f̂ ) is given
by a smooth function. In addition, D(Q, L p, 


q
w) is a Banach space and independent

of the choice of the BAPU (ϕi )i∈I , with equivalent norms for different choices; see
[61,Corollary 3.18 and Theorem 3.21].

Remark 3.11 Our presentation follows [61, 62] and relies on the original approach of
[56, 58], specially in the use of Fourier distributions, which is essential for the more
technical aspects of our results. More abstract versions of Besov-type spaces replace
the Fourier transform by an adequate symmetric operator [57] or use a more general
Banach space of functions on a locally compact space in lieu of the Fourier image of
L p [23]. This latter (far reaching) generalization is particularly useful to model signal
processing applications, such as sampling.

In the sequel, we will often prove our results on the subspace SO(Rd) :=
F−1(C∞

c (O)) ⊂ S(Rd) of the space D(Q, L p, 

q
w), and then extend to all of

D(Q, L p, 

q
w) by a suitable density argument. These density arguments rely on the

following concept.

Definition 3.12 Let I be an index set, and letw = (wi )i∈I be a weight. For a sequence
F = (Fi )i∈I of functions Fi ∈ L p(Rd), we write ‖F‖


q
w(I ;L p) :=

∥∥(‖Fi‖L p )i∈I
∥∥



q
w
∈

[0,∞], and set


q
w(I ; L p) := {

F ∈ [L p(Rd)]I : ‖F‖

q
w(I ;L p) < ∞}

.

Let Q = (Qi )i∈I be a decomposition cover of an open set O ⊂ R̂
d with BAPU

 = (ϕi )i∈I , and let F = (Fi )i∈I be a family of functions Fi : R
d → [0,∞). A

Fourier distribution f ∈ Z ′(O) is said to be (F,)-dominated if, for all i ∈ I ,

|F−1(ϕi · f̂ )| ≤ Fi . (3.3)

We next state our density result; its proof is postponed to Appendix B.

Proposition 3.13 Let Q = (Qi )i∈I be a decomposition cover of an open set ∅ �= O ⊂
R̂

d with BAPU  = (ϕi )i∈I and let w = (wi )i∈I be a Q-moderate weight. Then

(i) The inclusion SO(Rd) ⊂ D(Q, L p, 

q
w) holds for all p, q ∈ [1,∞].

(ii) If p, q ∈ [1,∞), then SO(Rd) is norm dense in D(Q, L p, 

q
w).

(iii) If p, q ∈ [1,∞] and f ∈ D(Q, L p, 

q
w), then there exist F ∈ 


q
w(I ; L p) satisfying

‖F‖

q
w(I ;L p) ≤ C ‖�Q‖2



q
w→


q
w
· ‖ f ‖D(Q,L p,


q
w),

and a sequence (gn)n∈N of (F,)-dominated functions gn ∈ SO(Rd) such that
gn → f , with convergence in Z ′(O).
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Remark 3.14 The inclusion SO(Rd) ⊂ D(Q, L p, 

q
w) ⊂ Z ′(O) in Proposition 3.13(i)

should be understood in the following sense: Clearly SO(Rd) ⊂ S(Rd) ↪→ S ′(Rd),
where as usual a function f ∈ S(Rd) is identifiedwith the distributionφ �→ ∫

f ·φ dx .
But since Z(O) ↪→ S(Rd), each f ∈ S ′(Rd) restricts to an element of Z ′(O); in
particular, each f ∈ SO can be seen as an element of Z ′(O) by virtue of 〈 f , φ〉Z ′,Z =∫

f · φ dx . Under this identification, the Fourier transform F f ∈ D′(O) is just the
usual f̂ ∈ S(R̂d), interpreted as a distribution on O.

As a companion to the above density result, the following Fatou property of the
decomposition spaces D(Q, L p, 


q
w) will be used. For the proof, see [31,Lemma 36].

Lemma 3.15 Let Q = (Qi )i∈I be a decomposition cover of an open set ∅ �= O ⊂
R̂

d . Let w = (wi )i∈I be a Q-moderate weight, and let p, q ∈ [1,∞]. Suppose that
( fn)n∈N is a sequence in D(Q, L p, 


q
w) such that lim infn→∞ ‖ fn‖D(Q,L p,


q
w) < ∞

and fn → f ∈ Z ′(O), with convergence in Z ′(O). Then f ∈ D(Q, L p, 

q
w), with

associated norm estimate ‖ f ‖D(Q,L p,

q
w) ≤ lim infn→∞ ‖ fn‖D(Q,L p,


q
w).

3.3 The Extended Pairing

We will use the following extension of the L2-inner product.

Definition 3.16 Let Q = (Qi )i∈I be a decomposition cover of an open set ∅ �= O ⊂
R̂

d . Let  = (ϕi )i∈I be a BAPU subordinate to Q. For f ∈ Z ′(O) and g ∈ L1(Rd)

with ĝ ∈ C∞(R̂d), define the extended inner product between f and g as

〈 f | g〉 :=
∑

i∈I

〈 f̂ | ϕi · ĝ 〉D′,D , (3.4)

provided that the series on the right-hand side converges absolutely.

Remark 3.17 (i) For f ∈ L2(Rd) satisfying f̂ ≡ 0 almost everywhere on R̂
d \ O

and for g ∈ L1(Rd) ∩ L2(Rd) with ĝ ∈ C∞(R̂d), the extended inner product
defined above coincides with the standard inner product on L2. Indeed, since
|ϕi (ξ)| ≤ ‖ϕi‖FL1 ≤ C and thus

∑
i∈I |ϕi (ξ)| ≤ NQ C, we can apply the

dominated convergence theorem to see that

〈 f | g〉 =
∑

i∈I

〈 f̂ | ϕi · ĝ 〉D′,D =
∑

i∈I

∫

R̂d
f̂ (ξ) ϕi (ξ) ĝ(ξ) dξ

=
∫

R̂d
f̂ (ξ) ĝ(ξ)

∑

i∈I

ϕi (ξ) dξ =
∫

O
f̂ (ξ) ĝ(ξ) dξ

= 〈 f̂ | ĝ 〉L2 = 〈 f | g〉L2 .

(ii) In general, it is not clear whether the extended inner product defined above is
independent of the chosen BAPU. However, as we will show in Lemma 4.4, the
extended pairing is independent of this choice under suitable hypotheses.
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4 Boundedness of the Frame Operator

In this section, we present conditions under which the frame operator associated with a
generalized shift-invariant system is well-defined and bounded on Besov-type decom-
position spaces. These conditions involve the interplay between smoothness and decay
of the generators and the underlying frequency cover. See also [52,Sect. 2] and [62]
for related estimates.

4.1 Generalized Shift-Invariant Systems

Definition 4.1 Let J be a countable index set. For j ∈ J , let C j ∈ GL(d, R) and
g j ∈ L2(Rd). A generalized shift-invariant (GSI) system, associated with (g j ) j∈J

and (C j ) j∈J , is defined as

(
Tγ g j

)
j∈J ,γ∈C jZ

d = (
g j (· − γ )

)
j∈J ,γ∈C jZ

d .

Throughout the paper, we assume the following standing hypotheses on the system.

Standing hypotheses. The generators (g j ) j∈J of (Tγ g j ) j∈J ,γ∈C jZ
d will be assumed

to satisfy g j ∈ L1(Rd) ∩ L2(Rd) and ĝ j ∈ C∞(R̂d). Moreover, we will use the
function t0 := ∑

j∈J | det C j |−1|ĝ j |2 for which we assume that there exist constants
A, B > 0 such that

A ≤
∑

j∈J

1

| det C j | |ĝ j (ξ)|2 ≤ B for a.e. ξ ∈ R̂
d . (4.1)

Remark 4.2 The assumption (4.1) is automatically satisfied for any generalized shift-
invariant frame (Tγ g j ) j∈J ,γ∈C jZ

d for L2(Rd), with frame bounds A, B > 0, if it
satisfies the so-called α-local integrability condition (5.1) introduced below. For a
proof, see [30,Theorem 3.13 and Remark 5] and [39,Proposition 4.1].

Given theGSI system (Tγ g j ) j∈J ,γ∈C jZ
d , the associated frame operator is formally

defined as

S : D(Q, L p, 
q
w) → D(Q, L p, 
q

w), f �→
∑

j∈J

∑

k∈Zd

〈 f | TC j k g j 〉 TC j k g j .

For analyzing the boundedness and well-definedness of the frame operator, the fol-
lowing terminology will be convenient.

Definition 4.3 Let Q = (Qi )i∈I be a decomposition cover of an open set O ⊂ R̂
d

with BAPU (ϕi )i∈I . Let w = (wi )i∈I and v = (v j ) j∈J be weights. The system
(Tγ g j ) j∈J ,γ∈C jZ

d is said to be (w, v,)-adapted if the matrix M ∈ C
I×J defined

by

Mi, j := max

{
wi

v j
,

v j

wi

}
· | det C j | 12 · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1) (4.2)
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is of Schur-type.

Lemma 4.4 Let Q = (Qi )i∈I be a decomposition cover with BAPU . Let w =
(wi )i∈I be a Q-moderate weight and let the weight v = (v j ) j∈J be arbitrary.

(i) If (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-adapted, then (Tγ g j ) j∈J ,γ∈C jZ

d is (w, v,�)-
adapted for any BAPU � subordinate to Q.

(ii) If (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-adapted, then the extended inner product 〈 f |

TC j k g j 〉 is well-defined and independent of the choice of the BAPU , for any
p, q ∈ [1,∞], any f ∈ D(Q, L p, 


q
w), and all j ∈ J and k ∈ Z

d .

Proof We assume throughout that  = (ϕi )i∈I and � = (ψi )i∈I are two BAPUs
subordinate to Q.

Wefirst show that if (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-adapted, then (Tγ g j ) j∈J ,γ∈C jZ

d

is also (w, v,�)-adapted. For this, note that ( f ∗ g)(Cx) = | det C | · (( f ◦ C) ∗ (g ◦
C)

)
(x) for any f ∈ L1(Rd), g ∈ L1(Rd) ∩ L∞(Rd), and C ∈ GL(d, R). Using this,

together with ψi = ϕ∗
i ψi , yields

∥∥(|ψi ∗ g j ) ◦ C j
∥∥

W (L∞,L1)
≤
∑


∈i∗

∥∥∥
[
(F−1ψi ) ∗ ( qϕ
 ∗ g j )

] ◦ C j

∥∥∥
W (L∞,L1)

=
∑


∈i∗
| det C j | ·

∥∥∥
[
|ψi ◦ C j

] ∗ [( qϕ
 ∗ g j ) ◦ C j
]∥∥∥

W (L∞,L1)

≤
∑


∈i∗
| det C j | · ‖|ψi ◦ C j‖L1 · ‖( qϕ
 ∗ g j ) ◦ C j‖W (L∞,L1)

≤ C · C� ·
∑


∈i∗

∥∥( qϕ
 ∗ g j ) ◦ C j
∥∥

W (L∞,
1)
, (4.3)

where C ≥ 1 is given by the norm equivalence ‖ · ‖W (L∞,
1) � ‖ · ‖W (L∞,L1).
The matrix entries Mi, j in (4.2) satisfy

Mi, j = max{wi

v j
,

v j

wi
} · | det C j |1/2 · ∥∥( qϕi ∗ g j ) ◦ C j

∥∥
W (L∞,
1)

.

Likewise, let us define

Ni, j := max{wi

v j
,

v j

wi
} · | det C j |1/2 · ∥∥(|ψi ∗ g j ) ◦ C j

∥∥
W (L∞,
1)

.

Using the moderateness of the weight w and the equivalence 
 ∈ i∗ ⇐⇒ i ∈ 
∗, we
obtain that

∑

i∈I

Ni, j ≤ C2C�

∑

i∈I

∑


∈i∗
max

{wi

v j
,

v j

wi

}
| det C j |1/2

∥
∥(|ϕ
 ∗ g j ) ◦ C j

∥
∥

W (L∞,
1)

≤ C2C�Cw,Q ·
∑


∈I

∑

i∈
∗
max

{w


v j
,

v j

w


}
| det C j |1/2

∥
∥(|ϕ
 ∗ g j ) ◦ C j

∥
∥

W (L∞,
1)

≤ C2C�Cw,QNQ
∑


∈I

M
, j ≤ C2C�Cw,QNQ‖M‖Schur < ∞
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for all j ∈ J . Similarly,

∑

j∈J

Ni, j ≤ C2C� ·
∑

j∈J

∑


∈i∗
max

{wi

v j
,

v j

wi

}
| det C j |1/2

∥∥( qϕ
 ∗ g j ) ◦ C j
∥∥

W (L∞,
1)

≤ C2C�Cw,Q ·
∑


∈i∗

∑

j∈J

M
, j ≤ C2C�Cw,QNQ‖M‖Schur < ∞

for all i ∈ I . In combination, these two estimates show that N = (Ni, j )i∈I , j∈J is of
Schur-type.

Finally, let p, q ∈ [1,∞] and f ∈ D(Q, L p, 

q
w), as well as j ∈ J and k ∈ Z

d

be arbitrary; we show that the extended product 〈 f | TC j k g j 〉 is well-defined and
that 〈 f | TC j k g j 〉 = 〈 f | TC j k g j 〉� . To show this, set B j,i := | det C j |1/2 · ‖( qϕi ∗
g j ) ◦ C j‖W (C0,
1)

. Since (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-adapted, Schur’s test shows

that B : 

q
w(I ) → 


q
v (J ), (ci )i∈I �→

(∑
i∈I B j,i ci

)

j∈J
is well-defined and bounded.

Define di := ‖F−1(ϕi · f̂ )‖L p and ci := ‖F−1(ϕ∗
i · f̂ )‖L p , and note that 0 ≤ ci ≤∑


∈i∗ d
 = (�Q d)i , whence c = (ci )i∈I ∈ 

q
w(I ), since d = (di )i∈I ∈ 


q
w(I ) as

f ∈ D(Q, L p, 

q
w).

As the final setup, let p′ ∈ [1,∞] denote the conjugate exponent to p, and
set g := TC j k g j . Since ‖ f ‖L p′ ≤ ‖ f ‖W (C0,
1)

for all f ∈ W (C0, 

1) and since

qϕi ∗ g = TC j k ( qϕi ∗ g j ), it follows that

‖F−1(ϕi ψ
 ĝ )‖L p′ ≤ C� · ‖ qϕi ∗ g‖L p′ = C� · | det C j |1/p′ · ‖( qϕi ∗ g j ) ◦ C j‖L p′

≤ C� · | det C j |1/p′ · ‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)

= C� · | det C j |
1
2− 1

p · B j,i .

Using that ϕi = ϕ∗
i ϕi , and ĝ ∈ C∞(R̂d), we next see

∣∣〈 f̂ | ϕi ψ
 ĝ 〉D′,D
∣∣ = ∣∣〈ϕ∗

i f̂ | ϕi ψ
 ĝ 〉S ′,S
∣∣ = ∣∣〈F−1(ϕ∗

i f̂ ) | F−1(ϕi ψ
 ĝ)〉L p,L p′
∣∣

≤ ‖F−1(ϕ∗
i f̂ )‖L p · ‖F−1(ϕi ψ
 ĝ)‖L p′

≤ C� · ci · | det C j |
1
2− 1

p · B j,i ,

where the right-hand side is independent of 
. Given this estimate, it follows immedi-
ately that

∑

i∈I

∑


∈i∗
|〈 f̂ | ϕi ψ
 ĝ 〉D′,D| ≤ C� NQ · | det C j |

1
2− 1

p · (B c) j < ∞ .
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Therefore, we can interchange the sums in the following calculation:

〈 f | g〉 =
∑

i∈I

〈 f̂ | ϕi ĝ 〉D′,D =
∑

i∈I

∑


∈i∗
〈 f̂ | ϕi ψ
 ĝ 〉D′,D

=
∑


∈I

∑

i∈
∗
〈 f̂ | ϕi ψ
 ĝ 〉D′,D =

∑


∈I

〈 f̂ | ψ
 ĝ 〉D′,D = 〈 f | g〉�.

This calculation implies in particular that both 〈 f | g〉 and 〈 f | g〉� are well-
defined. ��

4.2 Sequence Spaces and Operators

The frame operator can be factored into the coefficient and the reconstruction opera-
tor. In this subsection, we investigate the boundedness of these operators on suitable
sequence spaces.

Definition 4.5 Let (Tγ g j ) j∈J ,γ∈C jZ
d be a generalized shift-invariant system and let

p, q ∈ [1,∞]. For aweight v = (v j ) j∈J and a sequence c = (c( j)
k ) j∈J ,k∈Zd ∈ C

J×Z
d
,

define

‖c‖Y p,q
v

:=
∥∥∥∥
(
v j · | det C j |

1
p − 1

2 · ‖(c( j)
k )k∈Zd‖
p

)

j∈J

∥∥∥∥

q

∈ [0,∞].

Finally, define the associated coefficient space Y p,q
v as

Y p,q
v :=

{
c ∈ C

J×Z
d : ‖c‖Y p,q

v
< ∞

}
.

LetD(Q, L p, 

q
w)be adecomposition space.Given aGSI system (Tγ g j ) j∈J ,γ∈C jZ

d

and an associated coefficient space Y p,q
v , the reconstruction or synthesis operator is

formally defined as the mapping

D : Y p,q
v → D(Q, L p, 
q

w), (c( j)
k ) j∈J ,k∈Zd �→

∑

j∈J

∑

k∈Zd

c( j)
k TC j k g j , (4.4)

while the coefficient or analysis operator is formally defined by

C : D(Q, L p, 
q
w) → Y p,q

v , f �→
(
〈 f | TC j k g j 〉

)

j∈J ,k∈Zd
,

where 〈·, ·〉 denotes the extended pairing defined in Sect. 3.3.

4.3 Boundedness of Analysis and Synthesis Operators

For proving the boundedness of the operators D and C , we will invoke the following
lemma.
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Lemma 4.6 Let g ∈ W (C0, 

1)(Rd) and M ∈ GL(Rd). Then the map

DM,g : c = (ck)k∈Zd �→
∑

k∈Zd

ck TMk g

is bounded from 
∞(Zd) into L∞(Rd), with the series converging pointwise absolutely.
Furthermore, for any p ∈ [1,∞], the mapping DM,g : 
p(Zd) → L p(Rd) is well-
defined and bounded, with ‖DM,g‖
p→L p ≤ | det M |1/p · ‖g ◦ M‖W (L∞,
1).

Proof For the case M = idRd , this follows from [1,Lemma 2.9] —see also [14]. For
the general case, simply note that DM,g c(x) = (

Did
Rd ,g◦M (c)

)
(M−1x). ��

The following technical lemma allows us to use density arguments for the full range
p, q ∈ [1,∞].
Lemma 4.7 Let p, q ∈ [1,∞]. Suppose the system (Tγ g j ) j∈J ,γ∈C jZ

d is (w, v,)-

adapted with matrix M as in (4.2). Then, for any F ∈ 

q
w(I ; L p), there is a sequence

θ = (θ j,k) j∈J ,k∈Zd ∈ Y p,q
v such that

‖θ‖Y p,q
v

≤ ‖M‖Schur · ‖�Q‖

q
w→


q
w
· ‖F‖


q
w(I ;L p)

and |〈 f | TC j k g j 〉| ≤ θ j,k for all j ∈ J , k ∈ Z
d and every (F,)-dominated f ∈

Z ′(O).
Moreover, if ( fn)n∈N is a sequence of (F,)-dominated Fourier distributions

fn ∈ Z ′(O) satisfying fn → f0 ∈ Z ′(O) with convergence in Z ′(O), then
〈 fn | TC j k g j 〉 → 〈 f0 | TC j k g j 〉 for all j ∈ J , k ∈ Z

d .

Proof Let f ∈ Z ′(O) be (F,)-dominated. Using ϕ∗
i ϕi = ϕi and the estimate (3.3),

we see that

∣∣〈 f̂
∣∣ ϕi · F[TC j k g j ]

〉
D′,D

∣∣ = ∣∣〈ϕ∗
i f̂

∣∣ F[
TC j k ( qϕi ∗ g j )

]〉
S ′,S

∣∣

≤
∑


∈i∗

∣∣∣
〈F−1(ϕ
 f̂ )

∣∣ TC j k ( qϕi ∗ g j )
〉
S ′,S

∣∣∣

≤
∑


∈i∗

∫

Rd
F
(x) · (TC j k | qϕi ∗ g j |

)
(x) dx =:

∑


∈i∗
ζi, j,k,
 ,

(4.5)

and thus

∣∣〈 f | TC j k g j 〉
∣∣ =

∣
∣∣
∑

i∈I

〈
f̂
∣∣ ϕi · F[TC j k g j ]

〉
D′,D

∣
∣∣ ≤

∑

i∈I

∑


∈i∗
ζi, j,k,
 =: θ j,k

(4.6)

with ζi, j,k,
 and θ j,k being independent of f .
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Next, define a measure μi, j,k on R
d by dμi, j,k(x) := (

TC j k | qϕi ∗ g j |
)
(x) dx . Then

ζi, j,k,
 =
∫

Rd
F
(x) · 1 dμi, j ,k (x) ≤ ‖F
‖L p(μi, j,k ) · ‖1‖L p′ (μi, j,k )

= ‖F
‖L p(μi, j,k ) · ‖TC j k ( qϕi ∗ g j )‖1/p′
L1

≤ | det C j |1/p′ · ‖F
‖L p(μi, j,k ) · ‖( qϕi ∗ g j ) ◦ C j‖1/p′
W (L∞,
1)

.

(4.7)

There are now two cases. If p = ∞, then the estimate (4.7) and ‖ · ‖L∞(μi, j,k ) ≤
‖ · ‖L∞ yield that

‖(ζi, j,k,
)k∈Zd‖
∞ ≤ | det C j |1/p′ · ‖F
‖L p(Rd ) · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1).

If p < ∞, then (4.7) and Lemma 4.6 together show that

∑

k∈Zd

ζ
p

i, j,k,
 ≤ | det C j |p/p′ · ‖( qϕi ∗ g j ) ◦ C j‖p/p′
W (L∞,
1)

·
∑

k∈Zd

∫

Rd
(F
(x))p

· (TC j k | qϕi ∗ g j |
)
(x) dx = | det C j |p/p′ · ‖( qϕi ∗ g j ) ◦ C j‖p/p′

W (L∞,
1)

·
∫

Rd
(F
(x))p · [DC j ,| qϕi∗g j |(1)k∈Zd

]
(x) dx

≤ | det C j |p/p′ · ‖( qϕi ∗ g j ) ◦ C j‖1+(p/p′)
W (L∞,
1)

· ‖F
‖p
L p(Rd )

.

Hence, ‖(ζi, j,k,
)k∈Zd‖
p ≤ | det C j |1/p′ · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1) · ‖F
‖L p for any
p ∈ [1,∞].

Define c ∈ 

q
w(I ) by c
 := ‖F
‖L p . Then, for all j ∈ J ,

v j | det C j |
1
p − 1

2 ‖(θ j,k)k∈Zd‖
p

≤
∑

i∈I

∑


∈i∗
v j | det C j |

1
p − 1

2 ‖(ζi, j,k,
)k∈Zd‖
p

≤
∑

i∈I

[
v j | det C j |

1
p − 1

2 | det C j |1−
1
p ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1)

∑


∈i∗
c


]

≤
∑

i∈I

Mi, j · wi · (�Q c)i , (4.8)

where Mi, j is defined as in Eq. (4.2). Next, since (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-

adapted, Schur’s test shows that M : 
q(I ) → 
q(J ), (di )i∈I �→ (∑
i∈I Mi, j di

)
j∈J

is well-defined and bounded, with norm ‖M‖
q→
q ≤ ‖M‖Schur. Consequently, we
obtain

‖(θ j,k) j∈J ,k∈Zd‖Y p,q
v

≤ ∥∥M
(
w · �Q(c)

)∥∥

q (J )

≤ ‖M‖Schur · ‖�Q‖

q
w→


q
w
· ‖c‖


q
w

.
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But ‖c‖

q
w
= ‖F‖


q
w(I ;L p), and thus the first part of the proof is complete.

For the proof of the second part, first note

〈 f̂n | ϕi · F[TC j k g j ]〉D′,D −−−→
n→∞ 〈 f̂0 | ϕi · F[TC j k g j ]〉D′,D

since ϕi ·F[TC j k g j ] ∈ C∞
c (O) and since fn → f0 in Z ′(O) which implies f̂n → f̂0

in D′(O). Next, since the fn are (F,)-dominated, Eq. (4.5) shows that

|〈 f̂n | ϕi · F[TC j k g j ]〉D′,D| ≤
∑


∈i∗
ζi, j,k,
 ≤ u−1

j

∑


∈i∗
u j ‖(ζi, j,k,
)k∈Zd‖
p =: γi, j ,

while Eq. (4.8) shows that
∑

i∈I γi, j < ∞. Thus,

〈 fn | TC j k g j 〉 −−−→
n→∞ 〈 f0 | TC j k g j 〉

by definition of 〈· | ·〉 and by the dominated convergence theorem. ��
We now prove the boundedness of the coefficient and reconstruction operators.

Proposition 4.8 Let D(Q, L p, 

q
w) be a decomposition space and let Y p,q

v be the
sequence space associated to the GSI system (Tγ g j ) j∈J ,γ∈C jZ

d as per Definition 4.5.
Suppose that (Tγ g j ) j∈J ,γ∈C jZ

d is (w, v,)-adapted (where  is a BAPU forQ) with
matrix M as in (4.2). Then

(i) For all p, q ∈ [1,∞], the reconstruction map

D : Y p,q
v → D(Q, L p, 
q

w), (c( j)
k ) j∈J ,k∈Zd �→

∑

j∈J

∑

k∈Zd

c( j)
k · TC j k g j

is well-defined and bounded with‖D‖Y p,q
v →D(Q,L p,


q
w) ≤ ‖M‖Schur. Furthermore,

the defining double series converges unconditionally in Z ′(O).
(ii) For all p, q ∈ [1,∞], the coefficient operator

C : D(Q, L p, 
q
w) → Y p,q

v , f �→
(
〈 f | TC j k g j 〉

)

j∈J ,k∈Zd

is well-defined and bounded with ‖C ‖D(Q,L p,

q
w)→Y p,q

v
≤ ‖M‖Schur ·‖�Q‖


q
w→


q
w

.

(iii) If � is another BAPU for Q, and if f ∈ D(Q, L p, 

q
w), then 〈 f | TC j k g j 〉� is

well-defined and satisfies 〈 f | TC j k g j 〉� = 〈 f | TC j k g j 〉 for all j ∈ J and
k ∈ Z

d .

Proof To prove (i), let c = (c( j)
k ) j∈J ,k∈Zd ∈ Y p,q

v be arbitrary, and set c( j) :=
(c( j)

k )k∈Zd for j ∈ J . Then c( j) ∈ 
p(Zd). Moreover, if d = (d j ) j∈J is defined

as d j := | det C j |
1
p − 1

2 · ‖c( j)‖
p , then d ∈ 

q
v (J ) and ‖d‖


q
v
= ‖c‖Y p,q

v
. Finally, let

|c( j)| = (|c( j)
k |)k∈Zd for j ∈ J .
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Wefirst prove the unconditional convergence of the double series definingDc. Since
the Fourier transform F : Z ′(O) → D′(O) is a linear homeomorphism, it suffices to
show that the double series

∑
j∈J

∑
k∈Zd c( j)

k F[TC j k g j ] converges unconditionally
in D′(O). To prove this, let K ⊂ O be compact. Since

∑
i∈I ϕi ≡ 1 on O, the

family
(
ϕ−1

i (C \ {0}))i∈I forms an open cover of O ⊃ K . By compactness of K ,

there is a finite set IK ⊂ I for which K ⊂ ⋃
i∈IK

ϕ−1
i (C \ {0}) ⊂ ⋃

i∈IK
Qi .

Note that I ∗K := ⋃

∈IK


∗ ⊂ I is finite. Furthermore, for j ∈ I \ I ∗K , note that

Q j∩K ⊂ ⋃
i∈IK

Q j∩Qi = ∅,whenceϕ j ≡ 0on K . Thus, any g ∈ C∞
c (O) ⊂ S(R̂d)

with supp g ⊂ K can be written as g = ∑
i∈I ϕi g = ∑

i∈I ∗K ϕi g. A direct calculation
using Lemma 4.6 therefore shows

∑

j∈J

∑

k∈Zd

|c( j)
k | · ∣∣〈F[TC j k g j ], g〉D′,D

∣∣

≤
∑

i∈I ∗K

∑

j∈J

∑

k∈Zd

|c( j)
k | · ∣∣〈ϕi F[TC j k g j ], g〉S ′,S

∣
∣

≤
∑

i∈I ∗K

∑

j∈J

∫

Rd
|̂g(x)|

∑

k∈Zd

|c( j)
k | (TC j k | qϕi ∗ g j |

)
(x) dx

≤
∑

i∈I ∗K

∑

j∈J

‖ĝ‖L p′ ·
∥∥DC j ,| qϕi∗g j ||c( j)|∥∥L p

≤ ‖ĝ‖L p′
∑

i∈I ∗K

∑

j∈J

| det C j |
1
p
∥∥( qϕi ∗g j )◦C j

∥∥
W (L∞,
1)

‖ |c( j)| ‖
p

≤ ‖ĝ‖L p′ ·
∑

i∈I ∗K

[
w−1

i

∑

j∈J

v j d j Mi, j

]

≤ ‖ĝ‖L p′ · ‖d‖

q
v
· ‖M‖Schur ·

∑

i∈I ∗K

w−1
i < ∞ . (4.9)

Since g �→ ‖ĝ‖L p′ is a continuous norm on C∞
c (O) and since g ∈ C∞

c (O) with
supp g ⊂ K was arbitrary, the desired unconditional convergence follows.

Next, we show that D : Y p,q
v → D(Q, L p, 


q
w) is well-defined and bounded.

For i ∈ I and j ∈ J , define Bi, j := | det C j | 12 · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1). The
assumption that (Tγ g j ) j∈J ,γ∈C jZ

d is (w, v,)-adapted yields by Schur’s test that

the map B : 

q
v (J ) → 


q
w(I ), (d j ) j∈J �→ (∑

j∈J Bi, j · d j
)

i∈I is bounded with
‖B‖op ≤ ‖M‖Schur. The series defining Dc being unconditionally convergent yields

F−1(ϕi · D̂ c) =
∑

j∈J

∑

k∈Zd

c( j)
k F−1(ϕi F[TC j k g j ]) =

∑

j∈J

DC j , qϕi∗g j c( j) .
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Therefore, an application of Lemma 4.6 shows

∥∥F−1(ϕi · D̂ c)
∥∥

L p ≤
∑

j∈J

| det C j |
1
p · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1) · ‖c( j)‖
p

=
∑

j∈J

Bi, j d j = (B d)i < ∞ ,

whence ‖D c‖D(Q,L p,

q
w) ≤ ‖B d‖


q
w
≤ ‖M‖Schur · ‖d‖


q
v
= ‖M‖Schur · ‖c‖Y p,q

v
.

To prove (ii), let f ∈ D(Q, L p, 

q
w) be arbitrary. Define Fi := |F−1(ϕi f̂ )| for

i ∈ I . Then, F = (Fi )i∈I ∈ 

q
w(I ; L p) and ‖F‖


q
w(I ;L p) = ‖ f ‖D(Q,L p,


q
w). Clearly,

f is (F,)-dominated. Therefore, Lemma 4.7 yields θ = (θ j,k) j∈J ,k∈Zd ∈ Y p,q
v sat-

isfying the estimate |〈 f | TC j k g j 〉| ≤ θ j,k for all j ∈ J and k ∈ Z
d , and furthermore

‖θ‖Y p,q
v

≤ ‖M‖Schur · ‖�Q‖

q
w→


q
w
· ‖F‖


q
w(I ;L p). Hence, C : D(Q, L p, 


q
w) → Y p,q

v

is well-defined and bounded, with the claimed estimate for the operator norm.
Assertion (iii) is a direct consequence of Lemma 4.4. ��

Proposition 4.8 shows in particular that the reconstruction operator D : Y p,q
v →

D(Q, L p, 

q
w) is continuous. However, in case max{p, q} = ∞, the convergence in

Y p,q
v is a quite restrictive condition. To accommodate for this, we will often employ

the following lemma.

Lemma 4.9 Under the assumptions of Proposition 4.8, the following holds:
For each n ∈ N, let c(n) = (c(n)

j,k) j∈J ,k∈Zd ∈ Y p,q
v be such that c(n)

j,k −−−→
n→∞ c j,k ∈ C

for all j ∈ J and k ∈ Z
d . Suppose there exists a sequence θ = (θ j,k) j∈J ,k∈Zd ∈ Y p,q

v

satisfying |c(n)
j,k | ≤ θ j,k for all j ∈ J , k ∈ Z

d , and n ∈ N. Then, the reconstruction

operator D satisfies D c(n) Z ′(O)−−−→
n→∞ D c.

Proof Let f ∈ Z(O). Then K := suppF−1 f ⊂ O is compact. Since (ϕ−1
i (C \

{0}))i∈I is an open cover of K , there is a finite set I0 ⊂ I satisfying K ⊂ ⋃
i∈I0 ϕ−1

i (C\
{0}) ⊂ ⋃

i∈I0 Qi . This easily implies Qi ∩ K = ∅ for i ∈ I \ I f , where I f :=
I ∗0 := ⋃


∈I0 
∗ ⊂ I is finite. Thus, ϕi · F−1 f ≡ 0 for i ∈ I \ I f , and hence
F−1 f = ∑

i∈I f
ϕi F−1 f . Therefore,

〈TC j k g j , f 〉S ′,S = 〈F[TC j k g j ],F−1 f 〉S ′,S =
∑

i∈I f

〈ϕi F[TC j k g j ],F−1 f 〉S ′,S

=
∑

i∈I f

〈TC j k ( qϕi ∗ g j ), f 〉S ′,S .
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For ν = (ν j,k) j∈J ,k∈Zd ∈ Y p,q
v , it follows, therefore, by the convergence in Z ′(O) of

the series defining Dν that

〈Dν, f 〉Z ′,Z =
∑

j∈J

∑

k∈Zd

ν j,k 〈TC j k g j , f 〉S ′,S

=
∑

i∈I f

∑

j∈J

∑

k∈Zd

ν j,k 〈TC j k ( qϕi ∗ g j ), f 〉S ′,S . (4.10)

Next, Lemma 4.6 shows that

∑

k∈Zd

θ j,k |〈TC j k ( qϕi ∗ g j ), f 〉S ′,S | ≤
∫

Rd
| f (x)| ·

∑

k∈Zd

[
θ j,k · (TC j k | qϕi ∗ g j |

)
(x)

]
dx

≤ ‖ f ‖L p′ ·
∥
∥DC j ,| qϕi∗g j |

(
(θ j,k)k∈Zd

)∥∥
L p

≤ ‖ f ‖L p′ · | det C j |1/p · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1) · γ j ,

where we defined γ j := ‖(θ j,k)k∈Zd‖
p in the last step.

For brevity, let u j := v j · | det C j |
1
p − 1

2 . Note that since θ ∈ Y p,q
v , we have γ =

(γ j ) j∈J ∈ 

q
u ↪→ 
∞u , which yields a constant C1 > 0 such that u j γ j ≤ C1 for all

j ∈ J . Using this, we see

∑

i∈I f

∑

j∈J

∑

k∈Zd

θ j,k |〈TC j k ( qϕi ∗ g j ), f 〉S ′,S |

≤ ‖ f ‖L p′
∑

i∈I f

[
w−1

i

∑

j∈J

wi

v j
· | det C j | 12 · ‖( qϕi ∗ g j ) ◦ C j‖W (L∞,
1) · u j γ j

]

≤ C1 · ‖ f ‖L p′
∑

i∈I f

∑

j∈J

Mi, j

wi
≤ C1 · ‖ f ‖L p′ ·

(∑

i∈I f

w−1
i

)
· ‖M‖Schur < ∞ .

Finally, since |c(n)
j,k | ≤ θ j,k for all j ∈ J , k ∈ Z

d , and n ∈ N, and since c(n)
j,k −−−→

n→∞ c j,k ,

applying the dominated convergence theorem in Eq. (4.10) shows that

〈Dc(n), f 〉Z ′,Z −−−→
n→∞ 〈Dc, f 〉Z ′,Z ,

as desired. ��
Corollary 4.10 Under the assumptions of Proposition 4.8, the following holds: The
frame operator S := D ◦ C : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is well-defined and

bounded.
Furthermore, if ( fn)n∈N ⊂ D(Q, L p, 


q
w) is a sequence satisfying fn → f ∈

Z ′(O), with convergence in Z ′(O), and for which there exists F ∈ 

q
w(I ; L p) such

that all fn are (F,)-dominated, then f ∈ D(Q, L p, 

q
w) and S fn → S f with

convergence in Z ′(O).
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Proof S is well-defined, bounded by Proposition 4.8. Since ‖ fn‖D(Q,L p,

q
w) ≤

‖F‖

q
w(I ;L p) for all n ∈ N, Lemma 3.15 yields f ∈ D(Q, L p, 


q
w), where c := C f ∈

Y p,q
v . Next, Lemma 4.7 shows that there is a sequence θ = (θ j,k) j∈J ,k∈Zd ∈ Y p,q

v

such that if we set c(n) := C fn , then |c(n)
j,k | ≤ θ j,k for all (n, j, k) ∈ N × J × Z

d .

The same lemma also shows that c(n)
j,k → c j,k for all j ∈ J and k ∈ Z

d . Therefore,

Lemma 4.9 shows that S fn = D c(n) → D c = S f with convergence in Z ′(O). ��

5 Invertibility of the Frame Operator

5.1 Representation of the Frame Operator

The frame properties of generalized shift-invariant systems are usually studied under a
compatibility condition that controls the interaction between the generating functions
and the translation lattices of the system. Specifically, we will use the so-called local
integrability conditions [39, 41, 59].

Definition 5.1 For an open set O ⊂ R̂
d of full measure, let

BO(Rd) :=
{

f ∈ L2(Rd) : f̂ ∈ L∞(R̂d) and supp f̂ ⊂ O compact

}
.

A generalized shift-invariant system (Tγ g j ) j∈J ,γ∈C jZ
d is said to satisfy the α-local

integrability condition (α-LIC), relative to Oc, if, for all f ∈ BO(Rd),

∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd

∫

R̂d
| f̂ (ξ) f̂ (ξ + α)ĝ j (ξ)ĝ j (ξ + α)| dξ < ∞. (5.1)

Given (Tγ g j ) j∈J ,γ∈C jZ
d , we set � := ⋃

j∈J C−t
j Z

d and κ(α) := { j ∈ J : α ∈
C−t

j Z
d} for α ∈ �. For α ∈ �, we define the functions

tα : R̂
d → C, ξ �→

∑

j∈κ(α)

1

| det C j | ĝ j (ξ) ĝ j (ξ + α). (5.2)

Note that tα ∈ L∞(R̂d) for all α ∈ � by (4.1). Furthermore, tα(ξ − α) = t−α(ξ).
Under theα-local integrability condition, the following (weak-sense) representation

of the frame operator can be obtained; this follows by polarization from the proofs of
[39,Proposition 2.4] and [41,Theorem 3.4].
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Proposition 5.2 Suppose (Tγ g j ) j∈J ,γ∈C jZ
d satisfies the α-local integrability condi-

tion (5.1), relative to Oc. Then, for all f1, f2 ∈ BO(Rd),

∑

( j,k)∈J×Zd

〈 f1 | TC j k g j 〉〈TC j k g j | f2〉=
∑

α∈�

∫

R̂d
f̂1(ξ) f̂2(ξ + α) tα(ξ) dξ

=
∑

α∈�

〈F−1[Tα (tα f̂1)
] | f2〉L2 , (5.3)

where the series converges absolutely; in fact,

∑

α∈�

∫

R̂d
| f̂1(ξ) f̂2(ξ + α)|

∑

j∈κ(α)

1

| det C j | |ĝ j (ξ)ĝ j (ξ + α)| dξ < ∞ . (5.4)

Proposition 5.2 yields an analogous representation of the frame operator on
D(Q, L p, 


q
w), at least on the subspace SO(Rd).

Corollary 5.3 Under the assumptions of Proposition 5.2, the series
∑

α∈�0
F−1[Tα

(tα f̂ )] converges unconditionally in Z ′(O) for any subset �0 ⊂ �, and any f ∈
SO(Rd).

Furthermore, if Q is a decomposition cover of O, with subordinate BAPU , if w is
Q-moderate, and if v = (v j ) j∈J is a weight such that (Tγ g j ) j∈J ,γ∈C jZ

d is (w, v,)-

adapted, then the frame operator S : D(Q, L p, 

q
w) → D(Q, L p, 


q
w) fulfills for each

f ∈ SO(Rd) the identity

S f =
∑

j∈J

∑

k∈Zd

〈 f | TC j k g j 〉 TC j k g j =
∑

j∈J

∑

k∈Zd

〈 f | TC j k g j 〉L2 TC j k g j

=
∑

α∈�

F−1[Tα (tα f̂ )
]
. (5.5)

Proof Since tα ∈ L∞(R̂d) and f̂ ∈ S(R̂d), we have Tα (tα f̂ ) ∈ L1(R̂d) ↪→
S ′(R̂d) ↪→ D′(O), and hence F−1[Tα (tα f̂ )] ∈ Z ′(O). The Fourier transform
F : Z ′(O) → D′(O) is a linear homeomorphism; hence, it suffices to prove that the
series

∑
α∈�0

Tα (tα f̂ ) converges unconditionally inD′(O). To see this, let K ⊂ O be
compact. Define f1 := f ∈ SO(Rd) ⊂ BO(Rd), and set f2 := F−11K ∈ BO(Rd).
By Eq. (5.4), the constant CK := ∑

α∈�

∫
R̂d | f̂ (ξ)|1K (ξ + α) |tα(ξ)| dξ is finite.

Now, let ψ ∈ C∞
c (O) be arbitrary with suppψ ⊂ K . Then

∑

α∈�0

∣∣〈Tα (tα f̂ ), ψ〉D′,D
∣∣ ≤

∑

α∈�

‖ψ‖L∞
∫

R̂d
|tα(η − α) f̂ (η − α)| · 1K (η) dη

= CK ‖ψ‖L∞ < ∞. (5.6)

Since ‖ · ‖L∞ is continuous with respect to the topology on C∞
c (O), and since ψ ∈

C∞
c (O) with suppψ ⊂ K was arbitrary, the estimate (5.6) simultaneously yields
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that
∑

α∈�0
Tα (tα f̂ ) ∈ D′(O), cf. [54,Theorem 6.6], as well as the unconditional

convergence of the series in D′(O).
For the remaining part, note if f ∈ SO(Rd), then 〈 f | TC j k g j 〉 = 〈 f | TC j k g j 〉L2

by Remark 3.17. This proves everything but the last equality in Eq. (5.5). To prove this,
let g ∈ Z(O). Then ĝ = F−1g ∈ C∞

c (O), and hence g ∈ BO(Rd). This, together
with Eq. (5.3), shows

〈S f , g〉Z ′,Z = 〈S f | g〉L2 =
∑

α∈�

〈F−1[Tα (tα f̂ )
] | g

〉
L2

=
〈∑

α∈�

F−1[Tα (tα f̂ )
]
, g
〉

Z ′,Z
,

and hence (5.5) follows. ��

5.2 Towards Invertibility

According to Corollary 5.3, on the set SO(Rd), the frame operator can be represented
as

S f = T0 f + R f , (5.7)

with

T0 f = F−1( t0 · f̂ ) (5.8)

and

R f = F−1
( ∑

α∈�\{0}
Tα ( tα · f̂ )

)
, (5.9)

for f ∈ SO(Rd). In the following, we estimate the norms of T −1
0 and R as operators on

the decomposition spaceD(Q, L p, 

q
w). This will be used, together with the following

elementary result, to provide conditions ensuring that the frame operator is invertible.

Lemma 5.4 Let X be a Banach space, and let S : X → X be a linear operator that
can be written as S = T0+R, where T0, R are bounded linear operators on X. Finally,
assume that T0 is boundedly invertible and that

‖T −1
0 ‖X→X · ‖R‖X→X < 1 .

Then, S : X → X is also boundedly invertible.

Proof We have S = T0 + R = T0
(
idX − (−T −1

0 R)
)
. But ‖ − T −1

0 R‖X→X ≤
‖T −1

0 ‖X→X · ‖R‖X→X < 1, so that idX − (−T −1
0 R) is boundedly invertible by a

Neumann series argument. This implies that S is boundedly invertible as a composi-
tion of boundedly invertible operators. ��
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5.3 Estimates for Fourier Multipliers

The operator T0 is a Fouriermultiplier, andwe aim to estimate its inverse.As a first step,
we prove a general result concerning the boundedness of Fourier multipliers on Besov-
type spaces; see Proposition 5.7 below. More qualitative versions of that proposition
can be found in [56,Sect. 2.4.3], [58,Sect. 2.3] and [23,Theorem 2.11]. Corresponding
results for Triebel-Lizorkin spaces hold under more stringent assumptions on the
decomposition cover; see [56,Sects. 2.4.2 and 2.5.4] and [55].

In contrast to [56,Sect. 2.4.3], we consider Fourier symbols with limited regularity.
This entails certain technical difficulties because of our choice of the reservoir Z ′(O),
where Z(O) = F(C∞

c (O)). More precisely, if f ∈ D(Q, L p, 

q
w) ⊂ Z ′(O), then

f̂ ∈ D′(O) is a distribution, and can be multiplied by a function h ∈ C∞(O). We
need, however, to make sense of the product with more general functions h, by fully
exploiting the fact that f ∈ D(Q, L p, 


q
w). To this end, we introduce the following

notion:

Definition 5.5 Let p ∈ [1,∞]. For f ∈ FL1(Rd) and g ∈ FL p(Rd), we define the
generalized product of f and g as

f � g := F[(F−1 f ) ∗ (F−1g)] ∈ FL p(Rd) ⊂ S ′(Rd).

Remark 5.6 The definition makes sense because of Young’s inequality: (F−1 f ) ∗
(F−1g) ∈ L p(Rd). Furthermore, our definition indeed generalizes the usual product:
if f ∈ S(Rd) and g ∈ S ′(Rd), then f · g = F[(F−1 f ) ∗ (F−1g)]—see, for instance
[54,Theorem 7.19].

We can now derive an estimate for Fourier multipliers on decomposition spaces.
The proof is deferred to Appendix C.

Proposition 5.7 Let Q = (Qi )i∈I be a decomposition cover of an open set ∅ �= O ⊂
R̂

d , and let (ϕi )i∈I be a BAPU subordinate to Q. A continuous function h ∈ C(O) is
called tame if

Ch := sup
i∈I

‖F−1(ϕi · h)‖L1 < ∞. (5.10)

If h is tame and if f ∈ D(Q, L p, 

q
w) for certain p, q ∈ [1,∞] and a Q-moderate

weight w, then the series

h f :=
∑

i∈I

F−1[(ϕ∗
i h) � (ϕi f̂ )] (5.11)

converges unconditionally in Z ′(O). Furthermore, the operator h satisfies the fol-
lowing properties:

(i) h :D(Q, L p, 

q
w)→D(Q, L p, 


q
w) is bounded, with‖h‖D(Q,L p,


q
w)→D(Q,L p,


q
w)

≤ N 2
QCCh for arbitrary p, q ∈ [1,∞] and any Q-moderate weight w.
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(ii) If ( fn)n∈N ⊂ Z ′(O) is (F,)-dominated for some F ∈ 

q
w(I ; L p) and if fn → f

with convergence in Z ′(O), then also h fn → h f with convergence in Z ′(O).
In addition, there is G ∈ 


q
w(I ; L p) such that h fn is (G,)-dominated for all

n ∈ N and such that ‖G‖

q
w(I ;L p) ≤ N 2

QCCh · ‖F
‖

q
w(I ;L p).

(iii) If f ∈ D(Q, L p, 

q
w) and f̂ ∈ Cc(O), then h f = F−1(h · f̂ ).

(iv) If g, h ∈ C(O) are tame, then so is g · h, and we have hg = gh.

Remark One can show that if Ch is finite for one BAPU (ϕi )i∈I , then the same holds
for any other BAPU. Still, the precise value of the constant Ch depends on the choice
of the BAPU.

5.4 Estimates for the Remainder Term R

The following proposition provides a general condition under which R defines a
bounded operator onD(Q, L p, 


q
w). Simplified versions of these are derived in Sect. 6.

Proposition 5.8 Let Q = (Qi )i∈I be a decomposition cover of an open set O ⊂ R̂
d of

full measure, with associated BAPU  = (ϕi )i∈I . Let w = (wi )i∈I be Q-moderate.
Suppose the system (Tγ g j ) j∈J ,γ∈C jZ

d satisfies the α-local integrability condition
(5.1), with respect to Oc. Moreover, suppose that, for all i, 
 ∈ I ,

Ni,
 := wi

w


∑

α∈�\{0}

∥
∥∥∥F−1

(
ϕi (· + α) · tα · ϕ


)∥∥∥∥
L1

< ∞ (5.12)

and that the matrix N = (Ni,
)i,
∈I ∈ C
I×I is of Schur-type. Then, for all p, q ∈

[1,∞], the “remainder operator R” defined in (5.9) satisfies

‖R f ‖D(Q,L p,

q
w) ≤ ‖N‖Schur ‖�Q‖


q
w(I )→


q
w(I ) ‖ f ‖D(Q,L p,


q
w) ∀ f ∈ SO(Rd) .

Proof The assumptions yield, by Schur’s test, that the operator

N : 
q
w(I ) → 
q

w(I ), (c
)
∈I �→
(∑


∈I

[ ∑

α∈�\{0}
‖ϕi (· + α) · tα · ϕ
‖FL1

]
· c


)

i∈I
,

is bounded, with ‖N‖

q
w(I )→


q
w(I ) ≤ ‖N‖Schur.

Let f ∈ SO(Rd) be arbitrary. For any 
 ∈ I , define c
 := ‖ϕ∗

 · f̂ ‖FL p and

θ
 := ‖ϕ
 · f̂ ‖FL p , where ϕ∗

 := ∑

i∈
∗ ϕi . Let c = (ci )i∈I and θ = (θi )i∈I .
Then 0 ≤ c
 ≤ ∑

i∈
∗ θi = (�Q θ)
, and hence ‖c‖

q
w

≤ ‖�Q‖

q
w→


q
w
· ‖θ‖


q
w

=
‖�Q‖


q
w→


q
w
· ‖ f ‖D(Q,L p,


q
w) < ∞.

Since f ∈ SO(Rd), we have f̂ ∈ C∞
c (O), and hence f̂ = ∑


∈I ϕ
 · f̂ =∑

∈I ϕ
 ϕ∗


 f̂ , where only finitely many terms of the series do not vanish. Therefore,
by the unconditional convergence of the series defining R f (see Corollary 5.3), we
see

ϕi · R̂ f = ϕi ·
∑

α∈�\{0}
Tα (tα · f̂ ) =

∑


∈I

∑

α∈�\{0}
ϕi · Tα (tα · ϕ
 · ϕ∗


 · f̂ ) .
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Hence, for all i ∈ I ,

‖ϕi · R̂ f ‖FL p ≤
∑


∈I

∑

α∈�\{0}
‖ϕi · Tα (tα · ϕ
 · ϕ∗


 · f̂ )‖FL p

≤
∑


∈I

∑

α∈�\{0}
‖(T−α ϕi ) · tα · ϕ
‖FL1 ‖ϕ∗


 · f̂ ‖FL p = (N c)i ,

and thus

‖R f ‖D(Q,L p,

q
w) =

∥
∥(‖ϕi · R̂ f ‖FL p

)
i∈I

∥
∥



q
w

≤ ‖N c‖

q
w
≤ ‖N‖Schur‖�Q‖


q
w→


q
w
‖ f ‖D(Q,L p,


q
w),

as claimed. ��
Corollary 5.9 Assume that the hypotheses of Proposition 5.8 are satisfied. Further-
more, assume that the function t0 defined in (5.2) is continuous on O and tame (see
Proposition 5.7), so that the operator t0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is well-

defined and bounded. Finally, assume that (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-adapted

for some weight v = (v j ) j∈J .
Define T0 := t0 . Then the frame operator S : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is

well-defined and bounded and satisfies S = T0 + R0 with a bounded linear operator
R0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) satisfying

‖R0‖D(Q,L p,

q
w)→D(Q,L p,


q
w) ≤ C p,q‖N‖Schur ‖�Q‖


q
w(I )→


q
w(I ),

where N ∈ C
I×I is as in (5.12), and C p,q := 1 if max{p, q} < ∞ and C p,q :=

C ‖�Q‖2



q
w→


q
w

otherwise.

Proof Corollary 4.10 shows that the frame operator S : D(Q, L p, 

q
w) →

D(Q, L p, 

q
w) is well-defined and bounded, and hence so is R0 := S − T0. Note

for f ∈ SO(Rd) that T0 f = F−1(t0 · f̂ ) by Proposition 5.7(iii). Therefore, Corol-
lary 5.3 shows for f ∈ SO(Rd) that R0 f = R f with R f as in Eq. (5.9). Thus, if
max{p, q} < ∞, the density of SO(Rd) in D(Q, L p, 


q
w) (Proposition 3.13), com-

bined with Proposition 5.8, shows the claim.
Now, suppose that max{p, q} = ∞, and let f ∈ D(Q, L p, 


q
w) be arbitrary. Then,

Proposition 3.13 yields a sequence (gn)n∈N ⊂ SO(Rd) and some F ∈ 

q
w(I ; L p)

such that gn → f with convergence in Z ′(O), and such that each gn is (F,)-
dominated, where ‖F‖


q
w(I ;L p) ≤ C p,q · ‖ f ‖D(Q,L p,


q
w) with C p,q as in the statement

of the current corollary. By Proposition 5.7(ii), we get T0gn → T0 f with convergence
in Z ′(O). In addition, Corollary 4.10 shows that S gn → S f in Z ′(O). Therefore,
R gn = R0 gn = (S − T0)gn → (S − T0) f = R0 f , while Proposition 5.8 shows

‖R gn‖D(Q,L p,

q
w) ≤ ‖N‖Schur‖�Q‖


q
w→


q
w
‖gn‖D(Q,L p,


q
w)

≤ C p,q‖N‖Schur‖�Q‖

q
w→


q
w
‖ f ‖D(Q,L p,


q
w) .
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Lemma 3.15 yields ‖R0 f ‖D(Q,L p,

q
w) ≤ C p,q‖N‖Schur‖�Q‖


q
w→


q
w
‖ f ‖D(Q,L p,


q
w).��

In many cases, instead of verifying that the matrix N defined in Eq. (5.12) is of
Schur-type, it is easier to consider the matrix Ñ defined next.

Corollary 5.10 Let Q = (Qi )i∈I be a decomposition cover of an open set O ⊂ R̂
d

of full measure with BAPU  = (ϕi )i∈I , and let w = (wi )i∈I be Q-moderate. Let
(Tγ g j ) j∈J ,γ∈C jZ

d be a generalized shift-invariant system. Suppose that the matrix

Ñ = (Ñi,
)i,
∈I given by

Ñi,
 := max

{
1,

wi

w


}∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd\{0}

∥∥
∥
∥F−1

(
ϕi (· − α) · ĝ j · ĝ j (· − α) · ϕ


)∥∥
∥
∥

L1

(5.13)

is of Schur-type. Then (Tγ g j ) j∈J ,γ∈C jZ
d satisfies the α-local integrability condition

relative to Oc, and ‖N‖Schur ≤ ‖Ñ‖Schur, where N is as defined in Eq. (5.12).

Proof By assumption, ‖Ñ‖Schur < ∞. We first show that

C := ess sup
ξ∈O

∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd

|ĝ j (ξ)ĝ j (ξ + α)| < ∞. (5.14)

To show this, first note that since O ⊂ R̂
d is of full measure, so is

O0 := {
ξ ∈ R̂

d : ξ + α ∈ O, ∀ j ∈ J , ∀α ∈ C−t
j Z

d},

since Oc
0 = ⋃

j∈J
⋃

α∈C−t
j Zd (Oc − α) is a countable union of null-sets. If ξ ∈ O0

and j ∈ J , α ∈ C−t
j Z

d are arbitrary, then ξ + α ∈ O and hence
∑

i∈I ϕi (ξ + α) = 1,
whence 1 ≤ ∑

i∈I |ϕi (ξ + α)|. Now, let ξ ∈ O0 ⊂ O be arbitrary and choose
i0 ∈ I such that ξ ∈ Qi0 . Then,

∑

∈i∗0 ϕ
(ξ) = 1. Thus, using the estimate ‖ f ‖sup ≤

‖F−1 f ‖L1 , we see that

∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd\{0}

|ĝ j (ξ)ĝ j (ξ + α)|

≤
∑

i∈I ,
∈i∗0

∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd\{0}

|ĝ j (ξ)ϕi (ξ + α)ĝ j (ξ + α)ϕ
(ξ)|

≤
∑


∈i∗0 ,i∈I

Ñi,
 ≤ NQ · ‖Ñ‖Schur < ∞.

In combination with our standing assumption (4.1), this proves (5.14).
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Now, the monotone convergence theorem and (5.14) show for arbitrary f ∈
BO(Rd) that

∑

j∈J

1

| det C j |
∑

α∈C−t
j Zd

∫

R̂d
| f̂ (ξ) f̂ (ξ + α) ĝ j (ξ) ĝ j (ξ + α)| dξ

≤ C ‖ f̂ ‖L∞ ·
∫

R̂d
| f̂ (ξ)| dξ < ∞,

since f̂ ∈ L∞(R̂d) and supp f̂ ⊂ O is compact. This shows that (Tγ g j ) j∈J ,γ∈C jZ
d

satisfies the α-LIC.
Finally, recall that tα(ξ) = ∑

j∈κ(α) | det C j |−1 ĝ j (ξ) ĝ j (ξ + α), where κ(α) =
{ j ∈ J : α ∈ C−t

j Z
d}. Therefore, the matrix entries Ni,
 defined in (5.12) satisfy

Ni,
 ≤ max

{
1,

wi

w


} ∑

α∈�\{0}

∑

j∈κ(α)

| det C j |−1 ∥∥F−1(ϕi (· + α) · ĝ j · ĝ j (· + α) · ϕ


)∥∥
L1

= Ñi,
.

Thus, ‖N‖Schur ≤ ‖Ñ‖Schur, as claimed. ��

5.5 Invertibility in the Case (p, q) = (2, 2)

In this subsection, we focus on the special case (p, q) = (2, 2), where the following
identification holds; see [61,Lemma 6.10].

Lemma 5.11 Let Q = (Qi )i∈I be a decomposition cover of an open set ∅ �= O ⊂ R̂
d ,

and let w = (wi )i∈I be a Q-moderate weight. Then there is a measurable weight v :
O → (0,∞) with v(ξ) � wi for all ξ ∈ Qi and i ∈ I . Furthermore, D(Q, L2, 
2w) =
F−1(L2

v(O)) with equivalent norms, where the norm ‖ f ‖F−1(L2
v(O)) := ‖ f̂ ‖L2

v(O) is

used on F−1(L2
v(O)) = {

f ∈ Z ′(O) : f̂ ∈ L2
v(O)

}
.

We will also make use of the following two lemmata.

Lemma 5.12 Let ∅ �= O ⊂ R̂
d be an open set, let v : O → (0,∞) be a weight func-

tion, and let t0 be as in Eq. (5.2). Then, the Fourier multipliers T0 : F−1(L2
v(O)) →

F−1(L2
v(O)), f �→ F−1(t0 f̂ ) and

T −1
0 : F−1(L2

v(O)) → F−1(L2
v(O)), f �→ F−1(t−1

0 · f̂ )

are well-defined and bounded, with‖T −1
0 ‖op ≤ A−1 and‖T0‖op ≤ B, where A, B > 0

are as in (4.1).

Proof If f ∈ F−1(L2
v(O)), then

‖T −1
0 f ‖F−1(L2

v(O)) = ‖t−1
0 · f̂ ‖L2

v(O) ≤ ‖t−1
0 ‖L∞(O) · ‖ f ‖F−1(L2

v(O)).

The argument for T0 is similar. ��
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Lemma 5.13 Let O ⊂ R̂
d be an open set of full measure and let v : R̂

d → (0,∞)

be v0-moderate for some symmetric weight v0 : R̂
d → (0,∞); that is, v(ξ + η) ≤

Cv · v(ξ) · v0(η) for all ξ, η ∈ R̂
d and some Cv > 0. Then the operator R defined in

Eq. (5.9) satisfies

‖R‖F−1(L2
v(O))→F−1(L2

v(O)) ≤ Cv · ess sup
ξ∈O

∑

α∈�\{0}
|tα(ξ)| · v0(α). (5.15)

Proof Since O is of full measure, we have F−1(L2
v(O)) = F−1(L2

v(R̂
d)), up to

canonical identifications. Let g ∈ L2(R̂d) and f ∈ F−1(L2
v(O)) be such that ‖g‖L2 ≤

1 and ‖ f ‖F−1(L2
v(O)) ≤ 1. Using the estimates v(ξ) ≤ Cv · v(ξ − α) · v0(α) and

|ab| ≤ 1
2

(|a|2 + |b|2) and the identity tα(ξ − α) = t−α(ξ), it follows that

∫

R̂d
|g(ξ)| · v(ξ) ·

∑

α∈�\{0}

∣
∣tα(ξ − α) f̂ (ξ − α)

∣
∣ dξ

≤ Cv ·
∑

α∈�\{0}
v0(α)

∫

R̂d

(
|t−α(ξ)|1/2 · |g(ξ)|

)
·
(
|tα(ξ − α)|1/2 · |(v f̂ )(ξ − α)|

)
dξ

≤ Cv

2
·

∑

α∈�\{0}
v0(α)

∫

R̂d
|t−α(ξ)| · |g(ξ)|2 + |tα(ξ − α)| · |(v f̂ )(ξ − α)|2 dξ

= Cv

2
·
(∫

R̂d

( ∑

β∈�\{0}
v0(−β) |tβ(ξ)|

)
· |g(ξ)|2 dξ

+
∫

R̂d

( ∑

α∈�\{0}
v0(α) |tα(η)|

)
· |(v f̂ )(η)|2 dη

)

≤ Cv · ess sup
ξ∈O

∑

α∈�\{0}
v0(α) |tα(ξ)| .

Since this holds for all g ∈ L2(R̂d) with ‖g‖L2 ≤ 1, the series

∑

α∈�\{0}
tα(ξ − α) f̂ (ξ − α) =

∑

α∈�\{0}

[
Tα (tα · f̂ )

]
(ξ) = [

R̂ f
]
(ξ)

is almost everywhere absolutely convergent, and

‖R f ‖F−1(L2
v(O)) ≤

∥∥
∥v ·

∑

α∈�\{0}

∣∣Tα (tα f̂ )
∣∣
∥∥
∥

L2
≤ Cv · ess sup

ξ∈O

∑

α∈�\{0}
v0(α) |tα(ξ)| ,

for all f ∈ F−1(L2
v(O)) with ‖ f ‖F−1(L2

v(O)) ≤ 1. This proves the claim. ��

Using the previous lemmata, the following result follows easily. See
[45,Theorem 3.3] for a similar result in L2.
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Proposition 5.14 Let Q = (Qi )i∈I be a decomposition cover of an open set O ⊂ R̂
d

of full measure, and let w = (wi )i∈I be Q-moderate. Suppose (Tγ g j ) j∈J ,γ∈C jZ
d

satisfies the α-local integrability condition (5.1) relative to Oc. Finally, assume that

Cv · ess sup
ξ∈O

∑

α∈�\{0}
|tα(ξ)| · v0(α) < A , (5.16)

where A > 0 is as in (4.1), where v : R̂
d → (0,∞) is a measurable weight that

satisfies v(ξ) � wi for all ξ ∈ Qi and i ∈ I , and where v0 : R̂
d → (0,∞) is

assumed to be a symmetric weight satisfying v(ξ + η) ≤ Cv · v(ξ) · v0(η) for all
ξ, η ∈ R̂

d .
Then, the frame operator S : SO(Rd) → L2(Rd) associated to (Tγ g j ) j∈J ,γ∈C jZ

d

uniquely extends to a bounded linear operator S0 : D(Q, L2, 
2w) → D(Q, L2, 
2w).
This extended operator is boundedly invertible.

Proof Lemmas 5.12 and 5.13 show, respectively, that the operators T0 and R defined
in these lemmas yield bounded operators on F−1(L2

v(O)), so that S0 := T0 + R :
F−1(L2

v(O)) → F−1(L2
v(O)) is well-defined and bounded. As seen in Proposi-

tion 5.2, we have S0 f = S f for all f ∈ SO(Rd) ⊂ BO(Rd). Furthermore, SO(Rd) ⊂
D(Q, L2, 
2w) = F−1(L2

v(O)) is dense (see Proposition 3.13 and Lemma 5.11); there-
fore, S0 is the unique bounded extension of S.

Finally, conditions (4.1) and (5.16) together with Lemma 5.12 and Lemma 5.13
yield that

‖T −1
0 ‖F−1(L2

v(O))→F−1(L2
v(O)) · ‖R‖F−1(L2

v(O))→F−1(L2
v(O)) < 1.

Hence, S0 = T0+R is boundedly invertible onF−1(L2
v(O)) by Lemma 5.4. Using the

norm equivalence ‖·‖F−1(L2
v(O)) � ‖·‖D(Q,L2,
2w) provided byLemma 5.11, it follows

therefore that also S0 : D(Q, L2, 
2w) → D(Q, L2, 
2w) is boundedly invertible. ��

Remark 5.15 The formulation of Proposition 5.14 is rather technical, because, under
those assumptions, the formula defining the frame operator might not make sense
for f ∈ D(Q, L2, 
2w). Indeed, the hypothesis are satisfied for every tight frame,
even if g j /∈ D(Q, L2, 
2w). If, in addition, (Tγ g j ) j∈J ,γ∈C jZ

d is assumed to be
(w, v,)-adapted for someweight v, thenProposition 4.8 applies andwe can conclude
unambiguously that S : D(Q, L2, 
2w) → D(Q, L2, 
2w) is well-defined, bounded and
boundedly invertible on D(Q, L2, 
2w).

Remark 5.16 If (Tγ g j ) j∈J ,γ∈C jZ
d is a tight frame for L2(Rd)with lower frame bound

A > 0, which furthermore satisfies the α-local integrability condition, then the mul-
tipliers tα ∈ L∞(R̂d) satisfy tα(ξ) = A δα,0 for a.e. ξ ∈ R̂

d and all α ∈ �, cf.
[41,Theorem 3.4]. The condition (5.16) is then obviously satisfied. The placement
of the absolute value sign outside of the series defining the multipliers tα allows for
cancellations, which can be very important [45].
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6 Concrete Estimates for Affinely Generated Covers

In this section, we simplify the results of Sect. 5 for the case that the decomposition
cover Q is affinely generated. The results obtained here will be further simplified in
Sect. 7.

In the sequel, we will repeatedly use Q-localized versions of the generating
functions g j of the system (Tγ g j ) j∈J ,γ∈C jZ

d . Precisely, given a family (g j ) j∈J of

generating functions g j ∈ L1(Rd) ∩ L2(Rd) and a family (Si )i∈I of invertible affine-
linear maps Si = Ai (·) + bi , we let

g�
i, j := | det Ai |−1 · (M−bi g j

) ◦ A−t
i = F−1(ĝ j ◦ Si ) for (i, j) ∈ I × J , (6.1)

so that Fg�
i, j = ĝ j ◦ Si .

6.1 Boundedness of the Frame Operator

As a first step, we provide a sufficient condition for a system to be adapted (see
Definition 4.3). The proof makes use of the following self-improving property of
amalgam spaces, which is taken from [62,Theorem 2.17].

Lemma 6.1 Let f ∈ S ′(Rd) with supp f̂ ⊂ A[−R, R]d + ξ0 for some A ∈ GL(d, R),
ξ0 ∈ R̂

d , and R > 0. Then, there exists a constant C = C(d) > 0 which only depends
on d ∈ N such that

‖ f ‖WA−t [−1,1]d (L∞,L1) ≤ C · (1+ R)d · ‖ f ‖L1 .

Proposition 6.2 Let Q = (
Ai (Q′

i )+bi
)

i∈I be an affinely generated cover of O ⊂ R̂
d ,

and let  = (ϕi )i∈I be a regular partition of unity subordinate to Q. Let w =
(wi )i∈I be Q-moderate, and let v = (v j ) j∈J be a weight. Suppose that the system
(Tγ g j ) j∈J ,γ∈C jZ

d satisfies, for (i, j) ∈ I × J ,

Gi, j := max

{
wi

v j
,

v j

wi

}
(1+ ‖Ct

j Ai‖)d

| det C j |1/2
∫

Q′
i

max|θ |≤d+1

∣∣∂θ [Fg�
i, j ](ξ)

∣∣ dξ < ∞

and that G = (Gi, j )i∈I , j∈J ∈ C
I×J is of Schur-type. Then, (Tγ g j ) j∈J ,γ∈C jZ

d

is (w, v,)-adapted. Consequently, the frame operator S : D(Q, L p, 

q
w) →

D(Q, L p, 

q
w) is well-defined and bounded.

Proof We will estimate ‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)
for (i, j) ∈ I × J . Choose r > 1

such that Q′
i ⊂ [−r , r ]d for all i ∈ I . The norm equivalence ‖ · ‖W (C0,
1)

� ‖ ·
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‖W[−1,1]d (C0,L1) yields an absolute constant K1 = K1(d) > 0 satisfying

‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)
≤ K1 · ‖( qϕi ∗ g j ) ◦ C j‖W[−1,1]d (C0,L1)

= K1 · | det C j |−1 · ‖ qϕi ∗ g j‖WC j ([−1,1]d )
(C0,L1)

for i ∈ I and j ∈ J . Here, we used Eq. (2.1) in the last step. Define Pi, j := r ·
‖Ct

j Ai‖
∞→
∞ . Since suppϕi ⊂ Ai (Q′
i ) + bi , it follows that

suppF( qϕi ∗ g j ) ⊂ Ai [−r , r ]d + bi = C−t
j

(
Ct

j · Ai [−r , r ]d)

+bi ⊂ C−t
j [−Pi, j , Pi, j ]d + bi .

Therefore, Lemma 6.1 yields a constant K2 = K2(d) > 0 such that

‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)
≤ K1K2 · (1+ Pi, j )

d · | det C j |−1 · ‖F−1(ϕi · ĝ j )‖L1 .

(6.2)

Next, recalling the notion of the normalized version ϕ
�
i = ϕi ◦Si of ϕi (Definition 3.6),

we see

∥∥F−1(ϕi · ĝ j
)∥∥

L1 = ∥∥F−1((ϕi ◦ Si ) · (ĝ j ◦ Si )
)∥∥

L1 = ∥∥F−1(ϕ�
i · Fg�

i, j

)∥∥
L1 ,

whence Lemma A.2 shows that

∥∥F−1(ϕi · ĝ j
)∥∥

L1 ≤ d + 1

πd
max|θ |≤d+1

∥∥∂θ
(
ϕ

�
i · Fg�

i, j

)∥∥
L1 .

Now, since ϕ
�
i vanishes outside of Q′

i , it follows that |(∂αϕ
�
i )(ξ)| ≤ K3 ·1Q′

i
(ξ) for all

ξ ∈ R̂
d and anyα ∈ N

d
0 with |α| ≤ d+1, where K3 := max|α|≤d+1 supi∈I ‖∂αϕ

�
i ‖L∞ .

An application of the Leibniz rule therefore yields

∣∣∂θ
(
ϕ

�
i · Fg�

i, j

)
(ξ)

∣∣ ≤
∑

β≤θ

(
θ

β

)∣∣(∂θ−βϕ
�
i

)
(ξ)

∣∣ · ∣∣∂β [Fg�
i, j ](ξ)

∣∣

≤ 2d+1K3 · 1Q′
i
(ξ) max|ν|≤d+1

∣∣(∂ν[Fg�
i, j ]

)
(ξ)

∣∣

for any θ ∈ N
d
0 with |θ | ≤ d +1. Integrating this last inequality and combining it with

(6.2) yields

‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)
≤ K

(1+ ‖Ct
j Ai‖)d

| det C j |
∫

Q′
i

max|θ |≤d+1

∣∣(∂θ [Fg�
i, j ]

)
(ξ)

∣∣ dξ
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for a constant K = K (Q, d,) > 0. Therefore, the matrix entries Mi, j defined in
Eq. (4.2) satisfy

0 ≤ Mi, j = max
{wi

v j
,

v j

wi

}
· | det C j |1/2 · ‖( qϕi ∗ g j ) ◦ C j‖W (C0,
1)

≤ K ·max
{wi

v j
,

v j

wi

}
· (1+ ‖Ct

j Ai‖)d

| det C j |1/2
∫

Q′
i

max|θ |≤d+1

∣∣(∂θ [Fg�
i, j ]

)
(ξ)

∣∣ dξ

= K · Gi, j .

This implies ‖M‖Schur ≤ K · ‖G‖Schur < ∞, so that (Tγ g j ) j∈J ,γ∈C jZ
d is (w, v,)-

adapted. ��

6.2 TheMain Term

In this section, we provide a simplified bound for the operator norm of T −1
0 :

D(Q, L p, 

q
w) → D(Q, L p, 


q
w).

Proposition 6.3 Let Q = (Si (Q′
i ))i∈I be an affinely generated cover of an open set

O ⊂ R̂
d of full measure. Let  = (ϕi )i∈I be a regular partition of unity subordinate

to Q. Suppose the system (Tγ g j ) j∈J ,γ∈C jZ
d satisfies

M := sup
i∈I

∑

j∈J

(
| det C j |−1 ·

∥∥
∥ max|ν|≤d+1

∣∣ ∂ν |Fg�
i, j |2

∣∣
∥∥
∥

Ld+1(Q′
i )

)
< ∞ . (6.3)

Then, the function t0 defined in Eq. (5.2) is continuous on O and tame, and Eq. (4.1)
holds for all ξ ∈ O. Furthermore, for all p, q ∈ [1,∞] and any Q-moderate weight
w = (wi )i∈I , the operator

T0 := t0 : D(Q, L p, 
q
w) → D(Q, L p, 
q

w)

with t0 as in Proposition 5.7 is well-defined, bounded, and boundedly invertible, with

‖T−1
0 ‖D(Q,L p,


q
w)→D(Q,L p,


q
w)

≤ Cd · N2
QC ·

[
max|α|≤d+1

CQ,,α

]
· A−1 ·

(
M

A

)d+1
,

(6.4)

where A > 0 is as in (4.1) and

Cd := 3 · (d + 1)3/2 · 2d+1

πd

(
0.8
e · (d + 1)2

ln(2+ d)

)d+1

. (6.5)

Proof We divide the proof into four steps.

Step 1. We show that the series defining t0 converges locally uniformly on O, that
Eq. (4.1) holds pointwise on O, and that t0 is tame.
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To see this, set γ j := |ĝ j |2/| det C j |, and note t0 = ∑
j∈J γ j and that γ j ∈ C∞(R̂d)

thanks to our standing assumptions regarding the g j . Now, for arbitrary i ∈ I , recall

that ϕ�
i = ϕi ◦ Si vanishes outside Q′

i , so that the Leibniz rule shows

∣∣∂α
(
ϕ

�
i · (γ j ◦ Si )

)
(ξ)

∣∣ ≤
∑

β≤α

(
α

β

)
|∂α−βϕ

�
i (ξ)| |∂β(γ j ◦ Si )(ξ)|

≤ c0 · | det C j |−1 · 1Q′
i
(ξ) · max|ν|≤d+1

∣∣∂ν |Fg�
i, j |2(ξ)

∣∣

for c0 := 2d+1 max|ν|≤d+1 CQ,,ν and arbitrary α ∈ N
d
0 with |α| ≤ d + 1.

Therefore, using the notation I := {0} ∪ {(d + 1) e
 : 
 ∈ d} (where (e1, . . . , ed)

denotes the standard basis of R
d ), Lemma A.2 shows because of ‖ϕi · γ j‖FL1 =

‖ϕ�
i · (γ j ◦ Si )‖FL1 and d+1

πd ≤ 1 that

‖ϕi · γ j‖FL1 ≤ max
α∈I

∥∥∂α
(
ϕ

�
i · (γ j ◦ Si )

)∥∥
L1 ≤ c0 · | det C j |−1·

∥∥∥ max|ν|≤d+1

∣∣∂ν |Fg�
i, j |2

∣∣
∥∥∥

L1(Q′
i )

≤ c0 c1 · | det C j |−1
∥∥∥ max|ν|≤d+1

∣∣∂ν |Fg�
i, j |2

∣∣
∥∥∥

Ld+1(Q′
i )
,

(6.6)

where c1 = c1(Q, d) > 0 is a constant satisfying ‖ · ‖L1(Q′
i )
≤ c1 · ‖ · ‖Ld+1(Q′

i )
for all

i ∈ I , which exists since the (Q′
i )i∈I are uniformly bounded. Estimate (6.6) implies

that

sup
i∈I

∑

j∈J

‖ϕi · γ j‖sup ≤ sup
i∈I

∑

j∈J

‖ϕi · γ j‖FL1 ≤ c0c1 · M < ∞,

where M is as in (6.3). This guarantees the locally uniform convergence on O of
the series t0 = ∑

j∈J γ j . Indeed, if ξ ∈ O is arbitrary, then ξ ∈ Qi for some i ∈ I
where Qi is open; furthermore,

∑

∈i∗ ϕ
 ≡ 1 on Qi and hence

∑
j∈J ‖γ j‖L∞(Qi ) ≤∑

j∈J
∑


∈i∗ ‖ϕ
 · γ j‖sup < ∞, which shows that the series t0 = ∑
j∈J γ j converges

uniformly on Qi . By locally uniform convergence, we see that t0 is continuous onO.
Eq. (4.1) shows that A ≤ t0 ≤ B almost everywhere on O; since O is open and t0
continuous, this estimate necessarily holds pointwise on O.

Finally, since suppϕi ⊂ O is compact, we see ϕi t0 = ∑
j∈J ϕiγ j with uniform

convergence of the series, and hence with convergence in L1(R̂d), since all summands
have support in the fixed compact set Qi ⊂ O. Thus,F−1(ϕi t0) = ∑

j∈J F−1(ϕi γ j ),

which leads to the estimate supi∈I ‖F−1(ϕi t0)‖L1 ≤ supi∈I
∑

j∈J ‖ϕi · γ j‖FL1 ≤
c0 c1 · M < ∞. Thus, t0 is tame, so that Proposition 5.7 shows that T0 = t0 :
D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is well-defined and bounded.

Step 2. In this step, we prepare for applying Lemma A.4; we cannot apply it directly,
since t0 might not be Cd+1. Thus, we will construct a sequence (gN )N∈N of smooth
functions approximating t0. We will then apply Lemma A.4 to the gN in Step 3.
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For the construction of the (gN )N∈N, first note that J is infinite; indeed, we have
ĝ j ∈ C0(R̂

d) for all j ∈ J since g j ∈ L1(Rd); thus, (4.1) can only hold if J is
infinite. Since J is countable, we thus have J = { jn : n ∈ N} for certain pairwise
distinct jn ∈ J . With this, define gN := ∑N

n=1 γ jn ∈ C∞(R̂d). As seen in Step 1,
gN → t0 locally uniformly on O. Since 0 < A ≤ t0 ≤ B on O, this easily implies
G N → 1

t0
locally uniformly on O, where we defined

G N : O → R, ξ �→
{

(gN (ξ))−1, if gN (ξ) �= 0,

0, otherwise.

Thus, ϕi · G N → ϕi · t−1
0 in L1(R̂d), and hence F−1(ϕi G N ) → F−1(ϕi · t−1

0 )

uniformly as N → ∞. Therefore, Fatou’s lemma shows that

‖F−1(ϕi · t−1
0 )‖L1 ≤ lim inf

N→∞ ‖F−1(ϕi G N )‖L1 = lim inf
N→∞ ‖ϕ�

i · (G N ◦ Si )‖FL1 .

(6.7)

Step 3. We next estimate lim infN→∞ ‖ϕ�
i · (G N ◦ Si )‖FL1 . Define

K (N )
i : S−1

i (O) → [0,∞), ξ �→
N∑

n=1

max|α|≤d+1

∣∣∂α(γ jn ◦ Si )(ξ)
∣∣.

Let Vi ⊂ O be open and bounded with Qi ⊂ Vi ⊂ Vi ⊂ O and let ε ∈ (0, 1). Since
gN → t0 uniformly on Vi and t0 ≥ A > 0 on O ⊃ Vi , there is N0 = N0(i, ε) ∈ N

such that gN ≥ (1 − ε) A =: Aε on Vi for all N ≥ N0. Note that K (N )
i (ξ) ≥

∑N
n=1 γ jn (Siξ) = gN (Siξ) ≥ Aε for ξ ∈ S−1

i (Vi ) and N ≥ N0.
Define Ui := S−1

i (Vi ), fix ξ (0) ∈ Ui and 
 ∈ d, set

U := {ξ ∈ R̂ : (ξ
(0)
1 , . . . , ξ

(0)

−1, ξ, ξ

(0)

+1, . . . , ξ

(0)
d ) ∈ Ui }

and, for N ≥ N0, let fN : U → [Aε,∞), ξ �→ (gN ◦Si )(ξ
(0)
1 , . . . , ξ

(0)

−1, ξ, ξ

(0)

+1, . . . ,

ξ
(0)
d ), noting that

∣
∣ f (m)

N (ξ
(0)

 )

∣
∣ ≤ K (N )

i (ξ (0)) for all m ∈ d + 1. Hence, Lemma A.4
shows for all m ∈ d + 1 that

∣∣∣∣
∂m

∂ξm



∣∣∣
ξ=ξ (0)

(G N ◦ Si )(ξ)

∣∣∣∣ =
∣∣∣∣

dm

dξm

∣∣∣
ξ=ξ

(0)



1

fN (ξ)

∣∣∣∣

≤ Cd+1 · A−1
ε ·max

{
A−1

ε · K (N )
i (ξ (0)),

(
A−1

ε · K (N )
i (ξ (0))

)m}

≤ Cd+1 · A−(d+2)
ε · (K (N )

i (ξ (0))
)d+1

,

(6.8)

where Cd+1 is as in Lemma A.4.

123



Invertibility of Frame Operators on Besov-Type... Page 41 of 72 149

Since ξ (0) ∈ Ui was arbitrary, we have thus shown, for all ξ ∈ Ui and N ≥ N0,

max

∈d

max
0≤m≤d+1

∣∣∂m

 (G N ◦ Si )(ξ)

∣∣ ≤ Cd+1 · A(−d+2)
ε · (K (N )

i (ξ)
)d+1

.

Finally, since ϕ
�
i = ϕi ◦ Si vanishes outside of Q′

i = S−1
i (Qi ) ⊂ S−1

i (Vi ) = Ui , the
Leibniz rule shows

∣∣∂m



(
ϕ

�
i · (G N ◦ Si )

)
(ξ)

∣∣ ≤
m∑

s=0

(
m

s

)
|∂m−s


 ϕ
�
i (ξ)| |∂s


 (G N ◦ Si )(ξ)|

≤ c0Cd+1 · A−(d+2)
ε · (K (N )

i (ξ)
)d+1 · 1Q′

i
(ξ)

for all ξ ∈ R̂
d , 
 ∈ d, 0 ≤ m ≤ d + 1, and N ≥ N0. Thus, Lemma A.2 shows

‖ϕ�
i · (G N ◦ Si )‖FL1

≤ d + 1

πd
max

∈d

0≤m≤d+1

∥
∥∂m




(
ϕ

�
i · (G N ◦ Si )

)∥∥
L1

≤ d + 1

πd
· c0 Cd+1 · A−(d+2)

ε

∥
∥K (N )

i

∥
∥d+1

Ld+1(Q′
i )

≤ d + 1

πd
· c0 Cd+1 · A−(d+2)

ε ·
(∑

j∈J

| det C j |−1
∥
∥∥ max|α|≤d+1

∣∣∂α |Fg�
i, j |2

∣∣
∥
∥∥

Ld+1(Q′
i )

)d+1

≤ d + 1

πd
· c0Cd+1 · A−(d+2)

ε · Md+1.

Since this holds for all N ≥ N0 = N0(i, ε), and since Aε = (1−ε)A where ε ∈ (0, 1)
is arbitrary, we thus see by virtue of Eq. (6.7) that

‖F−1(ϕi · t−1
0 )‖L1 ≤ d + 1

πd
· c0Cd+1 · A−(d+2) · Md+1 < ∞

for all i ∈ I . Hence, t−1
0 is tame, and Proposition 5.7 shows that t−1

0
:

D(Q, L p, 

q
w) → D(Q, L p, 


q
w) is well-defined and bounded, with operator norm

bounded by the right-hand side of Eq. (6.4).

Step 4. Proposition 5.7(iv) shows t−1
0

t0 = 1 = t0t−1
0
, where 1 : O →

R, ξ �→ 1. Directly from the definition of 1 in Proposition 5.7, we see 1 f = f
for all f ∈ D(Q, L p, 


q
w). Hence, T0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is boundedly

invertible with T −1
0 = t−1

0
. ��

6.3 The Remainder Term

The next (technical) result provides an estimate of the operator norm of the remainder
term R0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) considered in Corollary 5.9. Here, we
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make use of a normalized version g�
j of the generators (g j ) j∈J of (Tγ g j ) j∈J ,γ∈C jZ

d ,
namely

g�
j := | det B j |−1/2 · (M−c j g j ) ◦ B−t

j

for invertible affine-linear mapsU j = B j (·)+c j ; note that ĝ�
j = | det B j |1/2 · ĝ j ◦U j .

Lemma 6.4 Let Q = (Si (Q′
i ))i∈I = (Ai (Q′

i )+ bi )i∈I be an affinely generated cover
of an open set O ⊂ R̂

d of full measure. Let  = (ϕi )i∈I be a regular partition of unity
subordinate toQ, and let w = (wi )i∈I be aQ-moderate weight. Let (Tγ g j ) j∈J ,γ∈C jZ

d

be a generalized shift-invariant system. Furthermore, assume that (Tγ g j ) j∈J ,γ∈C jZ
d

is (w, v,)-adapted for some weight v = (v j ) j∈J , and assume that the function t0
introduced in Eq. (5.2) is tame.

Suppose that there is a family (U j ) j∈J of invertible affine-linear maps U j = B j (·)+
c j and a weight v = (v j ) j∈J such that the Fourier transform of g�

j = | det B j |−1/2 ·
(M−c j g j ) ◦ B−t

j can be factorized as Fg�
j = h j,1 · h j,2 with h j,1, h j,2 ∈ Cd+1(R̂d)

satisfying

max|α|≤d+1
|∂αh j,2(ξ)| ≤ C ′ · (1+ |ξ |)−(d+1) for ξ ∈ R̂

d .

Moreover, suppose that Y = (ai, j Xi, j )i∈I , j∈J and Z = (bi, j Xi, j )i∈I , j∈J are of
Schur-type, where

ai, j = max
{
1, wi

v j

} | det Bt
j C j |−1 max

{
1, |A−1

i (bi − c j )|d+1}

max
{
1, ‖A−1

i B j‖d+1}‖Ct
j Ai‖d+1

and

bi, j = max{1, v j
wi

} max{1, |A−1
i (bi − c j )|} max{1, ‖A−1

i B j‖d+1}
max{‖Ct

j Ai‖, ‖Ct
j Ai‖d+1},

and

Xi, j := max
{
1, ‖B−1

j Ai‖d+1}
∫

Q′
i

max|α|≤d+1

∣
∣(∂αh j,1)

(
U−1

j Si (ξ)
)∣∣ dξ .

Then, for all p, q ∈ [1,∞], the operator R0 : D(Q, L p, 

q
w) → D(Q, L p, 


q
w) of

Corollary5.9 is bounded, with‖R0‖op ≤ C0C p,q‖�Q‖

q
w→


q
w
·(C ′)2·‖Y‖Schur‖Z‖Schur,

where

C0 := 24π2
(
8d

π

)2d+2

12d (d + 1)3 max
{
1, Rd+2

Q
}

max|α|≤d+1
C2
Q,,α (6.9)

with RQ := maxi∈I supξ∈Q′
i
|ξ | and C p,q := 1 if max{p, q} < ∞ and C p,q :=

C · ‖�Q‖2



q
w→


q
w

otherwise.
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Proof For brevity, set ν(x) := max{1, x} for x ∈ [0,∞), and note ν(xy) ≤ ν(x) ν(y).
This implies ν(wi/w
) ≤ ν(wi/v j ) · ν(v j/w
), an estimate that we will employ
frequently.

According to Proposition 5.8 and Corollary 5.10, it suffices to estimate

L1 = sup
i∈I

∑


∈I

∑

j∈J

∑

k∈Zd\{0}
ν

(
wi

w


)
Ki,
, j,k and L2

= sup

∈I

∑

i∈I

∑

j∈J

∑

k∈Zd\{0}
ν

(
wi

w


)
Ki,
, j,k (6.10)

where Ki,
, j,k := | det C j |−1 · ∥∥ĝ j · ĝ j (· − C−t
j k) · ϕi (· − C−t

j k) · ϕ


∥∥FL1 . In order

to do so, note that ĝ j = | det B j |−1/2 · (Fg�
j ) ◦ U−1

j . Hence, since Fg�
j = h j,1 · h j,2

by assumption, the term Ki,
, j,k can be estimated as follows:

Ki,
, j,k = ∣
∣ det Bt

j C j
∣
∣−1

∥
∥∥
(Fg�

j ◦ U−1
j

) · TC−t
j k

(
(Fg�

j ) ◦ U−1
j

) · (TC−t
j k ϕi

) · ϕ


∥
∥∥FL1

≤ ∣
∣ det Bt

j C j
∣
∣−1

∥
∥
∥TC−t

j k

(
ϕi · (h j,1 ◦U−1

j )
) · (h j,2 ◦U−1

j

)∥∥
∥FL1

·
∥
∥∥ϕ
 · (h j,1 ◦U−1

j

) · TC−t
j k

(
h j,2 ◦U−1

j

)∥∥∥FL1

=: ∣∣ det Bt
j C j

∣∣−1 · K (1)
i, j,k · K (2)


, j,k .

Using the preceding estimate, one can bound L1 from Eq. (6.10) as follows:

L1 = sup
i∈I

∑

j∈J ,
∈I

∑

k∈Zd\{0}
ν

(
wi

w


)
Ki,
, j ,k

≤ sup
i∈I

∑

j∈J

⎡

⎢
⎣
(∑


∈I

∑

k∈Zd\{0}
ν

(
v j

w


)
K (2)


, j ,k

)
· | det Bt

j C j |−1 ν

(
wi

v j

)

sup
k∈Zd\{0}

K (1)
i, j,k

⎤

⎥
⎦

≤
(
sup
j∈J

∑


∈I

ν

(
v j

w


) ∑

k∈Zd\{0}
K (2)


, j ,k

)
· sup

i∈I

∑

j∈J

(
ν

(
wi

v j

)

| det Bt
j C j |−1 sup

k∈Zd\{0}
K (1)

i, j,k

)
.

(6.11)

A similar calculation gives

L2 ≤
(
sup

∈I

∑

j∈J

ν

(
v j

w


) ∑

k∈Zd\{0}
K (2)


, j,k

)
·

sup
j∈J

∑

i∈I

(
ν

(
wi

v j

)
| det Bt

j C j |−1 sup
k∈Zd\{0}

K (1)
i, j,k

)
.

(6.12)

The remainder of the proof is divided into four steps:
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Step 1. Estimates for K (1)
i, j,k and K (2)


, j,k . For j ∈ J and k ∈ Z
d , set Hj,k := h j,1 ·

TB−1
j C−t

j k h j,2.Since Tξ (g◦U−1
j ) = (TB−1

j ξ
g)◦U−1

j for any ξ ∈ R̂
d and g : R̂

d → C,

it follows that

(
h j,1 ◦ U−1

j

) · T−C−t
j k

(
h j,2 ◦ U−1

j

) = (
h j,1 · T−B−1

j C−t
j k h j,2

) ◦ U−1
j = Hj,−k ◦ U−1

j .

Using the normalization ϕ
�
i = ϕi ◦ Si of ϕi , a direct calculation shows

K (1)
i, j,k =

∥∥
∥ϕi ·

(
h j,1 ◦ U−1

j

) · T−C−t
j k

(
h j,2 ◦ U−1

j

)∥∥
∥FL1

=
∥∥
∥ϕ�

i · (Hj,−k ◦ U−1
j ◦ Si

)∥∥
∥FL1

. (6.13)

Now, define ζ j : R̂
d → [0,∞), ξ �→ max|α|≤d+1 |∂αh j,1(ξ)| . By applying Leibniz’

rule, combined with the assumption max|α|≤d+1 |∂αh j,2(ξ)| ≤ C ′ · (1 + |ξ |)−(d+1)

and the identity
∑

β≤α

(
α
β

) = 2|α|, we see

∣∣∂α Hj,k(ξ)
∣∣ ≤ 2|α| · C ′ · (1+ |ξ − B−1

j C−t
j k|)−(d+1) · ζ j (ξ) (6.14)

for all α ∈ N
d
0 with |α| ≤ d + 1 and all ξ ∈ R̂

d . This, together with Lemma A.3,
yields that, for all n ∈ d and m ∈ {0, . . . , d + 1},

∣∣
∣
[
∂m

n

(
Hj,k ◦ U−1

j ◦ Si
)]

(ξ)

∣∣
∣

≤ ‖B−1
j Ai‖m · dm · max

β∈Nd
0 with |β|=m

∣∣(∂β Hj,k)
(
U−1

j (Si (ξ))
)∣∣

≤ (2d)d+1C ′ max
{
1, ‖B−1

j Ai‖d+1}ζ j
(
U−1

j (Si (ξ))
)(
1+ |U−1

j (Si (ξ))

− B−1
j C−t

j k|)−(d+1)
.

Since  is a regular partition of unity, we have |∂αϕ
�
i (ξ)| ≤ CQ,,α · 1Q′

i
(ξ) for

all ξ ∈ R̂
d and α ∈ N

d
0 . Thus, setting C1 := (4d)d+1C ′ · max|α|≤d+1 CQ,,α and

invoking Leibniz’s rule once more, we see that

∣∣[∂d+1
n

(
ϕ

�
i · (Hj,−k ◦ U−1

j ◦ Si
))]

(ξ)
∣∣

≤
d+1∑

m=0

(
d + 1

m

)∣∣∂d+1−m
n ϕ

�
i (ξ)

∣∣ · ∣∣∂m
n

(
Hj,−k ◦ U−1

j ◦ Si
)
(ξ)

∣∣

≤ C1 max
{
1, ‖B−1

j Ai‖d+1}1Q′
i
(ξ)ζ j

(
U−1

j (Si (ξ))
)(
1+ |U−1

j (Si (ξ))

+ B−1
j C−t

j k|)−(d+1)
.
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Clearly, the same overall estimate also holds for |[ϕ�
i · (Hj,−k ◦ U−1

j ◦ Si )](ξ)| itself
instead of its derivative

∣∣∂d+1
n

(
ϕ

�
i · (Hj,−k ◦ U−1

j ◦ Si )
)
(ξ)

∣∣. Thus, setting

C2 := (4d/π)d+1 · (d + 1)π · C ′ · max|α|≤d+1
CQ,,α,

we can apply Lemma A.2 and Eq. (6.13) to conclude

K (1)
i, j,k =

∥
∥
∥ϕ�

i · (H j,−k ◦ U−1
j ◦ Si

)∥∥
∥FL1

≤ d + 1

πd
·max

α∈I
∥
∥
∥∂α

(
ϕ

�
i · (H j,−k ◦ U−1

j ◦ Si
))∥∥
∥

L1

≤ C2 ·max
{
1, ‖B−1

j Ai‖d+1} ·
∫

Q′
i

ζ j
(
U−1

j (Si (ξ))
)

· (1+ |U−1
j (Si (ξ)) + B−1

j C−t
j k|)−(d+1) dξ ,

where I := {0} ∪ {(d + 1) · en : n ∈ d}. By similar arguments as for K (1)
i, j,k , one

obtains

K (2)

, j,k ≤ C2 ·max

{
1, ‖B−1

j A
‖d+1}

·
∫

Q′



ζ j
(
U−1

j (S
(ξ))
) · (1+ |U−1

j (S
(ξ)) − B−1
j C−t

j k|)−(d+1) dξ.

Step 2. Estimating the supremum over k ∈ Z
d \ {0}. Note that |ξ | ≤ ‖A−1‖ · |Aξ |,

and thus |Aξ | ≥ ‖A−1‖−1 · |ξ | for any ξ ∈ R̂
d and A ∈ GL(Rd). Hence,

∣∣U−1
j (Si (ξ)) ± B−1

j C−t
j k

∣∣ = ∣∣B−1
j

(
Si (ξ) − c j

)± B−1
j C−t

j k
∣∣

= ∣∣B−1
j Ai

(
ξ + A−1

i (bi − c j ) ± A−1
i C−t

j k
)∣∣

≥ ‖A−1
i B j‖−1 · ∣∣ξ + A−1

i (bi − c j ) ± A−1
i C−t

j k
∣∣ .

(6.15)

This implies for arbitrary i ∈ I , ξ ∈ Q′
i , k ∈ Z

d \ {0}, and j ∈ J that

‖Ct
j Ai‖−1 ≤ 1+ |A−1

i C−t
j k| ≤ 1+ ∣∣ξ + A−1

i (bi − c j ) ± A−1
i C−t

j k
∣∣+ |ξ |

+ |A−1
i (bi − c j )|

≤ 3 max{1, RQ}max
{
1, |A−1

i (bi − c j )|
}(
1+ |ξ + A−1

i (bi − c j ) ± A−1
i C−t

j k|)

≤ 3 max{1, RQ}max
{
1, |A−1

i (bi − c j )|
}(

1+ ‖A−1
i B j‖ · ∣∣U−1

j (Si (ξ)) ± B−1
j C−t

j k
∣
∣
)

≤ 3 max{1, RQ}max
{
1, |A−1

i (bi − c j )|
}

·max
{
1, ‖A−1

i B j‖
}(
1+ ∣

∣U−1
j (Si (ξ)) ± B−1

j C−t
j k

∣
∣) .
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Setting C3 := 3d+1 ·max
{
1, Rd+1

Q
}
, the preceding estimate implies

sup
k∈Zd\{0}

(
1+ ∣∣U−1

j (Si (ξ)) ± B−1
j C−t

j k
∣∣
)−(d+1)

≤ C3 max
{
1, |A−1

i (bi − c j )|d+1}max
{
1, ‖A−1

i B j‖d+1}‖Ct
j Ai‖d+1

for all i ∈ I , ξ ∈ Q′
i , and j ∈ J . Using this, and the estimates for K (n)

i, j,k that we
derived in Step 1, we see that

sup
k∈Zd\{0}

K (n)
i, j,k ≤ C2C3 max

{
1, |A−1

i (bi − c j )|d+1}max
{
1,

‖A−1
i B j‖d+1}‖Ct

j Ai‖d+1Xi, j

= C2C3| det Bt
j C j |

(
ν(wi/v j )

)−1 · Zi, j

(6.16)

for n ∈ {1, 2}, i ∈ I , and j ∈ J .

Step 3. Estimating the sum over k ∈ Z
d \ {0}. Estimate (6.15) implies

1+ ∣∣U−1
j (Si (ξ)) + B−1

j C−t
j k

∣∣ ≥ 1+ ‖A−1
i B j‖−1 · |ξ + A−1

i (bi − c j ) + A−1
i C−t

j k|
≥ (

max{1, ‖A−1
i B j‖}

)−1

· (1+ |ξ + A−1
i (bi − c j ) + A−1

i C−t
j k

)
.

By combining this estimate with Corollary D.2, we see for any ξ ∈ Q′
i that

∑

k∈Zd\{0}

(
1+ |U−1

j (Si (ξ)) + B−1
j C−t

j k|)−(d+1)

≤ max{1, ‖A−1
i B j‖d+1}

∑

k∈Zd\{0}
(1+ |ξ + A−1

i (bi − c j ) + A−1
i C−t

j k|)−(d+1)

≤ (d + 1) 23+4d ·max{1, ‖A−1
i B j‖d+1}

· (1+ |ξ + A−1
i (bi − c j )|) ·max

{‖Ct
j Ai‖, ‖Ct

j Ai‖d+1}

≤ (d + 1) 23+4d (2+ RQ) ·max{1, ‖A−1
i B j‖d+1}

·max{1, |A−1
i (bi − c j )|} ·max

{‖Ct
j Ai‖, ‖Ct

j Ai‖d+1}.

Here, we used in the last step that |ξ | ≤ RQ since ξ ∈ Q′
i .

123



Invertibility of Frame Operators on Besov-Type... Page 47 of 72 149

By combining this estimate with the estimate for K (n)
i, j,k from Step 1, we see for

n ∈ {1, 2} and arbitrary i ∈ I and j ∈ J that

∑

k∈Zd\{0}
K (n)

i, j,k

≤ C2 max
{
1, ‖B−1

j Ai‖d+1}

·
∫

Q′
i

ζ j
(
U−1

j (Si (ξ))
) ∑

k∈Zd\{0}

(
1+ |U−1

j (Si (ξ)) + B−1
j C−t

j k|)−(d+1) dξ

≤ C4 max{1, ‖A−1
i B j‖d+1}max{1, |A−1

i (bi − c j )|} ·max
{‖Ct

j Ai‖, ‖Ct
j Ai‖d+1} Xi, j

= C4 · (ν(v j /wi )
)−1 · Yi, j , (6.17)

where we defined C4 := (d + 1) · 23+4d · (2+ RQ) · C2.
Step 4. Completing the proof. Combining the two estimates (6.11) and (6.12) with the
estimates obtained in Equations (6.17) and (6.16), we conclude that

L1 ≤
(
sup
j∈J

∑


∈I

ν

(
v j

w


) ∑

k∈Zd\{0}
K (2)


, j,k

)
· sup

i∈I

∑

j∈J

(
ν

(
wi

v j

)
| det Bt

j C j |−1 sup
k∈Zd\{0}

K (1)
i, j,k

)

≤ C2C3C4 ‖Y‖Schur ‖Z‖Schur ≤ C0 · (C ′)2 · ‖Y‖Schur ‖Z‖Schur .

The estimate L2 ≤ C0 · (C ′)2 · ‖Y‖Schur ‖Z‖Schur is obtained similarly. Hence, an
application of Corollaries 5.9 and 5.10 gives ‖R0‖op ≤ C0C p,q‖�Q‖


q
w→


q
w
· (C ′)2 ·

‖Y‖Schur‖Z‖Schur, as desired. ��

7 Results for Structured Systems

In this section, we provide further simplified conditions for the boundedness and
invertibility of the frame operator. For this, we will assume throughout this section
that the family (g j ) j∈J of functions g j ∈ L1(Rd) ∩ L2(Rd) defining the system
(Tγ g j ) j∈J ,γ∈C jZ

d possess the form

g j = | det A j |1/2 · Mb j [g ◦ At
j ] (7.1)

for certain A j ∈ GL(d, R) and b j ∈ R̂
d and a fixed g ∈ L1(Rd) ∩ L2(Rd) satisfying

ĝ ∈ C∞(R̂d).
Observe that (7.1) can be written as g j = | det A j |−1/2 · F−1(ĝ ◦ S−1

j ), where
S j = A j (·) + b j .

7.1 Simplified Criteria for Invertibility of the Frame Operator

In this subsection, we give simplified versions of the estimates for the operator
norms of T −1

0 and R0, under the assumption that the generators (g j ) j∈J of the sys-
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tem (Tγ g j ) j∈J ,γ∈C jZ
d have the form (7.1) and that the lattices C j Z

d are given by

C j = δA−t
j for a suitable δ > 0.We begin with a simplified version of Proposition 6.3.

Proposition 7.1 Let Q = (
S j (Q′

j )
)

j∈J = (
A j (Q′

j )+b j ) j∈J be an affinely generated

cover of an open set O ⊂ R̂
d of full measure. Let  = (ϕ j ) j∈J be a regular partition

of unity subordinate to Q. Let (Tγ g j ) j∈J ,γ∈C jZ
d be such that C j := δ · A−t

j for some

δ > 0 and g j := | det A j |1/2 · Mb j [g ◦ At
j ] for some g ∈ L1(Rd) ∩ L2(Rd) with

ĝ ∈ C∞(R̂d). Suppose that there is some A′ > 0 satisfying A′ ≤ ∑
j∈J |̂g(S−1

j ξ)|2
for almost all ξ ∈ O, and that

M0 := sup
i∈J

∑

j∈J

[
max

{
1, ‖A−1

j Ai‖d+1} ·
(∫

Q′
i

max|α|≤d+1

∣
∣(∂α ĝ)

(
S−1

j (Si ξ)
)∣∣2(d+1)

dξ

)1/(d+1) ]

< ∞.

Then the function t0 defined in Eq. (5.2) is continuous on O and tame, and the
estimate A′ ≤ ∑

j∈J |̂g(S−1
j ξ)|2 holds for all ξ ∈ O. Furthermore, for any p, q ∈

[1,∞] and any Q-moderate weight w = (w j ) j∈J , the operator

T0 := t0 : D(Q, L p, 
q
w) → D(Q, L p, 
q

w)

with t0 as defined in Proposition 5.7 is well-defined, bounded, and boundedly invert-
ible, with

‖T −1
0 ‖D(Q,L p ,


q
w)→D(Q,L p ,


q
w) ≤ C ′

d · N 2
QC ·

[
max|α|≤d+1

CQ,,α

]
· (A′)−1 ·

(
M0

A′

)d+1

· δd ,

where C ′
d = Cd · (2d)(d+1)2 with Cd as in Eq. (6.5).

Proof We apply Proposition 6.3. For this, note that since C j = δ · A−t
j and ĝ j =

| det A j |−1/2 · ĝ ◦ S−1
j , the Q-localized version g�

i, j of g j defined in (6.1) satisfies

Fg�
i, j = ĝ j ◦ Si = | det A j |−1/2 · ĝ ◦ S−1

j ◦ Si and, moreover, | det C j |−1 · |Fg�
i, j |2 =

δ−d · |̂g|2 ◦ S−1
j ◦ Si . Leibniz rule entails the pointwise estimate

∣∣∂α |̂g|2(ξ)
∣∣ =

∣
∣∣∂α

(
ĝ(ξ) · ĝ(ξ)

)∣∣∣ ≤ ∑
β≤α

(
α
β

) ∣∣∂β ĝ(ξ)
∣∣ · ∣∣∂α−β ĝ(ξ)

∣∣ ≤ 2|α| ·
(
max|α|≤d+1 |∂α ĝ(ξ)|

)2
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for any α ∈ N
d
0 with |α| ≤ d +1. Since S−1

j Si = A−1
j Ai (·)+ A−1

j (bi −b j ), it follows

by the chain rule as in Lemma A.3 that, for any ν ∈ N
d
0 with |ν| ≤ d + 1,

| det C j |−1
∣∣∂ν |Fg�

i, j |2(ξ)
∣∣ ≤ δ−dd |ν|‖A−1

j Ai‖|ν| max|α|=|ν|

∣∣∣(∂α |̂g|2)(S−1
j (Siξ)

)
∣∣∣∣

≤ δ−d(2d)d+1 max
{
1, ‖A−1

j Ai‖d+1}

(
max|α|≤d+1

∣∣(∂α ĝ)
(
S−1

j (Siξ)
)∣∣
)2

for ξ ∈ R̂
d . Using this, we can estimate the constant M from Proposition 6.3 as

follows:

M = sup
i∈J

∑

j∈J

(
| det C j |−1 ·

∥∥∥ max|ν|≤d+1

∣∣ ∂ν |Fg�
i, j |2

∣∣
∥∥∥

Ld+1(Q′
i )

)

≤ δ−d (2d)d+1 · sup
i∈J

∑

j∈J

[
max

{
1, ‖A−1

j Ai‖d+1}

·
(∫

Q′
i

max|α|≤d+1

∣∣(∂α ĝ)
(
S−1

j (Siξ)

)∣∣2(d+1)
dξ

)1/(d+1)
]

= δ−d (2d)d+1 · M0 ,

with M0 as defined in the statement of the current proposition.
By assumption, we have A′ ≤ ∑

j∈J |̂g(S−1
j ξ)|2, and thus

t0(ξ) =
∑

j∈J

| det C j |−1 |ĝ j (ξ)|2 = δ−d ·
∑

j∈J

|̂g(S−1
j ξ)|2 ≥ A′ · δ−d

for almost all ξ ∈ O and hence for almost all ξ ∈ R̂
d . Therefore, Proposition 6.3 shows

that t0 is continuous onO and tame, that the preceding estimate holds pointwise onO,
and that the operator T0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is well-defined, bounded,

and boundedly invertible with

‖T −1
0 ‖D(Q,L p,


q
w)→D(Q,L p,


q
w) ≤ (2d)(d+1)2Cd · N 2

QC ·
[

max|α|≤d+1
CQ,,α

]
· (A′)−1

·
(

M0

A′

)d+1

· δd .

This completes the proof. ��
Our next aim is to present a simplified version of the technical Lemma 6.4. For this,

we will use the following result whose proof we postpone to Appendix D.2.
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Lemma 7.2 Let g ∈ Cd+1(R̂d) be such that there exists a function � : R̂
d → [0,∞)

satisfying |∂αg(ξ)| ≤ �(ξ)·(1+|ξ |)−(d+1) for all ξ ∈ R̂
d and α ∈ N

d
0 with |α| ≤ d+1.

Then, setting

h1(ξ) := (1+ |ξ |2)(d+1)/2 · g(ξ), h2(ξ) := (1+ |ξ |2)−(d+1)/2

we have g = h1 · h2 on R̂
d . Furthermore, h1, h2 ∈ Cd+1(R̂d) satisfy the estimates

max|α|≤d+1
|∂αh2(ξ)| ≤ C ′ · (1+ |ξ |)−(d+1), max|α|≤d+1

|∂αh1(ξ)| ≤ C ′ · �(ξ) (7.2)

for all ξ ∈ R̂
d , where C ′ := (

12 · (d + 1)2
)d+1

.

Proposition 7.3 Let Q = (
S j (Q′

j )
)

j∈J = (
A j (Q′

j )+b j ) j∈J be an affinely generated

cover of an open setO ⊂ R̂
d of full measure. Let  = (ϕ j ) j∈J be a regular partition of

unity subordinate to Q, and let w = (w j ) j∈J be Q-moderate. Let (Tγ g j ) j∈J ,γ∈C jZ
d

be such that C j := δ · A−t
j for some δ ∈ (0, 1] and g j := | det A j |1/2 · Mb j [g ◦ At

j ]
for some g ∈ L1(Rd) ∩ L2(Rd) satisfying ĝ ∈ C∞(R̂d). Assume that the function t0
defined in Eq. (5.2) is tame. Assume that Ỹ = (Ỹi, j )i, j∈J is of Schur-type, where

Ỹi, j := Ki, j ·
∫

Q′
i

(1+ |S−1
j (Siξ)|)d+1 max|α|≤d+1

|[∂α ĝ](S−1
j (Siξ))| dξ,

with

Ki, j := max
{wi

w j
,
w j

wi

}(
max

{
1, |A−1

i (bi − b j )|
}
max

{
1, ‖A−1

i A j‖
}

max
{
1, ‖A−1

j Ai‖2
})d+1

.

Then the system (Tγ g j ) j∈J ,γ∈C jZ
d is (w,w,)-adapted. Furthermore, for any p, q ∈

[1,∞], the operator R0 : D(Q, L p, 

q
w) → D(Q, L p, 


q
w) defined in Corollary 5.9 is

well-defined and bounded, with

‖R0‖D(Q,L p,

q
w)→D(Q,L p,


q
w) ≤ C0C p,q(C ′)4‖�Q‖


q
w→


q
w
· δ2 · ‖Ỹ‖2Schur,

with C0 as in (6.9), C ′ as in Lemma 7.2 and C p,q := 1 if max{p, q} < ∞ and
C p,q := C‖�Q‖2



q
w→


q
w

, otherwise.

Proof To show that (Tγ g j ) j∈J ,γ∈C jZ
d is (w,w,)-adapted, we use Proposition 6.2.

Let us set v j := w j for j ∈ J . Note thatFg�
i, j = ĝ j ◦ Si = | det A j |−1/2 · ĝ ◦ S−1

j ◦ Si .

An application of the chain rule as in Lemma A.3 shows, for any α ∈ N
d
0 with
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|α| ≤ d + 1, that

∣∣∂α[Fg�
i, j ](ξ)

∣∣ ≤ | det A j |−1/2 · d |α| ‖A−1
j Ai‖|α| max|β|=|α| |(∂

β ĝ)
(
S−1

j (Siξ)
)|

≤ | det A j |−1/2 · dd+1 max{1, ‖A−1
j Ai‖d+1}(1+ |S−1

j (Siξ)|)d+1

· max|α|≤d+1
|(∂α ĝ)(S−1

j (Siξ))| ,

and hence
∫

Q′
i
max|α|≤d+1 |∂α[Fg�

i, j ](ξ)| dξ ≤ | det A j |−1/2 · dd+1 max{1,
‖A−1

j Ai‖d+1} · Ỹi, j K−1
i, j . Thus, the matrix entries Gi, j introduced in Proposition 6.2

satisfy

Gi, j ≤ δ−d/2dd+1 max

{
wi

w j
,

w j

wi

}
max{1, ‖A−1

j Ai‖d+1}(1+ δ‖A−1
j Ai‖)d Ỹi, j

Ki, j

≤ Cd,δ · Ỹi, j ,

for a suitable constantCd,δ > 0which is independent of i, j ∈ J . Thus‖G‖Schur < ∞.
Tofinish theproof,wewill show the claimedboundon‖R0‖D(Q,L p,


q
w)→D(Q,L p,


q
w).

For this, we will apply Lemma 6.4 with the choices I = J , B j = A j , c j = b j

and v j = w j . In this setting, we have g�
j = g for all j ∈ J . By defining

� : R̂
d → [0,∞), ξ �→ (1 + |ξ |)d+1 max|α|≤d+1 |∂α ĝ(ξ)|, we clearly have

|∂α ĝ(ξ)| ≤ �(ξ) · (1 + |ξ |)−(d+1) for all ξ ∈ R̂
d and α ∈ N

d
0 with |α| ≤ d + 1.

Hence, by Lemma 7.2, we can factorize ĝ = h1 · h2 with h1, h2 ∈ Cd+1(R̂d) sat-
isfying (7.2). This shows that the first hypothesis in Lemma 6.4 is satisfied, and it
remains to show that the matrices Y = (Yi, j )i, j∈J and Z = (Zi, j )i, j∈J of Lemma 6.4
are of Schur-type. For this, note that | det(Bt

j C j )|−1 = | det(At
jδA−t

j )|−1 = δ−d and

‖Ct
j Ai‖ = δ ‖A−1

j Ai‖ ≤ ‖A−1
j Ai‖, since δ ≤ 1. Therefore,

max{‖Ct
j Ai‖, ‖Ct

j Ai‖d+1} ≤ qδ‖A−1
j Ai‖ ·max{1, ‖A−1

j Ai‖d}
≤ δmax{1, ‖A−1

j Ai‖d+1}

for all i, j ∈ I . It is now readily verified thatYi, j ≤ C ′ ·δ ·Ỹi, j and Zi, j ≤ C ′ ·δ ·Ỹi, j for
i, j ∈ J , whereC ′ is as inLemma7.2.Hence,‖Y‖Schur‖Z‖Schur ≤ (C ′)2·δ2·‖Ỹ‖2Schur.
Therefore, applying Lemma 6.4 completes the proof. ��

The factor max{1, |A−1
i (bi − b j )|} that appears in defining Ki, j in Proposition 7.3

can be inconvenient. In particular, it does not appear in [62], which makes it difficult
to translate existing concrete examples from [62] readily to the present setting. For
this reason, we supply the following.

Lemma 7.4 The matrix entries Ỹi, j introduced in Proposition 7.3 satisfy 0 ≤ Ỹi, j ≤
(1+ RQ)d+1 · Ŷi, j , where

Ŷi, j := Li, j ·
∫

Q′
i

(1+ |S−1
j (Siξ)|)2d+2 max|α|≤d+1

|(∂α ĝ)(S−1
j (Siξ))| dξ
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and Li, j := max
{

wi
w j

,
w j
wi

}(
max{1, ‖A−1

i A j‖2} max{1, ‖A−1
j Ai‖3}

)d+1
for i, j ∈

J .

Proof Since S−1
j (Siξ) = A−1

j (Aiξ + bi − b j ) for all ξ ∈ R̂
d , it follows that

|A−1
i (bi − b j )| = |A−1

i A j A−1
j (bi − b j )| ≤ ‖A−1

i A j‖ · (|A−1
j Ai ξ + A−1

j (bi − b j )|
+ |A−1

j Ai ξ |
)

≤ ‖A−1
i A j‖ · (|S−1

j (Si ξ)| + RQ‖A−1
j Ai‖

)

≤ (1+ RQ) ·max{1, ‖A−1
i A j‖} ·max{1, ‖A−1

j Ai‖} · (1+ |S−1
j (Si ξ)|)

for ξ ∈ Q′
i . Using this, the estimate Ỹi, j ≤ (1 + RQ)d+1 · Ŷi, j follows directly

from the definitions. ��

7.2 Invertibility of the Frame Operator

The next result summarizes our criteria for the invertibility of the frame operator
obtained in this section.

Theorem 7.5 Let Q = (
S j (Q′

j )
)

j∈J = (
A j (Q′

j ) + b j ) j∈J be an affinely generated

cover of an open set O ⊂ R̂
d of full measure. Let  = (ϕ j ) j∈J be a regular partition

of unity subordinate to Q, and let w = (w j ) j∈J be Q-moderate. Suppose that

(i) The system (Tγ g j ) j∈J ,γ∈C jZ
d is such that g j := | det A j |1/2 · Mb j [g ◦ At

j ] and

C j := δ · A−t
j for some δ > 0 and some g ∈ L1(Rd)∩L∞(Rd) with ĝ ∈ C∞(R̂d);

(ii) There is an A′ > 0 such that A′ ≤ ∑
j∈J |̂g(S−1

j ξ)|2 for almost all ξ ∈ O;

(iii) The matrix Ŷ = (Ŷi, j )i, j∈J is of Schur-type, where Ŷi, j as in Lemma 7.4;

(iv) The term M0 defined in Proposition 7.1 is finite.

Then the system (Tγ g j ) j∈J ,γ∈C jZ
d is (w,w,)-adapted, and for p, q ∈ [1,∞], the

frame operator S : D(Q, L p, 

q
w) → D(Q, L p, 


q
w) associated to (Tγ g j ) j∈J ,γ∈C jZ

d

is well-defined and bounded.

Finally, for given p, q ∈ [1,∞], let Cd,Q,w := max
{[sup j∈J λ(Q′

j )]−
3

d+2 ,

[κd KQ,w]1/(d+2)
}
, where

κd := (2d)(d+1)2(8d
)2d+2125d+5 · (d + 1)8d+10 · 72 · (d + 1)5/2 · 2d+2

π3d
·

( 0.8
e (d + 1)2

ln(2+ d)

)d+1

and KQ,w := ‖�Q‖3



q
w→


q
w

N 2
Qmax{1, C2

}(1 + RQ)3d+4 max|α|≤d+1 C3
Q,,α

. Then,

if δ > 0 is chosen such that

Cd,Q,w · M
d+1
d+2
0 · (‖Ŷ‖2Schur

) 1
d+2 · δ

A′ < 1, (7.3)
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then the frame operator is also boundedly invertible as an operator on D(Q, L p, 

q
w).

Proof We proceed in two steps.
Step 1. Suppose that δ ≤ 1. Since A′ ≤ ∑

j∈J |̂g(S−1
j ξ)|2 for almost all ξ ∈ O, and

since M0 is finite, an application of Proposition 7.1 shows that t0 is continuous on O
and tame and that T0 := t0 : D(Q, L p, 


q
w) → D(Q, L p, 


q
w), with t0 as defined

in Proposition 5.7, is well-defined, bounded, and boundedly invertible, with

‖T −1
0 ‖D(Q,L p,


q
w)→D(Q,L p,


q
w) ≤ C (1) · Md+1

0 · (A′)−(d+2) · δd

for arbitrary p, q ∈ [1,∞]. Here, C (1) := (2d)(d+1)2 Cd N 2
QC ·max|α|≤d+1 CQ,,α ,

with Cd as in Eq. (6.5).
Lemma 7.4 shows that ‖Ỹ‖Schur ≤ (1 + RQ)d+1 ‖Ŷ‖Schur < ∞, with Ỹ as in

Proposition 7.3. Therefore, Proposition 7.3 shows that the system (Tγ g j ) j∈J ,γ∈C jZ
d is

(w,w,)-adapted, and hence the frame operator S : D(Q, L p, 

q
w) → D(Q, L p, 


q
w)

is well-defined and bounded for all p, q ∈ [1,∞] by Corollary 4.10.
Lastly, it follows by Proposition 7.3 and Corollary 5.9 that the frame operator S

can be written as S = T0 + R0, where

‖R0‖D(Q,L p,

q
w)→D(Q,L p,


q
w)

≤ C(2) · δ2 · ‖Ỹ‖2Schur ≤ C(2) (1+ RQ)2d+2 · δ2 · ‖Ŷ‖2Schur,

where C (2) := C0C p,q(C ′)4‖�Q‖

q
w→


q
w
, with C0 as in (6.9) and C ′ as in

Lemma 7.2, and with C p,q := max{1, C} · ‖�Q‖2



q
w→


q
w
. Here, we used the easily

verifiable estimate ‖�Q‖

q
w→


q
w
≥ 1.

Therefore, for arbitrary p, q ∈ [1,∞], a combination of the above estimates gives

‖T−1
0 ‖op · ‖R0‖op ≤ C(1)C(2)(1+ RQ)2d+2 · δ2+d · ‖Ŷ‖2Schur · Md+1

0 · (A′)−(d+2)

=
[(

C(1)C(2)(1+ RQ)2d+2)1/(d+2) · M
d+1
d+2
0 · (‖Ŷ‖2Schur)

1
d+2 · δ

A′
]d+2

≤
[
Cd,Q,w · M

d+1
d+2
0 · (‖Ŷ‖2Schur)

1
d+2 · δ

A′
]d+2

< 1.

Therefore, Lemma 5.4 implies that the frame operator S = T0 + R0 :
D(Q, L p, 


q
w) → D(Q, L p, 


q
w) is boundedly invertible, as claimed.

Step 2. In this step itwill be shown that (7.3) already entails δ ≤ 1. To this end, first note
that A′ ≤ ∑

j∈J |̂g(S−1
j η)|2 ≤ (∑

j∈J |̂g(S−1
j η)|)2, and hence

∑
j∈J |̂g(S−1

j η)| ≥√
A′ for almost every η ∈ O. Thus, for any fixed i ∈ J ,

‖Ŷ‖Schur ≥
∑

j∈J

Ŷi, j ≥
∫

Q′
i

∑

j∈J

|̂g(S−1
j (Siξ))| dξ ≥

∫

Q′
i

√
A′ dξ = √

A′ · λ(Q′
i ).
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Next, by applying Jensen’s inequality, we see that the constant M0 introduced in
Proposition 7.1 satisfies, for each i ∈ J , the estimate

M0 ≥
∑

j∈J

(
λ(Q′

i )

∫

Q′
i

|̂g(S−1
j (Siξ))|2(d+1) dξ

λ(Q′
i )

)1/(d+1)

≥ [λ(Q′
i )]1/(d+1)−1

∑

j∈J

∫

Q′
i

|̂g(S−1
j (Siξ))|2 dξ

= [λ(Q′
i )]1/(d+1)−1

∫

Q′
i

∑

j∈J

|̂g(S−1
j (Siξ))|2 dξ

≥ [λ(Q′
i )]1/(d+1)−1 · A′ · λ(Q′

i )

= A′ · [λ(Q′
i )]1/(d+1).

Overall, we see that

κ := M
d+1
d+2
0 · (‖Ŷ‖2Schur

) 1
d+2 ≥ A′ · sup

i∈J
[λ(Q′

i )]
3

d+2 ≥ C−1
d,Q,w

A′

and hence Cd,Q,w · κ · δ
A′ ≥ δ. Thus, if δ satisfies Eq. (7.3), then δ < 1. ��

7.3 Proof of Theorem 1.1

Theorem 1.1, announced in the introduction, is just a reformulation of Theorem 7.5,
with the following identifications of notation: A = A′; B = B ′; M1 = ‖Ŷ‖Schur. �

7.4 Banach Frames and Atomic Decompositions

We now remark that, under the assumptions of Theorem 7.5, the system
(TδA−t

j k g j ) j∈J ,k∈Zd forms a Banach frame and an atomic decomposition ([33]) for

the Besov-type spaces D(Q, L p, 

q
w), and, moreover, the corresponding dual family

is given by the canonical dual frame.

Corollary 7.6 Suppose that the assumptions of Theorem 7.5 are satisfied, including
the assumption (7.3). Then the system (TδA−t

j k g j ) j∈J ,k∈Zd forms a Banach frame and

an atomic decomposition for all of the spaces D(Q, L p, 

q
w), p, q ∈ [1,∞], with

associated coefficient space Y p,q
w as in Definition 4.5. Precisely, the analysis and

synthesis maps

C : D(Q, L p, 
q
w) → Y p,q

w , f �→ (〈 f | TδA−t
j k g j 〉

)
j∈J ,k∈Zd

and D : Y p,q
w → D(Q, L p, 
q

w), (c(k)
j ) j∈J ,k∈Zd �→

∑

j∈J

∑

k∈Zd

c(k)
j TδA−t

j k g j
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are well-defined and bounded, and satisfy

(S−1 ◦D) ◦ C = idD(Q,L p,

q
w) and D ◦ (C ◦ S−1) = idD(Q,L p,


q
w).

Proof Theorem 7.5 shows that (TδA−t
j k g j ) j∈J ,k∈Zd is (w,w,)-adapted. Thus, the

boundedness of C ,D follows from Proposition 4.8. The remaining statements follow
from the invertibility of S = D ◦ C proven in Theorem 7.5. ��

7.5 An Example

We conclude with an example verifying the hypotheses of Theorem 7.5 for Besov-
type spaces associated with covers that have a geometry which is in a certain sense
intermediate between the geometry of the uniform and the dyadic covers. These covers
are an instance of the non-homogeneous isotropic covers from [56,Sect. 2.5] and
[58,Sect. 2.1]; the corresponding spaces are also known as α-modulation spaces [32].
For similar calculations of other concrete examples, we refer to [62].

For fixed α ∈ [0, 1), the α-modulation space with parameters p, q ∈ [1,∞] and
s ∈ R is defined as Ms,α

p,q(Rd) := D(Q(α), L p, 

q
w(s,α) ), where the coverQ(α) of R̂

d is
given by

Q(α) := (
A(α)

j Q + b(α)
j

)
j∈Zd\{0},

where A(α)
j := | j |α0 idRd , b(α)

j := | j |α0 j, andQ = Br (0), with α0 := α
1−α

and

r ≥ r0 = r0(d, α). Under this assumption on r , one can show that Q(α) is indeed an
affinely generated cover of R̂

d ; see [10,Theorem 2.6] and [62,Lemma 7.3]. Finally,
the weightw(s,α) is given byw

(s,α)
j = | j |s/(1−α) for j ∈ Z

d \{0}. In the following, we
will simply write Q, A j , and b j for Q(α), A(α)

j , and b(α)
j and fix some r ≥ r0(d, α).

Fix s0 ≥ 0. In the following, we will only consider “smoothness parameters”
s ∈ [−s0, s0]. Take g ∈ L1(Rd) ∩ L2(Rd) such that ĝ ∈ C∞(R̂d), and assume that
there are c, C > 0 and N > 0 such that

|̂g(ξ)| ≥ c ∀ |ξ | ≤ r and max|α|≤d+1
|∂α ĝ(ξ)| ≤ C · (1+ |ξ |)−N ∀ ξ ∈ R̂

d .

(7.4)

We will determine conditions on N (depending on d, α, s0) which ensure that the
prerequisites of Theorem 7.5 are satisfied. In fact, it will turn out that it is enough if
N > 4d + 3+ τ where τ := 4αd+3α+s0

1−α
∈ [0,∞).

To show this, note because of Q′
i = Br (0) for all i ∈ Z

d \ {0} that

S−1
j (Si Q′

i ) = BRi, j (ξi, j ) where Ri, j = (|i |/| j |)α0 · r and ξi, j = (|i |/| j |)α0 · i − j .
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Thus, applying the change of variables η = S−1
j (Siξ), combined with the estimate

(7.4), yields

Zi, j :=
∫

Q′
i

(1+ |S−1
j (Siξ)|)2d+2 max|α|≤d+1

|[∂α ĝ](S−1
j (Siξ)

)| dξ

=
( | j |
|i |

)dα0∫

BRi, j (ξi, j )

(1+ |η|)2d+2 max|α|≤d+1
|[∂α ĝ](η)| dη

≤ C

( | j |
|i |

)dα0∫

BRi, j (ξi, j )

(1+ |η|)2d+2−N dη.

A similar computation shows

Wi, j :=
(∫

Q′
i

max|α|≤d+1

∣∣(∂α ĝ)
(
S−1

j (Siξ)
)∣∣2(d+1)

dξ

) 1
d+1

≤ C2
(( | j |

|i |
)dα0∫

BRi, j (ξi, j )

(1+ |η|)−2N (d+1) dη

) 1
d+1

.

Using the notations

�
[M,τ ]
i, j :=

(∫

BRi, j (ξi, j )

(1+ |η|)−M dη

)τ

and �
[k,M,τ ]
i, j :=

( | j |
|i |

)k

· �[M,τ ]
i, j

for i, j ∈ Z
d \ {0} and k, M ∈ R, τ ∈ (0,∞), we have thus shown

Zi, j ≤ C · �[dα0,N−2d−2,1]
i, j and Wi, j ≤ C2 · �

[
dα0
d+1 ,2N (d+1), 1

d+1

]

i, j . (7.5)

This is useful, since [62,Eq. (7.13)] shows for M ≥ d + 1 that

�
[k,M,τ ]
i, j ≤ C ′ · (1+ | j − i |)|k|+τ(d+1−M) ∀ i, j ∈ Z

d \ {0}, (7.6)

where C ′ = C ′(α, d, M, r , τ, |k|).
Now, using that w(s,α)

j = | j |s/(1−α) and A j = | j |α0 id, a straightforward computa-
tion shows that the quantity Li, j introduced in Lemma 7.4 satisfies

Li, j =
⎧
⎨

⎩

(| j |/|i |)2(d+1)α0+ |s|
1−α if |i | ≤ | j |,

(| j |/|i |)−3(d+1)α0− |s|
1−α if |i | > | j |

≤ max
{(| j |/|i |)σ ,

(| j |/|i |)−σ
}
,
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where we introduced σ := 3α(d+1)+s0
1−α

∈ [0,∞). In combination with Equations (7.5)
and (7.6), we thus see that the matrix elements Ŷi, j introduced in Lemma 7.4 satisfy

0 ≤ Ŷi, j = Li, j Zi, j ≤ C ·max
{(| j |/|i |)σ ,

(| j |/|i |)−σ } · �[dα0,N−2d−2,1]
i, j

= C ·max
{
�

[σ+dα0,N−2d−2,1]
i, j , �

[dα0−σ,N−2d−2,1]
i, j

}

≤ C · C1 · (1+ | j − i |)σ+dα0+d+1−(N−2d−2)

= C · C1 · (1+ | j − i |)σ+dα0+3(d+1)−N ,

whereC1 = C1(d, α, N , r , s0). From this, it is easy to see that‖Ŷ‖Schur ≤ C ·C2 < ∞,
provided that N > 4d + 3+ σ + dα0 = 4d + 3+ τ , where C2 = C2(d, α, N , r , s0).
We have thus verified condition (iii) of Theorem 7.5.

Next, we show that M0 < ∞ for M0 as defined in Proposition 7.1. The same
arguments as for estimating Ŷi, j give

Vi, j := max
{
1, ‖A−1

j Ai‖d+1}Wi, j

≤ C2 max
{
�

[
dα0
d+1 ,2N (d+1), 1

d+1

]

i, j , �

[
α0

(
d

d+1−(d+1)
)
,2N (d+1),1/(d+1)

]

i, j

}

≤ C2 · C3 · (1+ | j − i |)α0 d2+d+1
d+1 + 1

d+1 (d+1−2N (d+1))

≤ C2 · C3 · (1+ | j − i |)1+α0·(d+1)−2N ,

where C3 = C3(α, d, N , r). From this, we see that the constant M0 introduced in
Proposition 7.1 satisfies M0 = ‖V ‖Schur ≤ C2C4 < ∞ for a constant C4 =
C4(α, d, N , r), as soon as N > 1+d

2 (1+α0),which is implied by N > 4d+3+σ+dα0.
Thus, condition (iv) of Theorem 7.5 is satisfied.

Lastly, we verify condition (ii) of Theorem 7.5, that is,
∑

j∈Zd\{0} |̂g(S−1
j ξ)|2 ≥ A′

for all ξ ∈ R̂
d , where A′ := c2,with c > 0 as inEq. (7.4). To see this, note that Eq. (7.4)

implies |̂g|2 ≥ c2 1Q , where we recall Q = Br (0). Hence, |̂g(S−1
j ξ)|2 ≥ c21Q j ,

since Q j = S j Q. Finally, since Q(α) = (Q j ) j∈Zd\{0} is a cover of R̂
d , we see

∑
j∈Zd\{0} |̂g(S−1

j ξ)|2 ≥ c2 = A′, as claimed.
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Appendix A: Estimation of theFL1 norm

A.1: Sobolev Embeddings

In this appendix we give an explicit bound for the constant implied in the estimate
‖F−1 f ‖L1 � max|α|≤d+1 ‖∂α f ‖L1 . Similar, but more qualitative results in the non-
commutative context can be found in [36, 51].

Lemma A.1 Let d ∈ N and α, c > 0. Define g : R
d → (0,∞), x �→(

max{c, ‖x‖
∞})−α
. Then

∫
Rd g(x) dx < ∞ if and only if α > d, and in this case

∫

Rd
g(x) dx = 2d

1− d
α

· cd−α .

Proof Let μ denote the Lebesgue measure on R
d . We will use [25,Proposition 6.24],

which shows for measurable f : R
d → C that

∫

Rd
| f | dμ =

∫ ∞

0
λ f (β) dβ ,

where λ f (β) := μ
({x ∈ R

d : | f (x)| > β}) . To compute the distribution function
λg , first note that g(x) ≤ c−α for all x ∈ R

d , and thus λg(β) = 0 for β ≥ c−α . For
0 < β < c−α , note that g(x) > β is equivalent to ‖x‖
∞ < β−1/α , whence to x ∈
B‖·‖
∞

β−1/α (0). Therefore, for any β ∈ (0, c−α), we compute λg(β) = μ
(
B
‖·‖
∞
β−1/α (0)

) =
(2 · β−1/α)d , and thus

∫

Rd
g(x) dx =

∫ ∞

0
λg(β) dβ = 2d ·

∫ c−α

0
β−d/α dβ ,

which is finite if and only if d/α < 1. In the latter case, a direct calculation shows
that

∫

Rd
g(x) dx = 2d · β1−α−1d

1− d
α

∣∣∣∣

c−α

β=0
= 2d

1− d
α

· (c−α)1−α−1d = 2d

1− d
α

· cd−α ,

yielding the desired result. ��
The following result provides the announced estimate. For this, we use the usual

Sobolev space

W k,1(Rd) :=
{

f ∈ L p(Rd) : ∂α f ∈ L p(Rd) ∀α ∈ N
d
0 with |α| ≤ k

}
,

with norm ‖ f ‖W k,1 := ∑
|α|≤k ‖∂α f ‖L1 .
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Lemma A.2 Suppose f ∈ W d+1,1(R̂d). Then F−1 f ∈ L1(Rd) with

‖F−1 f ‖L1 ≤ d + 1

πd
·max

θ∈I ‖∂θ f ‖L1 ,

where I := {0}∪ {(d + 1)e
 : 
 ∈ d} ⊂ N
d
0 , with (ek)

d
k=1 denoting the standard basis

of R
d .

Proof Since S(R̂d) ⊂ W d+1,1(R̂d) is dense (see e.g. [3,E10.8]), and since
F−1 fn → F−1 f uniformly if fn → f in W d+1,1(R̂d) ↪→ L1(R̂d), it suffices—in
view of Fatou’s lemma—to prove the estimate for f ∈ S(R̂d). In this case, elementary
properties of the Fourier transform yield for all α ∈ N

d
0 and x ∈ R

d the estimate

|xα · F−1 f (x)| = (2π)−|α| · |F−1(∂α f )(x)| ≤ (2π)−|α| · ‖∂α f ‖L1 .

Next, using the auxiliary function g : R
d → (0,∞), x �→ (max{(2π)−1,

‖x‖
∞})−(d+1), it follows that

|F−1 f (x)| = g(x) ·max{(2π)−(d+1), ‖x‖d+1

∞ } · |F−1 f (x)|

= g(x) ·max

{
(2π)−(d+1) · |F−1 f (x)|, max


∈d

∣∣xd+1

 · F−1 f (x)

∣∣
}

≤ g(x) ·max

{
(2π)−(d+1) · ‖ f ‖L1 , max


∈d

[
(2π)−(d+1) · ‖∂d+1


 f ‖L1
]}

≤ g(x) · (2π)−(d+1) ·max
θ∈I ‖∂θ f ‖L1 . (A.1)

Hence, it remains to compute the integral
∫
Rd g(x) dx . For this, note that an application

of Lemma A.1 (with c = (2π)−1 and α = d + 1) gives
∫

g(x) dx = 2d

1−α−1d
· cd−α =

2d+1π · (d + 1), and thus

‖F−1 f ‖L1 ≤ 2d+1π · (d + 1) · (2π)−(d+1) ·max
θ∈I ‖∂θ f ‖L1 = d + 1

πd
·max

θ∈I ‖∂θ f ‖L1 ,

which completes the proof. ��

A.2: The Chain Rule

Lemma A.2 allows to estimate theFL1 norm of f in terms of the L1 norms of certain
derivatives of f . In many cases, we will have f = g ◦ A, where we have good control
over the derivatives of g. In such cases, the following lemma will be helpful.

Lemma A.3 ([60,Lemma 2.6])
Let d, k ∈ N, A ∈ R

d×d , and f ∈ Ck(Rd) be arbitrary. Let (e1, . . . , ed) denote
the standard basis of R

d , let i1, . . . , ik ∈ d, and define α := ∑k
m=1 eim ∈ N

d
0 .
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Then |α| = k, and

∂α( f ◦ A)(x) =
∑


1,...,
k∈d

[A
1,i1 · · · A
k ,ik · (∂
1 · · · ∂
k f )(A x)] ∀ x ∈ R
d .

(A.2)

A.3: The Norm of a Reciprocal

Lemma A.4 Let m ∈ N and let U ⊂ R be open. Suppose that f ∈ Cm(U ) never
vanishes on U. Let A > 0, K ≥ 0, and x0 ∈ U be such that

| f (x0)| ≥ A−1 and | f (
)(x0)| ≤ K ∀ 1 ≤ 
 ≤ m .

Then the reciprocal F := 1/ f of f satisfies

∣∣∣
∣

d


dx


∣∣∣
x=x0

F(x)

∣∣∣
∣ ≤ Cm · A ·max

{
AK , (AK )


}

for all 1 ≤ 
 ≤ m, where the constant Cm satisfies, for all 1 ≤ 
 ≤ m,

1 ≤ Cm ≤ 3
√

m ·
( 0.8

e · m2

ln(1+ m)

)m
.

Proof Setting g : R \ {0} → R, t �→ t−1, we have F = g ◦ f . Therefore, the “set
partition version” of Faa di Bruno’s formula, see for instance [42,p. 219], shows for
1 ≤ 
 ≤ m that

F (
)(x0) =
∑

π∈P


[
g(|π |)( f (x0))

∏

B∈π

f (|B|)(x0)
]
,

where P
 ⊂ 22


denotes the sets of all partitions of the set 
 := {1, . . . , 
}. Phrased

differently, the set P
 contains exactly those subsets π ⊂ 2
 of the power set 2
 for
which 
 = ⊎

π and B �= ∅ for all B ∈ π . For each π ∈ P
, we denote by |π |
the number of blocks of the partition determined by π ; that is, |π | is the number of
elements of π . Likewise, for a block B ∈ π , we denote by |B| the size of the block,
that is, the number of elements of B.

An induction argument shows that g(k)(t) = (−1)k ·k!·t−(k+1) for all k ∈ N0. There-
fore, for arbitrary π ∈ P
, it follows that |g(|π |)( f (x0))| = |π |! · | f (x0)|−(1+|π |) ≤

! · A1+|π |, since any π ∈ P
 satisfies 
 = ∑

B∈π |B| ≥ ∑
B∈π 1 = |π |. Similarly, it

follows that

∏

B∈π

∣∣ f (|B|)(x0)
∣∣ ≤

∏

B∈π

K = K |π |
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for all π ∈ P
. Combining these observations shows that

|F (
)(x0)| ≤
∑

π∈P


(

! · A · (AK )|π |) ≤ A ·max

{
AK , (AK )


} · 
! · |P
| ,

where we used again that 1 ≤ |π | ≤ 
 for π ∈ P
. Since 
! ≤ m! and |P
| ≤ |Pm | for

 ≤ m, it suffices to show that Cm := m! · |Pm | satisfies the bound stated in the lemma.
Here, the cardinalities |Pm | are the so-called Bell numbers. For these, [9,Theorem 2.1]
provides the bound |Pm | ≤ ( 0.8·m

ln(1+m)

)m . Furthermore, the version of Stirling’s formula
derived in [50] shows that

m! ≤ √
2π · e1/12 · (m/e)m · √m ≤ 3 · (m/e)m · √m .

Combining these estimates gives the desired result. ��

Appendix B: Proof of Proposition 3.13

(i) Let f ∈ SO(Rd) and set K := supp f̂ ⊂ O. For i ∈ I , the set Ui := ϕ−1
i (C \ {0})

is open. Moreover, since
∑

i∈I ϕi ≡ 1 on O, it follows that O = ⋃
i∈I Ui . By

compactness of K , there exists a finite subset IK ⊂ I satisfying K ⊂ ⋃

∈IK

U
 ⊂⋃

∈IK

Q
. Therefore, for any i ∈ I satisfying Qi ∩K �= ∅, necessarily ∅ �= Qi ∩K ⊂
Qi ∩ ⋃


∈IK
Q
, and hence i ∈ I ∗K := ⋃


∈IK

∗, which is a finite subset of I . By

contraposition, we have Qi ∩ K = ∅, and hence ϕi · f̂ ≡ 0, for all i ∈ I \ I ∗K .
Next, for each i ∈ I ∗K , clearly ϕi · f̂ ∈ C∞

c (O), and thus ‖F−1(ϕi · f̂ )‖L p < ∞.
Therefore, setting M := maxi∈I ∗K ‖F−1(ϕi · f̂ )‖L p < ∞ gives

‖ f ‖D(Q,L p,

q
w) =

∥
∥∥
(‖F−1(ϕi · f̂ )‖L p

)
i∈I

∥
∥∥



q
w

≤ ∥
∥(M)i∈I ∗K

∥
∥



q
w

< ∞,

which shows that f ∈ D(Q, L p, 

q
w).

(ii) Let p, q ∈ [1,∞). Recall the notation C = supi∈I ‖F−1ϕi‖L1 from Defini-
tion 3.3. Let f ∈ D(Q, L p, 


q
w) and ε > 0 be arbitrary. Note c = (ci )i∈I ∈ 


q
w(I ),

where ci := ‖F−1(ϕi · f̂ )‖L p for i ∈ I . Since ‖c‖

q
w

= ‖ f ‖D(Q,L p,

q
w) < ∞ and

since q < ∞, there exists a finite set I0 = I0(ε, f ) ⊂ I such that the sequence
c̃ := c · 1I\I0 satisfies

‖ c̃ ‖

q
w

<
(

C · ‖�Q‖

q
w→


q
w

)−2 · ε

2
.

For each i ∈ I ∗0 := ⋃

∈I0 
∗, let c∗i := (�Q c)i = ∑


∈i∗ c
 and choose some
hi ∈ S(Rd) such that

∥∥F−1(ϕ∗
i · f̂ ) − hi

∥∥
L p ≤ δ · c∗i , where δ := (ε/2) · (C ·

‖�Q‖

q
w→


q
w

)−2 · (1+ ‖c‖

q
w
)−1. This is possible since we have p < ∞, and since if

c∗i = 0, then ‖F−1(ϕ∗
i · f̂ )‖L p ≤ ∑


∈i∗ ‖F−1(ϕ
 f̂ )‖L p = c∗i = 0.
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Define gi := ĥi ∈ S(R̂d) for i ∈ I ∗0 , and gi := 0 for i ∈ I \ I ∗0 . We claim that

∥∥F−1(ϕ∗
i · f̂ ) − F−1gi

∥∥
L p ≤

(
�Q c̃ + δ · �Q c

)

i
(B.1)

for all i ∈ I . To show this, distinguish the two cases i ∈ I ∗0 and i ∈ I \ I ∗0 . In the first
case,

∥
∥F−1(ϕ∗

i · f̂ ) − F−1gi
∥
∥

L p = ∥
∥F−1(ϕ∗

i · f̂ ) − hi
∥
∥

L p ≤ δ · c∗i = δ · (�Q c)i

by choice of hi . Since, furthermore, (�Q c̃ )i ≥ 0, the estimate (B.1) holds in the first
case. For the second case, we have gi = 0. Furthermore, i /∈ I ∗0 and thus 
 /∈ I0 for
all 
 ∈ i∗. Therefore,

∥
∥F−1(ϕ∗

i · f̂ ) − F−1gi
∥
∥

L p = ∥
∥F−1(ϕ∗

i · f̂ )
∥
∥

L p

≤
∑


∈i∗

[
1I\I0(
) ·

∥∥F−1(ϕ
 · f̂ )
∥∥

L p

] = (
�Q c̃

)
i .

As in the first case, we thus see that estimate (B.1) holds.
Define g := F−1

(∑
i∈I ϕi · gi

)
. Then g ∈ SO(Rd) since gi = 0 for all but finitely

many i ∈ I . Next, note that ϕi ϕ∗
i = ϕi , and hence

ϕ
 · f̂ − g = ϕ
 ·
(∑

i∈I

ϕi · f̂ −
∑

i∈I

ϕi · gi

)
= ϕ
 ·

∑

i∈
∗

[
ϕi · (ϕ∗

i f̂ − gi )
]
.

Using Young’s inequality, we thus get

‖F−1(ϕ
 · f̂ − g)‖L p ≤ ‖F−1ϕ
‖L1 ·
∑

i∈
∗

(
‖F−1ϕi‖L1 · ‖F−1(ϕ∗

i f̂ ) − F−1gi‖L p

)

≤ C2
 ·

∑

i∈
∗

(
�Q c̃ + δ · �Q c

)
i = C2

 ·
[
�Q

(
�Q c̃ + δ · �Q c

)]



,

where the last inequality follows by (B.1). This finally implies

‖ f − g‖D(Q,L p,

q
w) ≤ C2

 · ‖�Q‖ · (‖�Q c̃‖

q
w

+δ · ‖�Q c‖

q
w

) ≤ (C ‖�Q‖)2 · (‖̃c‖

q
w
+ δ · ‖c‖


q
w
) ≤ ε,

which completes the proof of (ii).
(iii) SinceQ is a decomposition cover, the index set I is countably infinite. Indeed, the
sets

(
ϕ−1

i (C \ {0}))i∈I form an open cover of O. Since O is second countable, there

is a countable I0 ⊂ I such that O ⊂ ⋃
i∈I0 ϕ−1

i (C \ {0}) ⊂ ⋃
i∈I0 Qi . Finally, for

i ∈ I , we have ∅ �= Qi ⊂ O ⊂ ⋃

∈I0 Q
, and hence i ∈ 
∗ for some 
 ∈ I0. In other

words, I ⊂ ⋃

∈I0 
∗ is countable as a countable union of finite sets. Finally, if I was

finite, then
∑

i∈I ϕi ∈ Cc(O), in contradiction to O being open and to
∑

i∈I ϕi ≡ 1
on O. Thus, we can write I = {in : n ∈ N} for pairwise distinct (in)n∈N.
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For each i ∈ I , we have fi := F−1(ϕi f̂ ) ∈ L p(Rd)with supp f̂i ⊂ suppϕi ⊂ Ui

for the open set Ui := (ϕ∗
i )−1(C \ {0}) ⊂ Q∗

i ⊂ O, since ϕ∗
i ϕi = ϕi . Now, for

each fixed i ∈ I , [61,Lemma 3.2] yields a sequence ( f (n)
i )n∈N of Schwartz functions

such that | f (n)
i | ≤ | fi | and f (n)

i −−−→
n→∞ fi pointwise, and such that supp

̂
f (n)
i ⊂

B1/n(suppϕi ), where B1/n(suppϕi ) := {ξ ∈ R̂
d : dist(ξ, suppϕi ) ≤ n−1}. By choos-

ing Ni ∈ N with B1/Ni (suppϕi ) ⊂ Ui , and by replacing f (1)
i , . . . , f (Ni )

i by f (Ni )
i , we

get supp
̂
f (n)
i ⊂ Ui ⊂ Q∗

i ⊂ O for all i ∈ I and n ∈ N.

Note that we have f (n)
i

S ′(Rd )−−−−→
n→∞ fi . Indeed, if p < ∞, then this follows from

f (n)
i

L p−−−→
n→∞ fi , which is a consequence of the dominated convergence theorem since

| f (n)
i | ≤ | fi | ∈ L p and f (n)

i → fi pointwise. If p = ∞ and h ∈ S(Rd), then

f (n)
i ·h → fi ·h pointwise, andwehave the estimate | f (n)

i ·h| ≤ | fi ·h| ≤ ‖ fi‖L∞·|h| ∈
L1, whence 〈 f (n)

i , h〉S ′,S → 〈 fi , h〉S ′,S by dominated convergence.

Now, define gN := ∑N
n=1 f (N )

in
∈ SO(Rd). We first verify that gN → f with

convergence in Z ′(O). To see this, letψ ∈ Z(O) be arbitrary. ThenF−1ψ ∈ C∞
c (O),

so that K := suppF−1ψ ⊂ O is compact. Precisely as in the proof of Part (i), we
thus see that there is a finite set IK ⊂ I such that Qi ∩ K = ∅ for all i ∈ I \ IK .

Therefore, Ui ∩ K ⊂ Q∗
i ∩ K = ∅, and hence

̂
f (n)
i · F−1ψ ≡ 0, for all i ∈ I \ I ∗K .

Now, choose N0 = N0(K ) ∈ N such that I ∗K ⊂ {i1, . . . , iN0}. If N ≥ N0, we then
have

〈gN , ψ〉Z ′,Z = 〈ĝN ,F−1ψ〉D′(O),D =
N∑

n=1

〈̂f (N )
in

,F−1ψ〉D′(O),D

=
∑

i∈I ∗K

〈̂f (N )
i ,F−1ψ〉D′(O),D,

where the last equality follows since {i1, . . . , iN } ⊃ I ∗K and
̂
f (N )
i ·F−1ψ ≡ 0 for i ∈

I \ I ∗K . Next, using that f (N )
i → fi in S ′ and noting that F−1ψ = ∑

i∈I ϕi F−1ψ =∑
i∈I ∗K ϕi F−1ψ , we see that

〈gN , ψ〉Z ′,Z −−−−→
N→∞

∑

i∈I ∗K

〈 f̂i ,F−1ψ〉D′(O),D

=
∑

i∈I ∗K

〈ϕi f̂ ,F−1ψ〉D′(O),D

= 〈 f̂ ,F−1ψ〉D′(O),D
= 〈 f , ψ〉Z ′,Z .

Thus, gN −−−−→
N→∞ f with convergence in Z ′(O).
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Finally, we construct a sequence F = (Fi )i∈I ∈ 

q
w(I ; L p) such that each gN is

(F,)-dominated. To this end, set Fi := ∑

∈i∗∗ | qϕi |∗ | f
|, where f
 := F−1(ϕ
 · f̂ ).

Note because of supp
̂
f (N )
in

⊂ Q∗
in

that ϕi · ̂
f (N )
in

�≡ 0 can only hold for in ∈ i∗∗.
Therefore, since | f (m)

i | ≤ | fi |, we get

∣
∣F−1(ϕi ĝN )

∣
∣ =

∣∣
∣∣F−1

(
ϕi ·

∑

n∈N : in∈i∗∗

̂
f (N )
in

)∣∣
∣∣ ≤

∑

n∈N : in∈i∗∗

∣
∣F−1(ϕi · ̂

f (N )
in

)
∣
∣

≤
∑


∈i∗∗
| qϕi | ∗ | f
| = Fi .

Finally, setting c = (ci )i∈I with ci := ‖F−1(ϕi f̂ )‖L p , we see because of i∗∗ =⋃
j∈i∗ j∗ that

‖Fi‖L p ≤
∑


∈i∗∗

∥∥|F−1ϕi | ∗ | f
|
∥∥

L p ≤
∑

j∈i∗

∑


∈ j∗
‖F−1ϕi‖L1 · ‖ f
‖L p ≤ C · (�Q �Q c)i .

Thus, F ∈ 

q
w(I ; L p) with ‖F‖


q
w(I ;L p) ≤ C ‖�Q‖2



q
w→


q
w
· ‖ f ‖D(Q,L p,


q
w), since

‖ f ‖D(Q,L p,

q
w) = ‖c‖


q
w
. ��

Appendix C: Proof of Proposition 5.7

Before proving Proposition 5.7, we first collect a few properties of the “generalized
multiplication operation” � introduced in Definition 5.5.

Lemma C.1 Let p ∈ [1,∞]. For f , g ∈ FL1(Rd) and h ∈ FL p(Rd), the following
properties hold:

(i) f � (g � h) = ( f � g) � h.
(ii) If f ∈ S(R̂d), then f � h = f · h.
(iii) If p ∈ [1, 2], then f � h = f · h.
(iv) We have supp( f � h) ⊂ supp f ∩ supp h, where the support is understood in the

sense of tempered distributions.

Proof (i) Note that qf , qg ∈ L1(Rd) and qh ∈ L p(Rd). Thus, Young’s inequality shows
for almost all x ∈ R

d that (| qf | ∗ (|qg| ∗ |qh|))(x) < ∞. For each such x , a standard
calculation using Fubini’s theorem shows (( qf ∗ qg) ∗ qh)(x) = ( qf ∗ (qg ∗ qh))(x). Hence,
both sides are identical as tempered distributions. Thus, ( f � g) � h = f � (g � h).
(ii) This was already observed in Remark 5.6.
(iii) It is well-known that if p ∈ [1, 2], then ϕ̂ ∗ ψ = ϕ̂ · ψ̂ for ϕ ∈ L1(Rd) and
ψ ∈ L p(Rd). Indeed, for ϕ,ψ ∈ S(Rd), the identity is clear; furthermore, it follows
from the Hausdorff-Young inequality that as elements of L p′

(Rd), both sides of the
identity depend continuously on ϕ ∈ L1(Rd) and ψ ∈ L p(Rd). Therefore, f � h =
F[ qf ∗ qh] = f · h.
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(iv) Let ϕ ∈ C∞
c (R̂d) with suppϕ ⊂ R̂

d \ supp f . There is ψ ∈ C∞
c (R̂d) with

ϕ = ϕ · ψ and suppψ ⊂ R̂
d \ supp f . Furthermore, by combining Properties (i) and

(ii), we see that

ψ · ( f � h) = ψ � ( f � h) = (ψ � f ) � h = (ψ · f ) � h = 0.

Because of ϕ = ψ · ϕ, this entails 〈 f � h, ϕ〉S ′,S = 〈ψ · ( f � h), ϕ〉S ′,S = 0. Since
this holds for every ϕ ∈ C∞

c (R̂d) with suppϕ ⊂ R̂
d \ supp f , we see supp( f � h) ⊂

supp f . The argument for supp( f � h) ⊂ supp h is similar. ��
With this preparation, we can now provide the proof of Proposition 5.7.

Proof of Proposition 5.7 Before proving the claims, we show that h is well-defined,
with unconditional convergence in Z ′(O) of the defining series. For brevity, let ψi :=
F−1[(ϕ∗

i h)� (ϕi f̂ )] ∈ S ′(Rd). This is well-defined since (5.10) implies ϕi h ∈ FL1,
and ϕ∗

i h = ∑

∈i∗ ϕ
 h ∈ FL1(Rd).

Since F : Z ′(O) → D′(O) is an isomorphism, it is enough to show that
the series

∑
i∈I Fψi converges unconditionally in D′(O). To see this, note that

supp ψ̂i ⊂ suppϕi ⊂ Qi for all i ∈ I , by Property (iv) of Lemma C.1. Therefore,∑
i∈I Fψi converges unconditionally inD′(O) as a locally finite 1 sum of (tempered)

distributions.
(ii) As above, let ψ

(n)
i := F−1[(ϕ∗

i h) � (ϕi f̂n)]. Note that f̂n → f̂ in D′(O), since
fn → f in Z ′(O). Thus, setting ex : R̂

d → C, ξ �→ e2π i〈x,ξ〉 for x ∈ R
d , an

application of [54,Theorem 7.23] shows that

F−1(ϕi f̂ )(x) = (ϕi f̂ )(ex ) = f̂ (ϕi ex ) = lim
n→∞ f̂n(ϕi ex ) = lim

n→∞F−1(ϕi f̂n)(x)

for all i ∈ I and x ∈ R
d . Therefore, using that 〈F ∗ G, ϕ〉S ′,S = ∫

Rd G(x) · (ϕ ∗
F̃)(x) dx with F̃(x) = F(−x) for F ∈ L1, G ∈ L p, and the estimate |F−1(ϕi f̂n)| ≤
Fi ∈ L p(Rd), we get by the dominated convergence theorem

〈ψ(n)
i , ϕ〉S ′,S = 〈F−1(ϕ∗

i h) ∗ F−1(ϕi f̂n), ϕ〉S ′,S

=
∫

Rd
F−1(ϕi f̂n)(x) · (ϕ ∗ ϕ̂∗

i h)(x) dx

−−−→
n→∞

∫

Rd
F−1(ϕi f̂ )(x) · (ϕ ∗ ϕ̂∗

i h)(x) dx = 〈ψi , ϕ〉S ′,S

(C.1)

for all ϕ ∈ S(Rd) and i ∈ I . Here, we used that ϕ ∗ ϕ̂∗
i h ∈ L1(Rd) ∩ L∞(Rd) ⊂

L p′
(Rd).
Now, let ϕ ∈ Z(O) be arbitrary, so that F−1ϕ ∈ C∞

c (O). Then there is a finite
set Iϕ ⊂ I such that suppF−1ϕ ⊂ Qi

c
for all i ∈ I \ Iϕ . Since suppFψi ⊂ Qi

1 Here, we use that if ξ0 ∈ O is arbitrary, then ξ0 ∈ Q
 for some 
 ∈ I and hence ϕ∗


(ξ0) = 1. Thus,

U := {ξ ∈ O : |ϕ∗


(ξ)| > 1/2} ⊂ Q∗



is an open neighborhood of ξ0; finally, if U ∩ Qi �= ∅, then also

U ∩ Qi �= ∅ and hence i ∈ 
∗∗ = ⋃
j∈
∗ j∗, proving that the family ( Qi )i∈I is locally finite onO.
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and suppFψ
(n)
i ⊂ Qi , this implies 〈ψi , ϕ〉Z ′,Z = 〈Fψi ,F−1ϕ〉D′,C∞

c
= 0 for all

i ∈ I \ Iϕ . The same holds for ψi replaced by ψ
(n)
i . Thus,

〈h fn, ϕ〉Z ′,Z =
∑

i∈Iϕ

〈ψ(n)
i , ϕ〉S ′,S −−−→

n→∞
∑

i∈Iϕ

〈ψi , ϕ〉S ′,S = 〈h f , ϕ〉Z ′,Z .

This shows that h fn → h f with convergence in Z ′(O).
Finally, we see for 
 ∈ I directly by definition of ψ

(n)
i and by definition of the

“extended multiplication” � that

F−1(ϕ

̂
ψ

(n)
i ) = F−1ϕ
 ∗ F−1(ϕ∗

i h) ∗ F−1(ϕi f̂n) = F−1(ϕ∗
i h) ∗ F−1(ϕi ϕ
 f̂n)

= F−1(ϕ∗
i h) ∗ F−1(ϕi ) ∗ F−1(ϕ
 f̂n).

This shows that F−1(ϕ

̂
ψ

(n)
i ) = F−1(ϕ∗

i h) ∗F−1(ϕi ϕ
 f̂n) = 0 if 
 ∈ I \ i∗, since
then ϕi ϕ
 ≡ 0. Therefore, since |F−1(ϕ
 f̂n )| ≤ F
, we see

|F−1(ϕ
 · ̂h fn)| ≤
∑

i∈
∗
|F−1(ϕ
 · ̂ψ(n)

i )|

≤
∑

i∈
∗
|F−1(ϕ∗

i h)| ∗ |F−1(ϕi )| ∗ |F−1(ϕ
 f̂n)|

≤
∑

i∈
∗
|F−1(ϕ∗

i h)| ∗ |F−1(ϕi )| ∗ F
 =: G
.

In view of Young’s inequality, we see

‖G
‖L p ≤
∑

i∈
∗
‖F−1(ϕ∗

i h)‖L1 ‖F−1(ϕi )‖L1 ‖F
‖L p ≤ N 2
QCCh · ‖F
‖L p ,

and hence ‖G‖

q
w(I ;L p) ≤ N 2

QCCh · ‖F‖

q
w(I ;L p) < ∞, so that indeed each h fn is

(G,)-dominated.
(i) By applying Property (ii) to the constant sequence given by fn = f for all n ∈ N

and with Fi := |F−1(ϕi f̂ )|, we see that h f is (G,)-dominated for a function
G ∈ 


q
w(I ; L p) satisfying ‖G‖


q
w(I ;L p) ≤ N 2

QCCh · ‖F‖

q
w(I ;L p) = N 2

QCCh ·
‖ f ‖D(Q,L p,


q
w). This proves the claim.

(iii) If f̂ ∈ Cc(O), then ϕi f̂ ∈ Cc(O) ⊂ L2(R̂d), so that (ϕ∗
i h) � (ϕi f̂ ) = (ϕ∗

i h) ·
(ϕi f̂ ) = ϕi · h f̂ ; see Lemma C.1(iii). Since h f̂ ∈ Cc(O), it follows h f̂ = ∑

i∈I [ϕi ·
h f̂ ], where only finitely many terms do not vanish. Hence, by definition of h f ,

h f =
∑

i∈I

F−1[(ϕ∗
i h) � (ϕi f̂ )] = F−1

[∑

i∈I

ϕi · h f̂
]
= F−1(h · f̂ ).
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(iv) We have

∥∥F−1(ϕi · (g · h)
)∥∥

L1 = ‖F−1(ϕi g · ϕ∗
i h)‖L1 ≤

∑


∈i∗
‖F−1(ϕi g)‖L1 · ‖F−1(ϕ
 h)‖L1

≤ NQ Cg Ch < ∞,

so that g · h is tame. Part (iii) shows for f ∈ SO(Rd) that g f = F−1(g f̂ ),
which in particular implies F[g f ] ∈ Cc(O). Thus, by Part (iii) again, hg f =
F−1[h · F[g f ]] = F−1(hg f̂ ) = gh f . Finally, for arbitrary f ∈ D(Q, L p, 


q
w),

Proposition 3.13 yields a sequence ( fn)n∈N ⊂ SO(Rd) which is (F,)-dominated
for some F ∈ 


q
w(I ; L p) and such that fn → f in Z ′(O). By Part (ii), this implies

gh fn → gh f and g fn → g f in Z ′(O). Furthermore, there is G ∈ 

q
w(I ; L p)

such that eachg fn is (G,)-dominated. Thus, a final application of Part (ii) implies

gh f = lim
n→∞gh fn = lim

n→∞h[g fn] = h[g f ],

which completes the proof. ��

Appendix D: Other Auxiliary Results

D.1: An Estimate for the series
∑

k∈Zd(1 + |� + Ak|)−(d+1)

Lemma D.1 For η ∈ R
d and A ∈ GL(d, R),

∑

k∈Zd

(1+ |η + Ak|)−(d+1) ≤ (d + 1) · 21+2d ·max{1, ‖A−1‖d+1} .

Proof First, note that the function� : R
d → [0,∞], x �→ ∑

k∈Zd (1+|x +k|)−(d+1)

is Z
d -periodic, and hence ‖�‖sup = ‖�|[0,1)d‖sup. For x ∈ [0, 1)d , we have ‖k‖∞ ≤

1 + ‖x + k‖∞ ≤ 1 + |x + k| , and thus 1 + ‖k‖∞ ≤ 2(1 + |x + k|). Therefore,
�(x) ≤ 2d+1 · ∑k∈Zd (1 + ‖k‖∞)−(d+1). In order to estimate this last term, we
rewrite it using [25,Proposition 6.24] as

∑

k∈Zd

(1+ ‖k‖∞)−(d+1) =
∫ ∞

0
|{k ∈ Z

d : (1+ ‖k‖∞)−(d+1) > λ}| dλ.

Let f : Z
d → (0, 1], k �→ (1+ ‖k‖∞)−(d+1). For λ ≥ 1, clearly {k ∈ Z

d : f (k) >

λ} = ∅. In contrast, for λ ∈ (0, 1),

{k ∈ Z
d : f (k) > λ} ⊂ {k ∈ Z

d : ‖k‖∞ ≤ λ−1/(d+1) − 1}
⊂

{
k ∈ Z

d : ∀ n ∈ d : kn ∈ {− �λ−1/(d+1) − 1 , . . . ,
�λ−1/(d+1) − 1 }

}
,
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and thus |{k ∈ Z
d : f (k) > λ}| ≤ (

1+ 2�λ−1/(d+1) − 1 )d ≤ 2d · λ−d/(d+1), which
implies

�(x) ≤ 2d+1
∑

k∈Zd

(1+ ‖k‖∞)−(d+1) ≤ 21+2d
∫ 1

0
λ− d

d+1 dλ = (d + 1) · 21+2d

for all x ∈ [0, 1)d , whence �(x) ≤ (d + 1) · 21+2d for all x ∈ R
d .

Now, let A ∈ GL(d, R) be arbitrary. Then

1+ |k + A−1η| ≤ 1+ ‖A−1‖ · |A(k + A−1η)| ≤ max
{
1, ‖A−1‖} ·

(
1+ |A(k + A−1η)|) ,

and hence
(
1+|η+ Ak|)−(d+1) = (

1+|A(k+ A−1η)|)−(d+1) ≤ max
{
1, ‖A−1‖d+1}·

(
1+|k+ A−1η|)−(d+1). Overall, we see for arbitrary η ∈ R

d and A ∈ GL(d, R) that

∑

k∈Zd

(
1+|η + Ak|)−(d+1) ≤ max

{
1, ‖A−1‖d+1} ·

∑

k∈Zd

(
1+ |k+A−1η|)−(d+1)

= max
{
1, ‖A−1‖d+1} · �(A−1η)

≤ (d+1) · 21+2d ·max
{
1, ‖A−1‖d+1},

(D.1)

finishing the proof. ��

As a corollary, we get the following estimate for the series where we sum over
k ∈ Z

d \ {0} instead of k ∈ Z
d .

Corollary D.2 For η ∈ R
d and A ∈ GL(d, R), we have

∑

k∈Zd\{0}
(1+ |η + Ak|)−(d+1) ≤ (d + 1) · 23+4d · (1+ |η|) ·max

{‖A−1‖, ‖A−1‖d+1}.

Proof We distinguish two cases.
First, suppose |A−1η| ≤ 1

3 . Then, noting that |k| ≥ 1 for all k ∈ Z
d \ {0}, we get

the estimate |k + A−1η| ≥ |k|− |A−1η| ≥ |k|
2 + 1

2 −|A−1η| ≥ |k|
2 ≥ 1+|k|

4 .Next, note
that |x | = |A−1Ax | ≤ ‖A−1‖ |Ax |, and hence |Ax | ≥ ‖A−1‖−1 |x | for all x ∈ R

d .
This implies

1+ |η + Ak| ≥ |Ak + η| ≥ ‖A−1‖−1 · |k + A−1η| ≥ ‖A−1‖−1

4
· (1+ |k|).
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Now, Lemma D.1 shows that

∑

k∈Zd\{0}
(1+ |η + Ak|)−(d+1) ≤ 4d+1‖A−1‖d+1 ·

∑

k∈Zd\{0}
(1+ |k|)−(d+1)

≤ (d + 1) · 23+4d · ‖A−1‖d+1

≤ (d + 1) · 23+4d · (1+ |η|) ·max
{‖A−1‖, ‖A−1‖d+1}.

For the other case, suppose |A−1η| > 1
3 . Then (1 + |η|) ‖A−1‖ ≥ ‖A−1‖ · |η| ≥

|A−1η| > 1
3 , and

max{1, ‖A−1‖d+1} ≤ max
{
3(1+ |η|) ‖A−1‖, ‖A−1‖d+1}

≤ 4 (1+ |η|) ·max
{‖A−1‖, ‖A−1‖d+1}.

Now, an application of Lemma D.1 shows that

∑

k∈Zd\{0}
(1+ |η + Ak|)−(d+1) ≤ (d + 1) 21+2d ·max

{
1, ‖A−1‖d+1}

≤ (d + 1) 23+2d · (1+ |η|) ·max
{‖A−1‖, ‖A−1‖d+1}.

Together with the first case, this shows that the claimed estimate always holds. ��

D.2: Proof of Lemma 7.2

For brevity, set 〈〈ξ 〉〉 := 1+|ξ |2 for ξ ∈ R̂
d . With this notation, [62,Lemma 6.8] shows

for arbitrary θ ∈ R and α ∈ N
d
0 that there is a polynomial Pθ,α ∈ R[ξ1, . . . , ξd ] such

that, for all ξ ∈ R̂
d ,

∂α〈〈ξ 〉〉θ = 〈〈ξ 〉〉θ−|α| · Pθ,α(ξ) and |Pθ,α(ξ)| ≤ Cθ,α · (1+ |ξ |)|α|, (D.2)

where Cθ,α = |α|! · [2(1+ d + |θ |)]|α|. Since (1+ |ξ |)k ≤ 2k · 〈〈ξ 〉〉k/2 for all k ≥ 0,
it follows that

(1+ |ξ |)|α| · 〈〈ξ 〉〉θ−|α| ≤ 2|α| · 〈〈ξ 〉〉θ−|α|/2 ≤ 2|α| · 〈〈ξ 〉〉θ (D.3)

for all ξ ∈ R̂
d , θ ∈ R and α ∈ N

d
0 . Next, for θ = − 1

2 (d + 1) and any α ∈ N
d
0 with

|α| ≤ d + 1,

C−(d+1)/2,α = |α|! ·
[
2
(
1+ d +

∣
∣∣− d + 1

2

∣
∣∣
)]|α| ≤ (d + 1)! · [3 · (d + 1)

]|α|

≤ (
3 · (d + 1)2

)d+1
.
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Combining Equations (D.2) and (D.3)with the elementary estimate 1+|ξ | ≤ 2〈〈ξ 〉〉1/2,
we see that

max|α|≤d+1

∣∣∂αh2(ξ)
∣∣ = max|α|≤d+1

∣∣∂α〈〈ξ 〉〉−(d+1)/2
∣∣

≤ (
3(d + 1)2

)d+1 max|α|≤d+1
(1+ |ξ |)|α| 〈〈ξ 〉〉− d+1

2 −|α|

≤ (
6(d + 1)2

)d+1〈〈ξ 〉〉− d+1
2 ≤ C ′ · (1+ |ξ |)−(d+1) .

For the estimate concerning h1, note that since Cθ,α = C−θ,α , we also have

C(d+1)/2,β ≤ (
3 · (d + 1)2

)d+1 for all β ∈ N
d
0 with |β| ≤ d + 1. Hence, using

the Leibniz rule and Equations (D.2) and (D.3), it follows for arbitrary ξ ∈ R̂
d that

max|α|≤d+1

∣
∣∂αh1(ξ)

∣
∣ ≤

∑

β≤α

(
α

β

) ∣
∣∂β〈〈ξ 〉〉(d+1)/2

∣
∣ · ∣∣∂α−β g(ξ)

∣
∣

≤ �(ξ) · (1+ |ξ |)−(d+1)
∑

β≤α

(
α

β

)
C(d+1)/2,β (1+ |ξ |)|β| 〈〈ξ 〉〉 d+1

2 −|β|

≤ (
6 · (d + 1)2

)d+1
�(ξ)(1+ |ξ |)−(d+1) 〈〈ξ 〉〉(d+1)/2

∑

β≤α

(
α

β

)

≤ C ′�(ξ) ,

which completes the proof. ��
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