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Abstract. We establish long-time existence of Banach gradient flows for generalised integral Menger cur-
vatures and tangent-point energies, and for O’Hara’s self-repulsive potentials Eα,p . In order to do so, we
employ the theory of curves of maximal slope in slightly smaller spaces compactly embedding into the
respective energy spaces associated to these functionals and add a term involving the logarithmic strain,
which controls the parametrisations of the flowing (knotted) loops. As a prerequisite, we prove in addition
that O’Hara’s knot energies Eα,p are continuously differentiable.

1. Introduction

It is an interesting and analytically challenging problem in geometric knot theory
to evolve knots according to the gradient flow of a self-repelling interaction energy.
Such energies are called knot energies, and one may categorise them into two types.
Firstly, there are singular self-repulsive potentials such as O’Hara’s [32] two-

parameter energy family Eα,p defined on closed regular curves γ : R/Z → R
n

by

Eα,p(γ ) :=
∫∫

(R/Z)2

(
1

|γ (x)− γ (y)|α − 1

dαγ (x, y)

)p

|γ ′(x)||γ ′(y)| dx dy (1.1)

for α > 0 and p > 1 satisfying 2 ≤ αp < 2p + 1. Here, dγ (x, y) denotes the
intrinsic distance between the points γ (x) and γ (y) along the curve. He [25] had
shown short-time existence for the L2-gradient flow of the Möbius1 energy E2,1 for
smooth initial data, before Blatt investigated this flow systematically for the subfamily
Eα,1. He established long-time existence results and convergence to a critical point:
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for α ∈ (2, 3) in [7], and for α = 2 and initial data sufficiently close to a local
minimiser in [6]. Moreover, again for E2,1 he proved an ε-regularity result together
with a blow-up analysis in [8], resulting in the convergence to the round circle if one
restricts the L2-flow to planar loops. According to [11, p. 31] such strong results on
the L2-flow for the general energy family Eα,p may be out of reach because of a
degenerate elliptic operator in the first variation formula for Eα,p. As shown in [5]
the underlying energy space of the Möbius energy E2,1 is a fractional Sobolev space,

the Sobolev-Slobodeckiı̌2 space W
3
2 ,2(R/Z,Rn), which is a Hilbert space. This fact

was recently used by Reiter and Schumacher to establish short-time existence for a
Hilbert gradient flow in that space for E2,1 with a method, however, that seems to be
restricted to E2,1; see [34, Remark after Theorem 1.2].
The second type of knot energies are geometric curvature energieswhose integrands

are constructed from circles (as first suggested by Gonzalez and Maddocks in [23]),
such as integral Menger curvatures, analysed in [41,42],

Mp(γ ) :=
∫∫∫

(R/Z)3

1

R p(γ (x), γ (y), γ (z))
|γ ′(x)||γ ′(y)||γ ′(z)| dx dy dz

(1.2)

for p > 3,where R(a, b, c) denotes the circumcircle radius of the three points a, b, c ∈
R

n , or the tangent-point energies [40]

TP q(γ ) :=
∫∫

(R/Z)2

1

rq
tp[γ ](γ (x), γ (y)) |γ

′(x)||γ ′(y)| dx dy (1.3)

for q > 2, where rtp[γ ](γ (x), γ (y)) is the radius of the unique circle through γ (x)
and γ (y) that is tangent to the curve γ at the point γ (x).
Replacing the p-th power of the circumcircle radius in (1.2) by themore general (but

less geometric) expression R(p,q)(a, b, c) := (|b−c||b−a||c−a|)p

|(b−a)∧(c−a)|q , or similarly, replacing
the q-th power of the tangent-point radius in (1.3) by

r (p,q)[γ ](γ (x), γ (y)) := |γ (x)− γ (y)|p

distq
(
γ (x)+ Rγ ′(x), γ (y)

)

one obtains generalised integral Menger curvatures

intM(p,q)(γ ) :=
∫∫∫

(R/Z)3

|γ ′(x)||γ ′(y)||γ ′(z)|
R(p,q)(γ (x), γ (y), γ (z))

dx dy dz (1.4)

for q ∈ (1,∞), p ∈ ( 23q + 1, q + 2
3 ), and generalised tangent-point energies

TP (p,q) :=
∫∫

(R/Z)2

|γ ′(x)||γ ′(y)|
r (p,q)[γ ](γ (x), γ (y)) dx dy (1.5)

2For the definition and some facts concerning these spaces, see Appendix A; for a condensed selection of
pertinent results on periodic Sobolev-Slobodeckiı̌ spaces, see [27, Appendix A].
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for q ∈ (1,∞), p ∈ (q + 2, 2q + 1). These two-parameter energy families contain
the original geometric curvature energies (1.2) and (1.3) up to a constant factor, i.e.
Mp = 2p intM(p,p) and TPq = 2q TP(2q,q). They were introduced by Blatt and
Reiter to prove smoothness of critical points specifically of intM(p,2) for p ∈ ( 73 ,

8
3 )

[13, Theorem 4], and of TP(p,2) for p ∈ (4, 5) [12, Theorem 1.5]. There is no existence
result on the L2-flow for these energies yet, but the underlying Hilbert space structure
in this specific range of parameters was recently used in [27] to prove long-time
existence for a suitably projected Hilbert gradient flow for intM(p,2) for p ∈ ( 73 ,

8
3 ),

where the projection was chosen to conserve the speed of the curves’ parametrisations
along the flow. A corresponding long-time existence result for TP(p,2) for p ∈ (4, 5)
is also available [39]. Considering gradient flows as ordinary differential equations
in the respective energy space has the additional potential of developing numerical
procedures that are substantiallymore efficient and robust in comparison to the existing
numerical methods for the L2-flow; see [34] and [27, Sections 1.4 & 7].
It is the purpose of the present paper to prove long-time existence results for the

gradient flows of the three two-parameter energy families Eα,p, intM(p,q), and TP(p,q)

for the respective complete range of parameters given in (1.1), (1.4), and (1.5). Since
the underlying energy spaces are Sobolev-Slobodeckiı̌ spaces that are in general only
Banach spaces, we employ the general metric gradient approach of Ambrosio et al.
[1] to construct curves of maximal slope, which turn out to be solutions of the doubly-
nonlinear gradient flow equation. In order to do this, we need to control the curves’
parametrisations along the flow, and for that we use the same constraint as in [27] but
in a different manner. We add to the knot energy a suitable norm of the logarithmic
strain

Σ(γ ) := log |γ ′| (1.6)

as a lower-order penalty term, instead of projecting onto the null space of its differential
DΣ[γ ] as in [27]. As a second ingredient we restrict the total energy to a reflexive
and uniformly convex Banach space C compactly embedded in the respective energy
spaceB of closed curves, to account for the quite restrictive assumptions in the general
existence theory for curves of maximal slope.
To summarise these ideas, given any knot energy E : B → (−∞,∞], and some

number κ > 1, we consider the total energy φ : C → (−∞,∞] defined as

φ(γ ) :=
{
E(γ )+ ‖Σ(γ )‖κA, if γ ∈ C is regular and injective

+∞, else,
(1.7)

where the Banach space A consists of real-valued functions with exactly one order
lower in differentiability than the curves γ ∈ B, since the scalar-valued logarithmic
strain consumes one derivative.
By means of the θ -duality mapping JC,θ : C → 2C∗

with θ ∈ (1,∞) defined by

JC,θ (x) :=
{
ξ ∈ C∗ : 〈ξ, x〉C∗×C = ‖x‖C · ‖ξ‖C∗ , ‖x‖θC = ‖ξ‖βC∗

}
, 1
θ + 1

β = 1,

(1.8)
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where C∗ denotes the dual space of C, we state our main result.

Theorem 1.1. (Long-time existence) For any κ, θ ∈ (1,∞), ε ∈ (0,∞), and any
given regular and injective curve γ0 ∈ Cε, there exists a mapping u ∈ C1([0,∞), Cε)
with u(0) = γ0, such that the closed curves u(t) are injective and regular for all t ≥ 0,
satisfying

d

dt
u(t) = −J−1

Cε,θ
(
Dφ[u(t)]) for all t ≥ 0, (1.9)

for any one of the following choices:

(i) E := Eα,p for α ∈ (0,∞), p ∈ [1,∞) satisfying 2 < αp < 2p + 1, and

A := W
αp−1
2p ,2p

(R/Z), B := W 1+ αp−1
2p ,2p

(R/Z,Rn),

Cε := W 1+ αp−1
2p +ε,2p

(R/Z,Rn);
(ii) E := intM(p,q) for q ∈ (1,∞), p ∈ ( 23q + 1, q + 2

3 ), and

A := W
3p−2

q −2,q
(R/Z), B := W

3p−2
q −1,q

(R/Z,Rn),

Cε := W
3p−2

q −1+ε,q
(R/Z,Rn);

(iii) E := TP(p,q) for q ∈ (1,∞), p ∈ (q + 2, 2q + 1), and

A := W
p−1

q −1,q
(R/Z), B := W

p−1
q ,q

(R/Z,Rn),

Cε := W
p−1

q +ε,q
(R/Z,Rn).

Since (1.9) is a gradient flow, the energy decreases along the flow. In addition,
the Banach space C continuously embeds into C1(R/Z,Rn) in all three alternatives.
Therefore, the knot type [γ0] of the initial loop γ0 is preserved along the flow, since
knot classes are stable with respect to C1-deformations [4,35].

Corollary 1.2. Any u ∈ ACloc([0,∞), Cε) starting at an injective and regular curve
γ0 ∈ Cε and solving (1.9) for almost all t > 0 is a θ -curve of maximal slope with respect
to the strong upper gradient3 ‖Dφ[·]‖C∗

ε
. In particular, the total energy φ decreases

along u, i.e. φ(u(t)) ≤ φ(u(s)) for all t > s ≥ 0. Additionally, u ∈ C1([0,∞), Cε)
and the knot type is preserved along the flow, that is, [u(t)] = [γ0] for all t ≥ 0.

Remarks 1.3. 1. In Theorem 1.1 and Corollary 1.2 one can also choose the Möbius
energy E2,1 as knot energy E . The flow equation (1.9) then reads as

d

dt
u(t) = −∇Cεφ(u(t)),

where ∇Cε is the gradient in the Hilbert space Cε := W
3
2+ε,2(R/Z,Rn), which com-

pactly embeds into the energy space W
3
2 ,2(R/Z,Rn) of E2,1. The choice of the spaces

A and B, however, also needs to be adapted in this case to ensure that they embed into

the spaces C0 and C1, respectively. So, we may choose A = Aε := W
1
2+ ε

2 ,2 (R/Z)

and B = Bε := W
3
2+ ε

2 ,2 (R/Z,Rn) to maintain the compact embedding Cε ↪→ Bε.
3See Sect. 2 where we briefly review the essentials for metric gradient flows.
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Since all spaces considered in this situation are Hilbert spaces, other methods to prove
existence of gradient flows may seem more appropriate.
2. Notice that in general the duality mapping JC,θ defined in (1.8) is set-valued, so

that one would expect to at most solve the differential inclusion

−Dφ[u(·)] ∈ JC,θ (u′(·))
on [0,∞) instead of the gradient flow equation (1.9). The specific properties of the Ba-
nach spaceC := Cε inTheorem1.1, however, imply thatJCε,θ is not only single-valued,
but also a homeomorphism between Cε and C∗

ε . Its inverse J
−1
Cε,θ can be identified with

JC∗
ε ,β

for 1
θ

+ 1
β

= 1; see the proof of Corollary 1.2 on page 17.
3. The choice of the Banach space B in the alternatives (i), (ii), and (iii) of Theorem

1.1 ismaximal in the following sense: A regular injective curve γ ∈ B has finite energy
E , and, on the other hand, if a regular injective C1-curve γ satisfies E(γ ) < ∞ then its
suitably rescaled arc length parametrisation is contained in B; see [5, Theorem 1.1]4,
[13, Theorem 1], and [12, Theorem 1.1 & Remark 1.2].
4. There is complete freedom in the choice of the parameters κ, θ ∈ (1,∞), and

ε > 0 in Theorem 1.1. For κ = 1 we still obtain a curve of maximal slope for the total
energy φ with respect to a strong upper gradient which, however, does not coincide
with ‖Dφ‖C∗ any more; see Proposition 3.3. But it is presently unclear if that curve
of maximal slope also solves a differential inclusion.
The limiting process, ε ↘ 0, on the other hand, approximating the correct energy

space B for the respective knot energy E in cases (i)–(iii) of Theorem 1.1, yields a
subsequence of solutions of (1.9) that converges pointwise weakly to a limit mapping
u∗ ∈ ACθ ([0,∞),B), provided that the initial curves γ0,ε are well-prepared. For the
precise statement see Corollary 4.3 and the more general result Proposition 2.2 for
metric spaces, which is similar in spirit as [38, Theorem 2], where a more general
limiting process is investigated. There, however, the existence of the limiting curve is
assumed, see also [38, Remark 1]. While we know that the energy does not exceed
its initial value φ(u∗(0)), it is unclear whether u∗ is a curve of maximal slope in the
limiting energy space B. It would be if we had a weakly lower semicontinuous strong
upper gradient for φ as shown in Lemma 2.3, a condition that is also used in [14,
Theorem 2.5] and in [38, Theorem 2].
In addition, multiplying the term ‖Σ(γ )‖κB in (1.7) with a small prefactor ϑ > 0

and sending ϑ to zero gives rise to another interesting limiting process, similarly as in
[22], where such a procedure was used to study elastic knots. Letting ϑ tend to +∞,
on the other hand, would penalise the curves’ deviation from arc length parametrisa-
tion enforcing an inextensibility constraint in the limit, which is comparable to the
incompressible limit in material science; cf. [36,37].
5. We do not know at this point if the solution u(·) of (1.9) is unique. Moreover,

it is open whether u(t) subconverges or even converges to a critical point of the total

4Unfortunately, there is a typographical error in said theorem, for the correct constant cf. its proof or later
papers by the same author, for example, [11].
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energy φ as t → ∞, not to speak of any information about convergence rates. These
convergence issues would possibly require to study the second variation of the total
energy φ and a suitable Łojasiewicz-Simon inequality as carried out for the L2-flow
of the Möbius energy E2,1 in [6, Sections 4 & 5]; see also the initial analysis of the
kernel of the second variation of E2,1 in [3, Section 3].

6. Let us finallymention whywe preferred themetric gradient approach to the study
of ordinary differential equations in Banach spaces. First of all, the Picard-Lindelöf
theory requires Lipschitz continuity of the right-hand side of the equation. This seems
out of reach in the present context, where—at least in the case θ = 2—the inverse
duality mapping J−1

C,θ fails to be Lipschitz unless the underlying Banach space is Lin-
denstrauß convex [46]. Indeed, here we deal with Sobolev-Slobodeckiı̌ spaces, and
the Lindenstrauß convexity requires an integrability that is at most quadratic; see [16,
Theorem 7] in combination with [17, Proposition 3.6]. However, more general exis-
tence results with a compact operator on the right-hand side such as [30, Ch. VI, Thm.
3.1] could probably be used to obtain at least short-time existence. To extend this to
long-time existence would then require further estimates which do not seem to provide
a short cut. An interesting alternative approach could be a vanishing viscosity method
as performed recently for the p-curvature integral by Blatt and Vorderobermeier, and
this might lead to stronger results; see [9] in comparison to [10].

The paper is structured as follows. In Sect. 2 we recall the basic notions of themetric
gradient flow approach following [1] but slightly adapted to our context. There, we also
revisit how these notions manifest in Banach spaces. In Sect. 3 we prove an abstract
existence theorem for curves of maximal slope for the total energy φ in (1.7) under
certain assumptions on an otherwise arbitrary knot energy E ; see Theorem 3.2. We
also treat in Proposition 3.3 the limiting case κ = 1. In Sect. 4 we verify in detail the
assumptions of Theorem 3.2 for the three energy families Eα,p, intM(p,q), and TP(p,q),
thus proving Theorem 1.1. One of these assumptions is the continuous differentiability
of the knot energy, which is known for the generalised integral Menger curvature and
tangent-point energies, but—to the best of our knowledge—for O’Hara’s energies
Eα,p so far only for p = 1; see [11, Theorem 1.1]. Kawakami and Nagasawa [26]
established L1-bounds for the integrands of the first and second variation of a variant of
O’Hara’s energy that coincides with Eα,p only on curves parametrised by arc length.
Since we need bounds for more general parametrisations and their ansatz seems non-
transferable, we have included a full proof of continuous differentiability of Eα,p

in Sect. 5; see Theorem 5.1, which may be of independent interest. As mentioned in
Remark 1.3.4, the limiting process ε → 0 for solutions of (1.9) is treated in Proposition
2.2 in the generalmetric setting, and specified inCorollary 4.3 to the situation described
in Theorem 1.1. The appendix contains some technical material on the geometry of
Sobolev-Slobodeckiı̌ spaces and some differentiation rules.
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2. Preliminaries

2.1. Curves of maximal slope in metric spaces

Given a complete metric space (S , d), an interval I ⊂ R, and a number θ ≥ 1,
a θ -absolutely continuous curve is a curve u : I → S such that there exists a map
m ∈ Lθ (I ) with the property d

(
u(s), u(t)

) ≤ ∫ t
s m(r) dr for all s, t ∈ I with

s < t . The set of all such curves is denoted by ACθ (I,S ) (writing ACθloc(I,S )

for the local variant of this space if m is only in Lθloc(I ), and using the abbreviation
AC(I,S ) := AC1(I,S )). According to [1, Theorem 1.1.2] every u ∈ ACθ

loc(I,S )

is metrically differentiable almost everywhere in the following sense: its metric deriv-
ative |u′|(t) := lims→t

d(u(t),u(s))
|t−s| exists for almost every t ∈ I .

Any functional φ : S → (−∞,∞] with non-empty effective domain

D(φ) := {u ∈ S : φ(u) < ∞}

admits a so-called local slope |∂φ|(u) of φ at u ∈ D(φ) given by the expression

|∂φ|(u) := lim supd(v,u)→0
(φ(u)−φ(v))+

d(u,v) ∈ [0,∞], where a+ := max{0, a} for a ∈ R

[1, Definition 1.2.4]. A map g : S → [0,∞] is a strong upper gradient for φ on
D(φ), if for every curve u ∈ AC(I,D(φ)) the composition g ◦u is Borel-measurable
and

∣∣φ ◦ u(t)− φ ◦ u(s)
∣∣ ≤

∫ t

s
g ◦ u(r)|u′|(r) dr for all s, t ∈ I with s < t. (2.1)

Notice that this notion of a strong upper gradient modifies slightly that of [1, Definition
1.2.1] in that inequality (2.1) is only required for absolutely continuous curves whose
image is contained in the effective domainD(φ). This restriction does not affect The-
orem 2.1 below upon which our existence results build. In the situations encountered
in this work, the local slope turns out to be a strong upper gradient.
With these notions at hand, one can define a θ -curve of maximal slope for φ with

respect to the strong upper gradient g starting at u0 ∈ D(φ). It is a curve u ∈
ACθ

loc

([0,∞),S
)
that satisfies u(0) = u0 and the energy dissipation equality

φ(u(t))− φ(u(s)) = − 1

β

∫ t

s
gβ(u(r)) dr − 1

θ

∫ t

s
|u′|θ (r) dr (2.2)

for all 0 ≤ s < t < ∞, where θ−1 + β−1 = 1. At first sight, this definition seems to
differ from that given in [1, Definition 1.3.2]. Notice, however, that in the present more
specific situation, where u0 ∈ D(φ) and g is a strong upper gradient, our definition
is actually equivalent to that in [1]. Indeed, since φ(u0) < ∞ and φ(u) > −∞ for
all u ∈ S , equality (2.2) with s = 0 and Young’s inequality imply that g ◦ u|u′|
is integrable on every compact interval [0, t]. Hence, by the defining inequality (2.1)
for strong upper gradients, φ ◦ u is locally absolutely continuous and we deduce the
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defining inequality (1.3.13) of [1, Definition 1.3.2] with ϕ = φ ◦ u. Conversely, [1,
Remark 1.3.3] implies that (2.2) holds. In that case, we also have the identities

gβ(u(r)) = |u′|θ (r) = |u′|(r)g ◦ u(r) for a.e. r ∈ (0,∞). (2.3)

In fact, one can also require (2.2) only to hold with “≤” instead of equality, since the
converse inequality is always satisfied as a consequence of Young’s inequality and
(2.1).
A common way to obtain a curve of maximal slope is by carrying out three steps.

Firstly, for a given step size, a discretised version of the energy dissipation equation
is solved by iteratively solving minimisation problems associated with the step size.
Secondly, using an interpolation method, each of the thus obtained piecewise con-
stant solutions is transformed into a continuous curve. These curves form a relatively
compact set and a limit curve is extracted. This limit curve is commonly referred to
as a (generalised) minimising movement and satisfies a weaker form of the energy
dissipation equality. Thirdly, it remains to check that the minimising movement in fact
also satisfies the energy dissipation equality. General assumptions on the functional
have been formulated that ensure that each of the previous steps can be executed.
We state these assumptions collected from [1, Section 2.1 & Remark 2.3.4] and the
corresponding existence theorem.

Assumption (M) on the metric space. The complete metric space (S , d) is endowed
with an additional weak topology σ which is Hausdorff, weaker than the topology
induced by the metric d ,and such that d is sequentially weakly lower semi-continuous5,

i.e. for all sequences uk
σ−⇀ u and vk

σ−⇀ v as k → ∞ it holds true that

d(u, v) ≤ lim inf
k→∞ d(uk, vk).

Assumptions on the functional φ : S → (−∞,∞] with D(φ) �= ∅ and fixed
θ ∈ (1,∞).

(Φ1) The functional φ is sequentially weakly lower semi-continuous on d-bounded

sets, i.e. if supk,l∈N d(uk, ul) < ∞ for a sequence uk
σ−⇀ u as k → ∞, then

φ(u) ≤ lim infk→∞ φ(uk).
(Φ2) The functional φ is coercive in the sense that there exists u∗ ∈ S , B ∈ R, and

C > 0 such that φ(u) ≥ B − Cd(u, u∗)θ for all u ∈ S .
(Φ3) Every d-bounded subset of a sublevel set of φ is relatively weakly sequen-

tially compact, i.e. for a sequence (uk)k ⊂ S with supk∈N φ(uk) < ∞ and
supk,l∈N d(uk, ul) < ∞ there is u ∈ S and a subsequence (ukm )m ⊂ (uk)k

such that ukm

σ−⇀ u as m → ∞.
(Φ4) The local slope |∂φ| of φ is weakly sequentially lower semi-continuous on

d-bounded subsets of sublevel sets of φ, that is, for every sequence uk
σ−⇀ u as

5In our application, σ will be theweak topology on aBanach space, so there is no risk of confusion regarding
the expression “weak”.
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k → ∞ which satisfies supk∈N{d(uk, u), φ(uk)} < ∞ one has

|∂φ|(u) ≤ lim inf
k→∞ |∂φ|(un).

(Φ5) The local slope of φ is a strong upper gradient on6 D(φ).

Theorem 2.1 (Curves of maximal slope exist). Let (S , d) be a metric space satisfy-
ing Assumption (M), and suppose φ : S → (−∞,∞] satisfies for given θ ∈ (1,∞)

Assumptions (Φ1)–(Φ5), and let u0 ∈ D(φ). Then there exists a θ -curve of maximal
slope for φ with respect to the strong upper gradient |∂φ| starting at u0.

Proof. Notice that Assumption (Φ2) is equivalent to

inf
v∈S

[Cd(v, u∗)θ+φ(v)]>− ∞,

which ensures that τ∗ := (θC)−
1
θ−1 satisfies

inf
v∈S

[1
θ
τ 1−θ∗ d(u∗, v)θ + φ(v)] > −∞.

Therefore, for every uniform partition {0 < 1
m < 2

m < · · · < k
m < . . . } of [0,∞)with

m ∈ N such that 1
m < τ∗, Assumptions (M) and (Φ1)–(Φ3) enable us to employ [1,

Corollary 2.2.2] to find a solution of the recursive minimisation problem [1, (2.0.4)]
starting at u0. Then, [1, Proposition 2.2.3] implies that the family of these discrete
solutions admit, up to a subsequence, an absolutely continuous limit curve u (called a
generalised minimising movement). Now, Assumption (Φ4) implies that the relaxed
slope |∂−φ|, [1, (2.3.1)], is equal to the local slope onD(φ). Moreover, byAssumption
(Φ5), it is also a strong upper gradient on D(φ). Therefore, Theorem [1, Theorem
2.3.3] is applicable and we deduce that u is a curve of maximal slope with respect to
|∂−φ| = |∂φ|. Notice that our additional restrictions in the definition of upper gradients
and Assumption (Φ5) are non-essential, as both only play a role at [1, (3.4.2)]. There,
the curve u has finite energy because of [1, (3.4.1)]. �

The following proposition shows how curves of maximal slope in smaller subspaces
of a given metric space give rise to a limiting curve.

Proposition 2.2. Let θ ∈ (1,∞). Let (S0, d0, σ ) be a metric space that satisfies
Assumption (M) and let

(
(Sε, dε)

)
ε>0 be metric spaces such that Sε ⊂ S0 and

such that there exists a constant c0 > 0 such that d0(u, v) ≤ c0dε(u, v) holds for
all u, v ∈ Sε and all ε > 0. Let φ : S → (−∞,∞] be a functional that satisfies
Assumptions (Φ1)–(Φ3) with S = S0 and let u0 ∈ D(φ). Assume that for every
ε > 0 there exists u0,ε ∈ Sε such that

6This is a slightly restricted version of [1, Remark 2.3.4 (i)], but this does not affect the validity of Theorem
2.1 below.
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sup
ε>0

d0(u0,ε, u0) < ∞, u0,ε
σ−−−−⇀

(ε→0)
u0, and φ(u0,ε) −−−→

(ε→0)
φ(u0) (2.4)

and let uε ∈ ACθ
loc ([0,∞), (Sε, dε)) be a θ -curve of maximal slope forφ with respect

to the strong upper gradient gε starting at u0,ε. Then there exists a subsequence
εk → 0 and a curve u∗ ∈ ACθ

loc ([0,∞), (S0, d0)) such that u∗(0) = u0 and

uεk (t)
σ−−−−⇀

(k→∞)
u∗(t) holds for every t ≥ 0. Moreover, φ(u∗(t)) ≤ φ(u0) for all

t ≥ 0.

Proof. Let us first fix some notation. For a given metric space S ∈ {S0,Sε}, a
locally absolutely continuous curve v ∈ ACloc ([0,∞),S ) and a point v ∈ S , we
denote by |v′|S (r) the metric derivative of v at r ≥ 0 taken with respect to the
metric on S . Moreover, since we are only interested in small ε, we may assume that
sup
ε>0

φ(u0,ε) < ∞.

The arguments presented here are continuous analogues of those used in [1, Lemma
3.2.2] and [1, Corollary 3.3.4]. The existence of a converging subsequence relies on
the theorem of Arzelà-Ascoli [1, Proposition 3.3.1]. We will check its prerequisites,
which are consequences of the energy dissipation equalities

φ
(
uε(t)

)+ 1

θ

∫ t

s
|u′
ε|θSε

(r) dr + 1

β

∫ t

s
gβε
(
uε(r)

)
dr = φ

(
uε(s)

)
, 0 ≤ s < t < ∞.

(2.5)

From the assumptions on the metrics d0, dε, it follows that

d0(uε(t), uε(s)) ≤ c0dε(uε(t), uε(s)) ≤ c0

∫ t

s
|u′
ε|Sε

(r) dr

for all 0 ≤ s < t < ∞. Therefore, uε ∈ ACθ
loc ([0,∞), (S0, d0)) with |u′

ε|S0(r) ≤
c0|u′

ε|Sε
(r) for almost every r ≥ 0. Notice that Assumption (Φ2) also holds for

u∗ = u0, possibly with different constants. We deduce from Assumption (Φ2) and
(2.5) with s = 0 that

∫ t

0
|u′
ε|θS0

(r) dr ≤ cθ0

∫ t

0
|u′
ε|θSε

(r) dr ≤ θcθ0
(
φ(u0,ε)− φ(uε(t))

)

≤ θcθ0
(
φ(u0,ε)− B

)+ Cθcθ0 dθ0 (uε(t), u0). (2.6)

On the other hand, since uε and d0(uε(·), u0) are locally absolutely continuous, we
have

d

dr
d0(uε(r), u0) = lim

s→r

d0(uε(s), u0)− d0(uε(r), u0)

s − r

≤ lim
s→r

d0(uε(s), uε(r))
|s − r | = |u′

ε|S0(r)
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and thus

d

dr
dθ0 (uε(r), u0) ≤ θdθ−1

0 (uε(r), u0)|u′
ε|S0(r) for almost every r ≥ 0.

Using Young’s inequality with δ > 0, a = θ
√
δ|u′

ε|S0 , b = θ
θ
√
δ−1dθ−1

0 (uε(r), u0),
and recalling that β = θ

θ−1 , we obtain for almost every r ≥ 0

d

dr
dθ0 (uε(r), u0) ≤ δ

θ
|u′
ε|θS0

(r)+ θβ

βδβ−1 dθ0 (uε(r), u0). (2.7)

Therefore,

dθ0 (uε(t), u0) = dθ0 (u0,ε, u0)+
∫ t

0

d

dr
dθ0 (uε(r), u0) dr

(2.7)≤ dθ0 (u0,ε, u0)+ δ

θ

∫ t

0
|u′
ε|θS0

(r) dr + θβ

βδβ−1

∫ t

0
dθ0 (uε(r), u0) dr

(2.6)≤ dθ0 (u0,ε, u0)+ δcθ0
(
φ(u0,ε)− B

)+ δCcθ0 dθ0 (uε(t), u0)

+ θβ

βδβ−1

∫ t

0
dθ0 (uε(r), u0) dr.

Choosing, for example, δ = (2Ccθ0)
−1, and using (2.4), we deduce for some constants

c1, c2 > 0 independent of ε and t the inequality

dθ0 (uε(t), u0) ≤ c1 + c2

∫ t

0
dθ0 (uε(r), u0) dr.

It follows from Gronwall’s inequality [24, Corollary 6.6] that

dθ0 (uε(t), u0) ≤ c1 exp(c2t). (2.8)

Now fix T > 0. It follows immediately from (2.5) and from (2.8) that

sup
ε>0

sup
0≤t≤T

φ(uε(t)) < ∞, and sup
ε>0

sup
0≤t≤T

d0(uε(t), u0) < ∞. (2.9)

Therefore, the maps uε
∣∣[0,T ] take their values in a d0-bounded sublevel set of φ,

which, by Assumption (Φ3) is relatively weakly sequentially compact. Moreover, a
consequence of (2.6) and (2.8) with t = T is that

sup
ε>0

∥∥|u′
ε|S0

∥∥θ
Lθ ([0,T ]) = sup

ε>0

∫ T

0
|u′
ε|θS0

(t) dt < ∞. (2.10)

Since Lθ ([0, T ]) is reflexive, there exists a null-sequence (εk)k∈N such that, with the
notation uk := uεk , the metric derivatives |u′

k |S0 converge weakly to some AT ∈
Lθ ([0, T ]). For all 0 ≤ s < t ≤ T the characteristic function χ[s,t] is of class
Lβ([0, T ]) (recall that θ−1 + β−1 = 1) and therefore

lim sup
k→∞

d0(uk(t), uk(s)) ≤ lim sup
k→∞

∫ t

s
|u′

k |S0(r) dr =
∫ t

s
AT (r) dr. (2.11)
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Using [1, Proposition 3.3.1] with ω(s, t) := | ∫ t
s AT (r) dr |, we deduce from (2.11)

and (2.9) that there exists a map u∗
T : [0, T ] → S0, such that, up to a subsequence,

uk(t)
σ−−−−⇀

(k→∞)
u∗

T (t) for all t ∈ [0, T ]. (2.12)

By a diagonal argument, we find u∗ : [0,∞) → S0 and A ∈ Lθloc ([0,∞)) such that,
up to another subsequence, (2.12) holds with u∗ for every t ≥ 0 and such that for
every T > 0 there holds u∗ = u∗

T and A = AT almost everywhere on [0, T ]. Since
the metric d0 is sequentially weakly lower semicontinuous and because of (2.11) and
(2.12), we deduce that for all 0 ≤ s < t < ∞

d0(u∗(t), u∗(s)) ≤ lim inf
k→∞ d0(uk(t), uk(s)) ≤

∫ t

s
A(r) dr (2.13)

whence u∗ ∈ ACθ
loc ([0,∞), (S0, d0)) and |(u∗)′|S0(r) ≤ A(r) for almost every

r ≥ 0.
Because of (2.12), Assumption (Φ1), (2.5) and (2.4), the energy remains bounded

by its initial value:

φ(u∗(t)) ≤ lim inf
k→∞ φ(uk(t)) ≤ lim inf

k→∞ φ(uk(0)) = φ(u0).

�

The following lemma shows that under additional assumptions the limiting curve
is actually a curve of maximal slope. We will not need this result in the remainder of
this paper.

Lemma 2.3. If in addition to the assumptions of Proposition 2.2 with c0 = 1, we also

have for a strong upper gradient g of φ with respect to S0 and for every uε
σ−−−−⇀

(ε→0)
u

in S0 that lim inf
ε→0

gε(uε) ≥ g(u), then the limiting curve u∗ is a θ -curve of maximal

slope for φ starting at u0.

Proof. Let u∗ and (uk)k be as in the proof of Proposition 2.2. Since c0 = 1, we
have |u′

ε|S0(r) ≤ |u′
ε|Sε

(r) for a.e. r ≥ 0. Using this inequality, (Φ1), the weak
convergence of |u′

k |S0 to A together with the inequality (2.13), the newly introduced
assumption on the upper gradients, and (2.4), we may pass to the limit inferior in the
energy dissipation equality (2.5) with s = 0 to deduce that the limit curve u∗ satisfies

φ(u∗(t))+ 1

θ

∫ t

0
|(u∗)′|θS0

(r) dr + 1

β

∫ t

0
gβ(u∗(r)) dr ≤ φ(u0). (2.14)

Since g is a strong upper gradient, we may use (2.1) in combination with Young’s
inequality to find that (2.14) actually holds with equality. Subtracting equality (2.14)
with s instead of t from equality (2.14) yields the energy dissipation equality (2.2) for
u∗. �
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2.2. Curves of maximal slope in Banach spaces

If the metric space is actually a real Banach space (S , d) = (B, ‖·‖B) with dual
space (B∗, ‖·‖B∗), then the objects of the previous section can be characterised in
terms of classical derivatives; see, for example, [31, Section 2.3] for a proof of the
following result regarding the local slope and the metric derivative.

Proposition 2.4. Let (B, ‖·‖B) be a Banach space, φ : B → (−∞,∞] a mapping,
and suppose u : I → B is a curve defined on an interval I ⊂ R. If φ is Fréchet
differentiable at some point v ∈ B with derivative Dφ[v], then |∂φ|(v) = ‖Dφ[v]‖B∗ ,
and if u is differentiable at t ∈ I with derivative u′(t), then |u′|(t) = ∥∥u′(t)

∥∥B.

If one has a more specific Banach space C with additional properties, then θ -curves
of maximal slope satisfy differential inclusions. The following result is a simplified
and slightly modified version of [1, Proposition 1.4.1] and is stated in terms of the
duality mapping JC,θ : C → 2C∗

with weight θ ∈ (1,∞) defined in (1.8) of the
introduction.

Proposition 2.5. Suppose C is a Banach space, φ : C → R ∪ {∞} a mapping that is
Fréchet-differentiable7 on an open subset Ω ⊂ C, and let u ∈ ACθ

loc

([0,∞),Ω
)

be
a θ -curve of maximal slope for φ with respect to its local slope |∂φ|.

(i) If C has the Radon-Nikodym property then

−Dφ[u(t)] ∈ JC,θ
(
u′(t)

)
for a.e. t > 0. (2.15)

(ii) If C is reflexive, strictly convex, and has a Gâteaux-differentiable norm on C\{0},
then

d

dt
u(t) = −J−1

C,θ
(
Dφ[u(t)]) for a.e. t > 0. (2.16)

Proof. (i) The Radon-Nikodym property implies that absolutely continuous curves
are differentiable almost everywhere, see, for example, [2, Definition 1.2.5]. Using
the energy dissipation equality (2.2) together with (2.3) and Proposition 2.4, we infer
that

φ ◦ u(t)− φ ◦ u(s) = −
∫ t

s
|u′|(r)|∂φ| ◦ u(r) dr

= −
∫ t

s

∥∥u′(r)
∥∥C ‖Dφ[u(r)]‖C∗ dr

holds for all 0 ≤ s < t < ∞. By the chain rule we obtain

− ∥∥u′(t)
∥∥C ‖Dφ[u(t)]‖C∗ = d

dt
φ ◦ u(t) = 〈Dφ[u(t)], u′(t)〉C∗×C for a.e. t ≥ 0.

7One can easily show that under this strong assumption on φ its local slope |∂φ| is a strong upper gradient;
see, for example, [31, Lemma 2.3.7].
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Together with identity (2.3) for g := |∂φ| in combination with the definition of the
duality mapping (1.8) and Proposition 2.4, this implies (2.15).

(ii) If C is reflexive, it has the Radon-Nikodym property [2, Corollary 1.2.7]. The
differentiability of the norm ‖·‖C on C \ {0} ensures that the duality mapping JC,θ
is single-valued [18, Corollary I.4.5]. The reflexivity of C guarantees that JC,θ is
surjective [18, Theorem II.3.4], and the strict convexity of C implies that it is injective
[18, Theorem II.1.8]8. Thus, the inclusion (2.15) is actually an identity and we deduce
(2.16). �

3. Curves of maximal slope for abstract knot energies regularised by the
logarithmic strain

For most of the known knot energies E , the underlying energy space is a Sobolev-
Slobodeckiı̌ space W 1+s,ρ(R/Z,Rn) for some s ∈ (0, 1), ρ > 1/s. In the still abstract
setting of the present section we regularise any such E by adding a power of the norm
of the logarithmic strainΣ defined in (1.6) to form a total energy φ as in (1.7). It was
shown in [27] thatΣ is continuously differentiable on regular injective curves of that
class.

Lemma 3.1 ([27, Proposition 5.1]) For any s ∈ (0, 1) and ρ ∈ ( 1s ,∞
)

one has

Σ ∈ C1(W 1+s,ρ
ir (R/Z,Rn),W s,ρ(R/Z)).

Here, and from now on we use the following abbreviated notation: For a given
space F of closed curves we denote from now on by Fi the subset of all injective
curves, by Fr the regular curves, and we write Fa for the arc length-parametrised
curves contained in F , and we combine these indices i, r and a as needed.

To quantify injectivity of closed curves γ , we define the bi-Lipschitz constant
BiLip(γ ) by means of

BiLip(γ ) := inf
x,y∈R/Z

x �=y

|γ (y)− γ (x)|
|x − y|R/Z .

To apply the metric existence result, Theorem 2.1 of Sect. 2, we formulate in the
present section a few general assumptions on the knot energy E so that the total energy
φ in (1.7) satisfiesAssumptions (Φ1)–(Φ5) of Sect. 2. In order to verify (Φ4), however,
we will need to consider a slightly smaller reflexive Banach space C that is compactly
embedded in W 1+s,ρ(R/Z,Rn) to finally prove the abstract existence result of this
section; see Theorem 3.2 below.

Assumptions on the knot energy E . Let s ∈ (0, 1) and ρ ∈ ( 1s ,∞).

(E1) E is non-negative and of class C1 on W 1+s,ρ
ir (R/Z,Rn) (differentiability).

8Note that in the language of [18], we use the weight function ϕ(s) := s
θ
β .
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(E2) E(γ ) ≤ lim infk→∞ ∈ (γk) for all γk, γ ∈ W 1+s,ρ
ir (R/Z,Rn) with γk ⇀ γ as

k → ∞ (weak lower semi-continuity).
(E3) For all c1, c2 > 0 there is a constant C = C(E, c1, c2) such that for all curves

γ ∈ C1
i (R/Z,R

n) with c−1
1 ≤ |γ ′| ≤ c1 and E(γ ) ≤ c2 one has BiLip(γ ) ≥ C

(uniform control of bi-Lipschitz constant).

Now we can state our abstract existence result for curves of maximal slope and solu-
tions of the gradient flow equation.

Theorem 3.2. Let s ∈ (0, 1), ρ ∈ ( 1s ,∞) and θ, κ ∈ (1,∞). Suppose that C ⊂
W 1+s,ρ(R/Z,Rn) is a compactly embedded reflexive Banach space and that the energy
E satisfies Assumptions (E1)–(E3), and γ0 ∈ D(φ), where the total energy φ is defined
as in (1.7). Then there exists u ∈ ACθ ([0,∞), (C, ‖·‖C)) with u(0) = γ0 and

− Dφ[u(t)] ∈ JC,θ (u′(t)) for a.e. t > 0, (3.1)

where JC,θ : C �→ 2C∗
is the θ -duality mapping defined in (1.8). If, in addition, C is

strictly convex and has a Gâteaux-differentiable norm on C \ {0}, then

d

dt
u(t) = −J−1

C,θ (Dφ[u(t)]) for a.e. t > 0. (3.2)

Proof. We proceed as follows. In the first four steps we verify Assumptions (M), and
(Φ1)–(Φ5) of Sect. 2.1 to obtain by virtue of the metric existence result, Theorem 2.1,
a curve of maximal slope for the total energy φ with respect to its local slope |∂φ|.
Then in a final step we apply the more specific results for Banach spaces presented in
Sect. 2.2 to obtain the differential inclusion (3.1) and finally the gradient flow equation
(3.2).

Step 1: Assumptions (M), (Φ2), (Φ3) are satisfied. The Sobolev-Slobodeckiı̌ space
W 1+s,ρ(R/Z,Rn) as well as the Banach space C are complete metric spaces with
the metric induced by their respective norms. It follows from general Banach space
theory (see, for example, [15, Propositions 3.3 & 3.5]) that these norms are weakly
lower semi-continuous, and that the weak topology is Hausdorff, so that Assumption
(M) for the complete metric spaceS := C is satisfied (as well as for the larger space
W 1+s,ρ(R/Z,Rn)). The total energy φ is coercive since E and the norm ofΣ are non-
negative, which verifies Assumption (Φ2). Moreover, W 1+s,ρ for ρ > 1 is reflexive
by LemmaA.1, and C is reflexive by assumption. So, the sequential weak compactness
of bounded sets follows from general theory again; see, for example, [15, Theorem
3.17]. In particular, Assumption (Φ3) holds here.

Step 2: Assumption (Φ1)holds true. Toprove this claimwefirst show that a sequence
of bounded total energy cannot have weak cluster points outside of the set of injective
and regular curves. This way, the energy may not jump to infinity. Afterwards, it is
straight-forward to prove weak lower semi-continuity on W 1+s,ρ

ir (R/Z,Rn).
Let (γk)k∈N ⊂ W 1+s,ρ(R/Z,Rn) be a sequence that converges weakly to a curve

γ of class W 1+s,ρ(R/Z,Rn) as k → ∞, and up to a further subsequence we may also
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assume that

lim inf
k→∞ φ(γk) < ∞, sup

k∈N
φ(γk) < ∞, and γk → γ in C1, (3.3)

where we used Arzela-Ascoli’s theorem in combination with the embedding result,
Proposition A.3 (ii) in the appendix for k1 := 1, k2 := 1, ρ1 := ρ, and an arbitrary

μ ∈
(
0, s − 1

ρ

)
, to obtain the C1-convergence. The finiteness of φ(γk) implies that

γk ∈ W 1+s,ρ
ir (R/Z,Rn) for all k ∈ N by the very definition (1.7) of the total energy φ,

and further that supk∈N ‖Σ(γk)‖W s,ρ < ∞. Because of the embedding W s,ρ ↪→ C0

(see part (ii) of Proposition A.3 for k1 := 0, ρ1 := ρ, k2 := 0 and some μ ∈
(0, s − 1

ρ
)), we infer that supk∈N supx∈R/Z | log |γ ′

k(x)|| < ∞. Consequently, there
exists a constant c1 such that

c−1
1 ≤ |γ ′

k(x)| ≤ c1 for all x ∈ R/Z, (3.4)

which together with the uniform total energy bound (3.3), in particular the resulting
uniform energy bound c2 := supk∈N ∈ (γk) < ∞, yields the uniform bound

C = C(E, c1, c2)

on the bi-Lipschitz constant by means of Assumption (E3): infk∈N BiLip(γk) ≥ C >

0. By means of (3.4) and the convergence in (3.3) we obtain that γ is regular, and for
distinct parameters x, y ∈ R/Z

|γ (x)− γ (y)| (3.3)= lim
k→∞ |γk(x)− γk(y)| ≥ inf

k∈NBiLip(γk)|x − y|R/Z > 0,

so that γ is injective, and therefore γ ∈ W 1+s,ρ
ir (R/Z,Rn).

By Assumption (E2) the energy E is sequentially weakly lower semi-continuous on
the set W 1+s,ρ

ir (R/Z,Rn). It remains to prove the same for the regularising logarithmic
strain term, which also appears in the total energy φ; cf. (1.7). Indeed, writing it out
for γk ,

‖Σ(γk)‖κW s,ρ =
(∫

R/Z

|Σ(γk)(x)|ρ dx +
∫
R/Z

∫
R/Z

|Σ(γk)(x)−Σ(γk)(y)|ρ
|x − y|1+sρ

dxdy

) κ
ρ

,

we can use the C1-convergence in (3.3) to find pointwise convergence of Σ(γk) to
Σ(γ ) as k → ∞, in order to apply Fatou’s Lemma to obtain

lim inf
k→∞ ‖Σ(γk)‖κW s,ρ ≥ ‖Σ(γ )‖κW s,ρ .

Since C embeds continuously into W 1+s,ρ(R/Z,Rn), Assumption (Φ1) is fulfilled.
Step 3: Assumption (Φ4) is satisfied. By definition of the total energy φ in (1.7)

every sublevel set of φ is contained in Cir , which according to Lemma A.2 in the
appendix is an open subset of the full space C. By Theorem 3.1 and Assumption (E1)
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the logarithmic strain Σ and the energy E are continuously Fréchet differentiable on
W 1+s,ρ

ir (R/Z,Rn). Furthermore, the choice κ > 1 and LemmaA.1 in the appendix for
k := 0 imply that ‖·‖κW s,ρ is also continuously differentiable. Hence, the total energy

φ is of class C1(W 1+s,ρ
ir (R/Z,Rn)). Since the canonical embedding

ι : C → W 1+s,ρ(R/Z,Rn)

is linear and bounded and since Cir ⊂ W 1+s,ρ
ir (R/Z,Rn), we infer that φ is of

class C1(Cir,R). It follows from Proposition 2.4 that the local slope takes the form
|∂φ|(γ ) = ‖Dφ[γ ]‖C∗ . To be precise, denoting by ι∗ the adjoint of ι, we have
|∂φ|(γ ) = ‖D(φ ◦ ι)[γ ]‖C∗ = ‖·‖C∗ ◦ ι∗ ◦ Dφ ◦ ι[γ ]. The map ‖·‖C∗ ◦ ι∗ ◦ Dφ is
continuous with respect to the norm-topology on W 1+s,ρ(R/Z,Rn). Since C embeds
compactly, i.e. since ι is a compact operator, effectively converting weakly conver-
gent sequences in C into strongly convergent ones in W 1+s,ρ(R/Z,Rn), we obtain the
weak sequential continuity of |∂φ|(·) on Cir . In particular, it is also weakly sequentially
lower semi-continuous, so that Assumption (Φ4) is satisfied.

Step 4: Assumption (Φ5) holds. Let u ∈ AC(I, C) such that φ(u(t)) < ∞ for all
t ∈ I . By the previous step, the local slope |∂φ| is weakly sequentially lower semi-
continuous and therefore it is lower semicontinuouswith respect to the strong topology.
It follows that |∂φ|◦u is lower semicontinuous and thusmeasurable. Since φ is contin-
uously Fréchet-differentiable on Cir , it is locally Lipschitz-continuous, whence φ ◦ u
is locally absolutely continuous, and therefore differentiable a.e. on I . Furthermore,
since the reflexive space C satisfies the Radon-Nikodym property; see [2, Corollary
1.2.7] u is also differentiable a.e. on I . Therefore, by the chain rule and Proposition
2.4

|φ ◦ �u(t)− φ ◦ �u(s)| =
∣∣∣∣
∫ t

s

d

dr
φ ◦ �u(r) dr

∣∣∣∣ =
∣∣∣∣
∫ t

s
〈Dφ[�u(r)], �u′(r)〉C∗×C dr

∣∣∣∣
≤
∫ t

s
‖Dφ[�u(r)]‖C∗

∥∥�u′(r)
∥∥C dr =

∫ t

s
|∂φ|(�u(r))|�u′|(r) dr

for all s, t ∈ I with s < t . This is the defining inequality (2.1) for the strong upper
gradient g := |∂φ|. Thus, Assumption (Φ5) is verified.

Step 5: Proof of (3.1) and (3.2). The previous steps have established the validity
of Assumptions (M), and (Φ1)–(Φ5) so that Theorem 2.1 for the choice S := C
yields a curve of maximal slope for the total energy φ with respect to its local slope
|∂φ| starting at γ0 ∈ D(φ). Since C is reflexive it has the Radon-Nikodym property
[2, Corollary 1.2.7], part (i) of Proposition 2.5 implies the validity of the differential
inclusion (3.1). Under the stronger assumption that C is strictly convex and has a
Gâteaux-differentiable norm on C \ {0}, part (ii) of the same proposition yields the
gradient flow equation (3.2). �

The parameter κ > 1 was introduced to render the last step of the previous proof
possible: If κ > 1 then the total energy φ is continuously differentiable and the curve
of maximal slope is actually a gradient flow. For the limiting case κ = 1, it is still
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possible to prove the existence of a curve of maximal slope, as shown in the following
proposition.

Proposition 3.3. Let s ∈ (0, 1), ρ ∈ ( 1s ,∞), θ ∈ (1,∞), and κ = 1. Suppose
that C ⊂ W 1+s,ρ(R/Z,Rn) is a compactly embedded reflexive Banach space, that
the energy E satisfies Assumptions (E1)–(E3), and γ0ED(φ), where the total en-
ergy φ is defined as in (1.7). Then there exists a θ -curve of maximal slope u ∈
ACθ ([0,∞), (C, ‖·‖C)) for φ with respect to its strong upper gradient |∂φ| starting
at γ0. Furthermore, the local slope at γ ∈ C takes the form

|∂φ|(γ ) = sup
v ∈ C

‖v‖C = 1

{(〈DE[γ ], v〉C∗×C − ‖DΣ[γ ]v‖A
)+
, Σ(γ ) = 0,

〈DE[γ ], v〉C∗×C + 〈JA,2(Σ(γ ))

‖Σ(γ )‖A , DΣ[γ ]v〉A∗×A, Σ(γ ) �= 0,

(3.5)

where A := W s,ρ(R/Z).

Proof. The assumptions (M) and (Φ1)–(Φ3) follow exactly as in in the first two steps
of Theorem 3.2.

We now show that the local slope takes the form (3.5). If Σ(γ ) �= 0, then the total
energy φ = E +‖Σ‖A is differentiable at γ and we can apply Proposition 2.4. Notice
that D ‖·‖A [ζ ] = JA,2(ζ )

‖ζ‖A for every ζ ∈ A \ {0}. Let us now assume that Σ(γ ) = 0.
By differentiability, we have

φ(η) = E(η)+ ‖Σ(η)‖A
= E(γ )+ 〈DE[γ ], η − γ 〉C∗×C + ‖Σ(γ )+ DΣ[γ ](η − γ )‖A + o

( ‖γ − η‖C
)

= φ(γ )+ 〈DE[γ ], η − γ 〉C∗×C + ‖DΣ[γ ](η − γ )‖A + o
( ‖γ − η‖C

)

as ‖γ − η‖C → 0, and therefore,
(
φ(γ )− φ(η)

)+
‖γ − η‖C

=
(

−〈DE[γ ], η − γ

‖η − γ ‖C
〉C∗×C −

∥∥∥∥DΣ[γ ]
(

η − γ

‖η − γ ‖C

)∥∥∥∥A
)+

+ o(1)

≤ sup
v∈C,‖v‖C=1

(〈DE[γ ],−v〉C∗×C − ‖DΣ[γ ]v‖A
)+ + o(1)

as ‖γ − η‖C → 0. Choosing a maximising sequence (vn)n∈N ⊂ C for the supremum
and setting ηn := γ + vn

n , we infer that

lim sup
η→γ

(φ(γ )− φ(η))+

‖γ − η‖C
≥ lim sup

n→∞
(〈DE[γ ],−vn〉C∗×C − ‖DΣ[γ ]vn‖A

)+

= sup
v∈C,‖v‖C=1

(〈DE[γ ],−v〉C∗×C − ‖DΣ[γ ]v‖A
)+
.

Changing v to −v completes the representation formula (3.5) for the local slope.
Next, we prove that the local slope is sequentially weakly lower semicontinuous

and thus satisfies Assumption (Φ4). Let (γn)n∈N ⊂ C that converges weakly to γ ∈ C.
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Then, by compact embedding, γn converges strongly to γ inW := W 1+s,ρ(R/Z,Rn).
By Assumption (E1) and Theorem 3.1 we have

lim
n→∞

(‖Σ(γn)−Σ(γ )‖A+‖DΣ[γn] − DΣ[γ ]‖L(W,A)+‖DE[γn]−DE[γ ]‖W∗
)=0.

(3.6)

We begin with the case whereΣ(γ ) = 0. Let v ∈ C with ‖v‖C = 1. We have by (3.6)

(〈DE[γ ], v〉C∗×C − ‖DΣ[γ ]v‖A
)+ = lim

n→∞
(〈DE[γn], v〉C∗×C − ‖DΣ[γn]v‖A

)+
.

(3.7)

If Σ(γn) = 0, it follows from (3.5) that

(〈DE[γn], v〉C∗×C − ‖DΣ[γn]v‖A
)+ ≤ |∂φ|(γn). (3.8)

If Σ(γn) �= 0, we use the identity
∥∥JA,2(ζ )∥∥A∗ = ‖ζ‖A for all ζ ∈ A to compute

(〈DE[γn], v〉C∗×C − ‖DΣ[γn]v‖A
)+

= (〈DE[γn], v〉C∗×C −
∥∥JA,2(Σ(γn))

∥∥A∗
‖Σ(γn)‖A

‖DΣ[γn]v‖A
)+

≤ (〈DE[γn], v〉C∗×C + 〈JA,2(Σ(γn))

‖Σ(γn)‖A
, DΣ[γn]v〉A∗×A

)+ (3.5)≤ |∂φ|(γn). (3.9)

Combining (3.7), (3.8) and (3.9), we obtain the inequality

(〈DE[γ ], v〉C∗×C − ‖DΣ[γ ]v‖A)+ ≤ lim inf
n→∞ |∂φ|(γn).

Taking the supremum over all v ∈ C with ‖v‖C = 1 on the left-hand side, we infer the
lower semicontinuity. The case whereΣ(γ ) �= 0 follows directly from the continuity
properties (3.6), since Σ(γn) �= 0 for all sufficiently large n ∈ N. This proves that
Assumption (Φ4) is satisfied.
Finally, we show that the local slope is a strong upper gradient, i.e. we verify

Assumption (Φ5). Since E and Σ are continuously Fréchet-differentiable, they are
locallyLipschitz-continuous and so isφ. In particular,φ◦u is absolutely continuous for
every u ∈ AC ([a, b], C). It follows from [1, Theorem 1.2.5], [1, Definition 1.2.2], and
[1, Definition 1.2.1] that |∂φ| is a strong upper gradient for φ. Therefore, Assumption
(Φ5) is satisfied. The existence of a curve of maximal slope now follows as in step 5
of Theorem 3.2. �

4. Gradient flows for various knot energies

To verify Assumptions (E1)–(E3) of Theorem 3.2 for the three energy families
Eα,p, intM(p,q), and TP(p,q), the following two general results turn out to be useful.
The first one yields sequential lower semi-continuity for a multiple integral functional,
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whereas the second guarantees uniform control over the bi-Lipschitz constants. Recall
that we use the indices i, r, and a on a function space to denote its subsets consisting
of injective, regular, and arc length-parametrised curves, respectively.

Lemma 4.1. Let N ∈ N, ρ ∈ (1,∞), s ∈ ( 1
ρ
, 1), and

E : W 1+s,ρ
ir (R/Z,Rn) → [0,∞], γ �→

∫
· · ·
∫
(R/Z)N

e(γ ; x1, . . . , xN ) dxN . . . dx1.

Suppose the integrand e : W 1+s,ρ
ir (R/Z,Rn)× (R/Z)N → [0,∞] satisfies

(e1) e(γ ; x1, . . . , xN ) < ∞ and
(e2) C1

ir(R/Z,R
n) → [0,∞), γ �→ e(γ ; x1, . . . , xN ) is continuous

for almost all x1, . . . , xN ∈ R/Z. Then, the energy E satisfies Assumption (E2).

Proof. Up to taking subsequences we may assume that γk ⇀ γ in W 1+s,ρ(R/Z,Rn)

and γk → γ in C1(R/Z,Rn) as k → ∞ (by the embedding result, Proposition A.3),
and that limk→∞ E(γk) = lim infk→∞ E(γk) < ∞. The strong convergence in C1

implies by virtue of assumption (e2) the pointwise convergence e(γk; x1, . . . , xN ) →
e(γ ; x1, . . . , xN ) as k → ∞ for a.e. x1, . . . , xN ∈ R/Z. Now apply Fatou’s lemma
to conclude. �

Lemma 4.2. Let E : W 1+s,ρ(R/Z,Rn) → [0,∞] be invariant under reparametri-
sation and positively d-homogeneous for some d ∈ R, and suppose that the following
holds: For every M < ∞, there is a constant C = C(M, d, s, ρ) > 0 such that
for all γ ∈ C1

ia(R/Z,R
n) with E(γ ) ≤ M one has BiLip γ ≥ C. Then, E satisfies

Assumption (E3).

Proof. Let c1, c2 > 0 and γ ∈ C1
ir(R/Z,R

n) such that

c−1
1 ≤ |γ ′| ≤ c1 on R/Z, and E(γ ) ≤ c2. (4.1)

Then consider the arc length parametrisation Γ ∈ W 1,∞
ia (R/Z,Rn) of the rescaled

curve γ̃ := γ
L(γ ) , where L(γ ) > 0 denotes the length of γ . Then

E(Γ ) = E(γ̃ ) = L(γ )−dE(γ ).

Using (4.1), we may estimate the first factor by c̃1 := max
{

cd
1 , c−d

1

}
, allowing us to

set M := c̃1c2 in order to use our assumption to obtain a constant

b = b(c1, c2, d, s, ρ) > 0

independent of the specific curve γ such that BiLipΓ ≥ b. Now, [27, Lemma B.1] in
combination with (4.1) yields that BiLip γ̃ ≥ bc−1

1 , and consequently

BiLip γ ≥ bc−1
1 L(γ ) ≥ bc−2

1 =: C̃(c1, c2, d, s, ρ).

Hence, Assumption (E3) is verified with the constant C(E, c1, c2) := C̃ . �
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With these ingredients we can now apply Theorem 3.2 to prove our central long-
time existence result, Theorem 1.1, for the total energy φ defined in (1.7) for the knot
energies E ∈ {Eα,p, intM(p,q),TP(p,q)} in the respective ranges of parameters α, p
and q.

Proof of Theorem 1.1. In all three scenarios (i)–(iii) the Banach space B is chosen
as the energy space of the respective knot energy E , as pointed out in the second of
Remarks 1.3 of the introduction. These Sobolev-Slobodeckiı̌ spaces are all of the type
W 1+s,ρ(R/Z,Rn) for some s ∈ (0, 1) and ρ ∈ ( 1s ,∞) as considered in Theorem 3.2.
Moreover, the slightly smaller Sobolev-Slobodeckiı̌ space C is in each of the cases
(i)–(iii) a reflexive Banach space compactly embedded in B according to Lemma A.1
and Proposition A.3. In addition, Lemma A.1 for k := 1 guarantees that the respective
norm ‖ · ‖C on the smaller Banach space C ⊂ B is continuously Fréchet differentiable
away from 0, which according to Theorem 3.2 yields that the differential inclusion
(3.1) (if it holds at all) reduces to the gradient flow equation (3.2), which corresponds
to (1.9) for each choice (i), (ii), and (iii). The C1-regularity in time follows from the
continuity in time of the right-hand side of (1.9): The curve u is absolutely continuous
in timewith values inCir , and the differential Dφ is continuous onCir , onceAssumption
(E1) is verified. In addition, Lemma A.1 implies that the duality mapping JC,θ is a
homeomorphism from C onto the dual space C∗. To summarise, the right-hand side of
(1.9) is the composition of continuous mappings and therefore continuous in time.
So, it remains to establish (3.1), and for that it suffices to check that the respective

knot energy E satisfies Assumptions (E1)–(E3) in each case (i)–(iii).
(i) O’Hara’s knot energies Eα,p are non-negative by definition, and they are contin-

uously differentiable on W
1+ αp−1

2p ,2p

ir (R/Z,Rn) in the range of parameters α, p given
in Theorem 1.1. This is shown in Theorem 5.1 in Sect. 5, thus verifying Assumption
(E1) for s := αp−1

2p and ρ := 2p.
The integrand of Eα,p in (1.1) obviously satisfies the assumptions (e1) and (e2) of

Lemma 4.1 for N = 2, s := αp−1
2p and ρ := 2p (which implies s > 1

ρ
since αp > 2).

Therefore, Assumption (E2) is verified.
To verify Assumption (E3) for Eα,p assume first that γ ∈ C1

ia(R/Z,R
n) with

Eα,p(γ ) ≤ M , which by means of [5, Theorem 1.1]9 implies that γ is of class

W 1+ αp−1
2p ,2p. Then, we may approximate γ with respect to the W 1+ αp−1

2p ,2p-norm
by curves γk ∈ C∞

ia (R/Z,R
n) (see [28, Theorem 4.2]), and use the continuity of

Eα,p implied by the upcoming Theorem 5.1 to assume without loss of generality that
Eα,p(γk) ≤ Eα,p(γ ) + 1 ≤ M + 1 for all k ∈ N. Now, to these smooth arc length-
parametrised approximants we can apply [32, Theorem 2.3] to obtain a uniform bi-
Lipschitz constant, at least for the restricted parameter range α ∈ ( 2p , 2]. But even if

α > 2, we may use O’Hara’s work. For curves η ∈ C1(R/Z,Rn) parametrised by arc
length, one has |Δη| ≤ dη ≤ 1

2 . Consequently, both, the integrand of Eα,p and the

9Note again the unfortunate misprint in that reference.
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energy Eα,p itself are non-decreasing in α.10 This means that if Eα,p(η) ≤ M + 1 for
α ≥ 2, so is E2,p and we may use the bi-Lipschitz constant obtained for that energy.
O’Hara’s bi-Lipschitz estimate yields a constant K = K (α, p,M + 1) independent
of γ such that

K |x − y|R/Z ≤ |γk(x)− γk(y)| −−−→
k→∞ |γ (x)− γ (y)|.

This, together with the energy’s invariance under reparametrisation and its positive
(2−αp)-homogeneity, implies that Eα,p satisfies the suppositions of Lemma 4.2 and
thus also Assumption (E3).
(ii) Assumption (E1) is satisfied by means of [13, Theorem 3]. The integrand of

intM(p,q),

e(γ ; x1, x2, x3) :=
|(γ (x1)− γ (x2)) ∧ (γ (x3)− γ (x2))|q

|γ (x1)− γ (x2)|p|γ (x2)− γ (x3)|p|γ (x1)− γ (x3)|p
|γ ′(x1)||γ ′(x2)||γ ′(x3)|

is non-negative and continuous in γ with respect to the C1-topology for all pairwise
distinct x1, x2, x3 ∈ R/Z. Thus, Assumption (E2) is verified for intM(p,q) by means
of Lemma 4.1 for N := 3, ρ := q and s = 3p−2

q − 2.

The energy intM(p,q) is positively (3+2q −3p)-homogeneous and invariant under
reparametrisations, which we can combine with [13, Proposition 2.1] and Lemma 4.2
to conclude that Assumption (E3) holds as well.
(iii) The C1-regularity of the tangent-point energies TP(p,q) was first stated in [12,

Remark 3.1], for a proof see [44, Satz 7.4] or [39, Section 3.2], so, Assumption (E1)
holds for TP(p,q).

Applying Lemma 4.1 with N := 2, ρ := q, and s := p−1
q − 1 to the integrand of

TP(p,q), e(γ ; x1, x2) := |P⊥
γ ′(x1)(γ (x2)− γ (x1))|q |γ (x2)− γ (x1)|−p|γ ′(x2)||γ ′(x1)|

we infer Assumption (E2) for TP(p,q).
Finally, TP(p,q) is invariant under reparametrisations and positively (q − p + 2)-

homogeneous. Therefore, we can combine [12, Proposition 2.7] with Lemma 4.2 for
s := p−1

q − 1 and ρ := q to conclude that Assumption (E3) is satisfied for TP(p,q) as
well. �

Proof of Corollary 1.2. For simplicity we set C := Cε. Note that for our choice of C,
(1.9) is in factwell-defined, as byLemmaA.1 the dualitymappingJC,θ is a homeomor-
phism between C and C∗ (and in particular single-valued). Combining the continuity
of J−1

C,θ with the continuity of u and Dφ (see the proof of Theorem 1.1 for the latter)
we obtain that u′ is almost everywhere equal to the continuous function

v : [0,∞) → C, t �→ −J−1
C,θ (Dφ[u(t)]).

10To see this, observe that d
dα
(
t−α − s−α) = −α

(
t−α−1 − s−α−1

)
≥ 0 for t ≥ s > 0.
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It remains to establish that u′(t) exists for all t and is equal to v(t). Since u is absolutely
continuous on compact intervals and C is reflexive, we have the fundamental theorem
of calculus [2, Corollary 1.2.7, Definition 1.2.5, Proposition 1.2.3], so that

1

h
(u(t + h)− u(t)) = 1

h

∫ t+h

t
u′(r) dr = 1

h

∫ t+h

t
v(r) dr.

As v is continuous, we can immediately infer that the right-hand side converges to
v(t) as h → 0 and hence u is of class C1([0,∞), C).
We continue by proving that the energy is non-increasing along the flow. According

to Lemma A.1 the Banach space C is reflexive in each of the three cases (i)–(iii) of
Theorem 1.1. The θ -duality mapping JC,θ : C → 2C∗

is a duality map with weight

ϕ(s) := s
θ
β in the language of [18, Definition I.4.1]. Therefore, we may apply [18,

Corollary II.3.5] to identify the inverse J−1
C,θ with the duality mapping on C∗ with

weight ϕ−1(s) = s
β
θ , which is just JC∗,β . Thus, by the chain rule and (1.9),

d

dt
φ(u(t)) = 〈Dφ[u(t)], u′(t)〉C∗×C

(1.9)= − 〈Dφ[u(t)], J−1
C,θ (Dφ[u(t)])〉C∗×C

= −〈Dφ[u(t)], JC∗,β(Dφ[u(t)])〉C∗×C∗∗ = −‖Dφ[u(t)]‖βC∗ ≤ 0

for all t ≥ 0. Hence φ◦u is non-increasing, so that [1, Proposition 1.4.1] implies that u
is a θ -curve ofmaximal slopewith respect to theweak upper gradient11 ‖Dφ[u(t)]‖C∗ .
In fact, by Step 4 of Theorem 3.2 whose prerequisites were verified in the proof of
Theorem 1.1, it is even a strong upper gradient. Finally, C continuously embeds into
C1(R/Z,Rn) in all three cases of Theorem 1.1, and thus u is a C1-isotopy. All curves
u(t) are embedded because φ(u(t)) < ∞ for all t ≥ 0 and so, by [4,35], [u(t)] = [γ0]
for all t ≥ 0, i.e. the knot class is preserved along the flow. �

The following corollary shows that the gradient flows obtained in Theorem 1.1 for
each ε > 0 admit a converging subsequence as ε → 0.

Corollary 4.3. Let θ, κ ∈ (1,∞), φ and the spaces B and Cε for E > 0 be as in
Theorem 1.1, and γ0 ∈ Bir. Then for any sequence (γ0,ε)ε ⊂ Cε with

γ0,ε −−−−⇀
(ε→0)

γ0 in B, and φ(γ0,ε) −−−→
(ε→0)

φ(γ0) (4.2)

and for corresponding solutions uε ∈ C1([0,∞), (Cε, ‖·‖Cε )) of the gradient flow
equation (1.9) with uε(0) = γ0,ε, there exists a subsequence εk → 0 and a curve
u∗ ∈ ACθ ([0,∞), (B, ‖·‖B)) such that u∗(0) = γ0, uεk (t) −−−−⇀

(k→∞)
u∗(t) in B and

φ(u∗(t)) ≤ φ(γ0) for all t ≥ 0.

11As discussed in the beginning of Sect. 2.1, in our setting our notion of a curve of maximal slope is
equivalent to the one presented in [1].
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Remark 4.4. Since φ ∈ C0
(
W 1+s,ρ

ir (R/Z,Rn)
)
, we can choose arbitrary convolu-

tions γ0,ε ∈ C∞ (R/Z,Rn)with
∥∥γ0 − γ0,ε

∥∥
W 1+s,ρ (R/Z,Rn)

< ε to secureAssumption

(4.2). Furthermore, since the weak convergence in B = W 1+s,ρ (R/Z,Rn) implies
strong convergence inC1 (R/Z,Rn) and sinceC1

ir ⊂ C1 is an open subset, see Lemma
A.2, it follows from (4.2) and γ0 ∈ Bir ⊂ C1

ir that for all sufficiently small ε > 0 the
curves γ0,ε are injective and regular. Therefore, we may use Theorem 1.1 to secure
the existence of solutions of (1.9) starting at γ0,ε.

Proof of Corollary 4.3. The claim is a consequence of Proposition 2.2, whose pre-
requisites we now check. As was shown in step 1 of the proof of Theorem 3.2,
(B, ‖·‖B) with its weak topology satisfies Assumption (M). Moreover, for all curves
γ ∈ W 1+s+ε (R/Z,Rn) we have ‖γ ‖W 1+s,ρ (R/Z,Rn) ≤ ‖γ ‖W 1+s+ε,ρ (R/Z,Rn) . In addi-
tion, as was shown in the proof of Theorem 1.1, φ satisfies the Assumptions (E1)–(E3)
and thus, by steps 1 and 2 of the proof of Theorem 3.2, it also satisfies the Assumptions
(Φ1)–(Φ3) with (B, ‖·‖B) as the underlying metric space. Furthermore, since we are
only interested in small ε > 0, in view of (4.2) we may assume that

sup
ε>0

φ(γ0,ε) < ∞ and sup
ε>0

∥∥γ0,ε∥∥B < ∞.

Moreover, by Corollary 1.2, uε is a θ -curve of maximal slope for φ with respect to
the strong upper gradient |∂φ|Cε = ‖Dφ‖C∗

ε
starting at γ0,ε.

Identifying (S0, d0) with (B, ‖·‖B) let σ be the weak topology on B. Furthermore,
for ε > 0 let (Sε, dε) := (Cε, ‖·‖Cε ), gε := |∂φ|Cε , and u0,ε := γ0,ε. Then these
satisfy all the assumptions of Proposition 2.2 with c0 = 1 which concludes the proof.
Notice that sinceφ(u∗(t)) ≥ 0 andφ(γ0) < ∞, it follows that u∗ is actually absolutely
continuous and not only locally absolutely continuous. �

5. O’Hara’s knot energies are continuously differentiable

Let us rewrite Eα,p as

Eα,p(γ ) :=
∫∫

(R/Z)2
ep
α (γ ; x, y)|γ ′(x)||γ ′(y)| dx dy, eα(γ ; x, y)= 1

|Δγ |α − 1

dαγ
,

(5.1)

where Δγ := Δγ (x, y) := γ (x)− γ (y) and dγ := dγ (x, y) is the intrinsic distance
between γ (x) and γ (y), i.e. the length of the shortest arc of γ connecting γ (x) and
γ (y). Note that O’Hara defined the energy for curves parametrised by arc length only
and had |x − y|−α

R/Z
as the second term. Using d−α

γ instead is a sensible generalisation
as the energy is then invariant under reparametrisations, cf. [33, Remark 4.1.1(6)].
Our method of proof for continuous differentiability of Eα,p is inspired by [34,

Section 3]. There are several arguments which carry over completely, especially in the
proofs of Claims 4 and 5; we include these in our proof for the reader’s convenience.
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Several technical results needed in the proof of Theorem 5.1 below, namely Lemmata
5.2–5.6 are deferred to the end of this section.

Theorem 5.1. Let p ≥ 1, α > 0, 2 < αp < 2p + 1. Then, Eα,p is continuously

Fréchet-differentiable on W
1+ αp−1

2p ,2p

ir (R/Z,Rn).

In the following, we will use the derivative with respect to arc length Dγ η(u) :=
η′(u)

|γ ′(u)| and the interval Iγ (x, y) parametrising the arc of γ where dγ (x, y) is attained.
To be more precise, Iγ (x, y) is the interval containing x and one of y − 1, y, y + 1
such that dγ (x, y) = ∫Iγ (x,y)

|γ ′(t)| dt . This is well-defined whenever dγ (x, y) < L
2 ,

i.e. for almost all x, y ∈ R. When there is no risk of confusion, we omit the arguments
x and y. Lastly, we need the minimal velocity vγ := essinfx∈R/Z|γ ′(x)|.
Proof of Theorem 5.1. For p = 1, this was already proved in [11, Proposition 2.1], so

we may assume p > 1. For notational convenience we denote W 1+ αp−1
2p ,2p

(R/Z,Rn)

by B in the following proof.
Weuse the chain rule (see, for example, [45, Proposition 4.10] for the generalBanach

space version) to prove our statement. As outer function, we choose a geometric L p-
norm additionally depending on γ :

‖·‖p
L p· ((R/Z)2)

: Bir(R/Z,R
n)× L p((R/Z)2) → R,

(γ, g) �→
∫∫

(R/Z)2
|g(x, y)|p|γ ′(x)||γ ′(y)| dy dx .

Weconsider the integrand eα in (5.1) as amapping fromBir to L p((R/Z)2) for the inner
function. Then, Eα,p(γ ) = ‖·‖p

L p
γ

◦ eα(γ ) and it suffices to show that both functions

are C1. Lemma 5.2 together with the embedding result, part (ii) of Proposition A.3,
take care of the outer function, so we only need to look at eα . In order to do this, define

Fk(γ ; η1, . . . , ηk) := δk(γ �→ eα(γ )(x, y))(η1, . . . , ηk),

Gk(γ ; η1, . . . , ηk) :=
∫

Iγ
δk(γ �→ |γ ′(t)|)(η1, . . . , ηk) dt.

Here, δk denotes the k-th variation. As for all x ∈ R/Z there exists exactly one
y �= x ∈ R/Z such that Iγ (x, y) is not well-defined, we work on

Σ := {(x, y) ∈ (R/Z)2 | x �= y and dγ (x, y) < L(γ )
2

}
which is open (since γ ∈ B ↪→ C1) and is the same as (R/Z)2 up to a set of measure
0. For all γ ∈ Bir and (x, y) ∈ Σ , there is an open neighbourhood U (x, y) ⊆ Bir of
γ such that η �→ Iη(x, y) is constant on U (x, y). This means that the Gk exist for all
such (x, y) and a simple calculation shows that

G1(γ ; η1) =
∫

Iγ
〈Dγ γ, Dγ η1〉|γ ′| dτ,

G2(γ ; η1, η2) =
∫

Iγ
(〈Dγ η1, Dγ η2〉 − 〈Dγ γ, Dγ η1〉〈Dγ γ, Dγ η2〉)|γ ′| dt.
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To shorten notation,we left out the t-dependencies in these terms andwill also do this in
the following when there is no risk of confusion. Recall that dγ (x, y) = ∫Iγ

|γ ′(t)| dt .

For fixed η and |τ | < 1 sufficiently small, the estimate vγ+τη ≥ 1
2vγ holds and so

|Dγ+τηη̃(t)| =
∣∣∣∣ η̃′(t)
|γ ′(t)+ τη′(t)|

∣∣∣∣ ≤ |Dγ η̃|
∣∣∣∣ γ ′(t)
|γ ′(t)+ τη′|

∣∣∣∣ ≤ |Dγ η̃|
∥∥γ ′∥∥

L∞
2

vγ
.

This, together with Lemma A.4, enables us to find integrable majorants for the τ -
derivatives of |γ ′

τ | := |γ ′(t)+ τη′(t)|: They only consist of sums of inner products of
Dγτ γτ , Dγτ η and |γ ′

τ | (whose derivatives again fit the pattern). Consequently, δkdγ =
Gk(γ ) and we may calculate for (x, y) ∈ Σ , that

F1(γ ; η1) = α

(
1

dα+1
γ

G1(γ ; η1)− 1

|Δγ |α+2 〈Δγ,Δη1〉
)

and

F2(γ ; η1, η2) = α(α + 2)
1

|Δγ |α+4 〈Δγ,Δη1〉〈Δγ,Δη2〉 − α
〈Δη1,Δη2〉
|Δγ |α+2

− α(α + 1)
1

dα+2
γ

G1(γ ; η1)G1(γ ; η2)+ α
1

dα+1
γ

G2(γ ; η1, η2).

Up until now, these are only pointwise limits and we still need to show that F1 is
indeed the Fréchet-derivative of eα and also continuous with respect to γ . Let us first
show that F1 is a valid candidate for a derivative.

Claim 1. There is C = C(γ ) > 0 which continuously depends on γ such that
‖F1(γ ; η)‖L p ≤ C ‖η‖B for all η ∈ B.

In order to show this, decompose F1 as

α

dα+2
γ

(
dγG1(γ ; η1)− 〈Δγ,Δη1〉

)− α

(
1

|Δγ |α+2 − 1

dα+2
γ

)
〈Δγ,Δη1〉.

Lemma 5.5 gives us a fitting upper bound for the first term, Lemma 5.3 gives one for
the second term when we choose ϕ = 0, ψ = α, η̃1 := γ and η̃2 := η1 (note that
L1 = L2 = Δ

dγ
).

We will later need a similar bound for F2.

Claim 2. There is Ξ = Ξ(γ ) > 0 depending continuously on γ such that

‖F2(γ ; η1, η2)‖L p ≤ Ξ ‖η1‖B ‖η2‖B .
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The central ingredient is once again the right decomposition. Rewrite F2 as

α(α + 2)〈Δγ,Δη1〉〈Δγ,Δη2〉
(

1

|Δγ |α+4 − 1

dα+4
γ

)
(5.2)

− α〈Δη1,Δη2〉
(

1

|Δγ |α+2 − 1

dα+2
γ

)
(5.3)

+ α

dα+2
γ

(
G1(γ ; η1)G1(γ ; η2)+ dγG2(γ ; η1, η2)− 〈Δη1,Δη2〉

)
(5.4)

+ α(α + 2)
1

dα+4
γ

(〈Δγ,Δη1〉〈Δγ,Δη2〉 − dγG1(γ ; η1)dγG1(γ ; η2)
)
. (5.5)

We can use Lemma 5.3 with ψ = α + 2, ϕ = 0, η̃1 = η̃3 = γ , η̃2 = η1 and
η̃4 = η2 to deal with (5.2) and the same Lemma with ψ = α, ϕ = 0, η̃1 = η1 and
η̃2 = η2 to find an upper bound for (5.3). In order to take care of (5.4), let us define
H := ∫Iγ

〈Dγ η1, Dγ η2〉|γ ′| dt . Then,

(5.4) = α

dα+2
γ

(
dγ H − 〈Δη1,Δη2〉

)+ α

dα+2
γ

(
G1(γ ; η1)G1(γ ; η2)

−dγ (H − G2(γ ; η1, η2))
)
.

The first term is again bounded above via Lemma 5.5, so let us take a look at the
second one. Define ϕi := 〈Dγ γ, Dγ ηi 〉. Then, H − G2(γ ; η1, η2) = ∫Iγ

ϕ1ϕ2|γ ′| dt
and thus the second term is equal to

α

dα+2
γ

(∫
Iγ
ϕ1(s)|γ ′(s)| ds

∫
Iγ
ϕ2(t)|γ ′(t)| dt −

∫∫
I 2γ

ϕ1(t)ϕ2(t)|γ ′(s)||γ ′(t)| dt ds

)

= α

2dα+2
γ

(∫∫
I 2γ

(ϕ1(s)− ϕ1(t))ϕ2(t)|γ ′(s)||γ ′(t)| dt ds

+
∫∫

I 2γ

(ϕ1(t)− ϕ1(s))ϕ2(s)|γ ′(s)||γ ′(t)| dt ds

)

= − α

2dα+2
γ

∫∫
I 2γ

Δϕ1(s, t)Δϕ2(s, t)|γ ′(s)||γ ′(t)| dt ds

If we can estimate this by terms controlled via Lemma 5.6, we have an upper bound
for the L p-norm of (5.4). To achieve this, first apply the Hölder inequality (with
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p = q = 2) and our usual upper bound for the line elements to reduce the problem to
bounding

1

dα+2
γ

∫∫
I 2γ

|Δϕi (s, t)|2 dt ds

= 1

dα+2
γ

∫∫
I 2γ

|〈Dγ γ (t), Dγ ηi (t)〉 − 〈Dγ γ (s), Dγ ηi (s)〉|2 dt ds

= 1

dα+2
γ

∫∫
I 2γ

|〈Dγ γ (t), Dγ ηi (t)− Dγ ηi (s)〉 + 〈Dγ γ (t)− Dγ γ (s), Dγ ηi (s)〉|2 dt ds

≤ 2

dα+2
γ

∫∫
I 2γ

|〈Dγ γ (t), Dγ ηi (t)− Dγ ηi (s)〉|2 + |〈Dγ γ (t)− Dγ γ (s), Dγ ηi (s)〉|2 dt ds

≤ 2
∥∥Dγ γ

∥∥2
L∞

1

dα+2
γ

∫∫
I 2γ

|ΔDγ ηi (s, t)|2 dt ds+

2
∥∥Dγ ηi

∥∥2
L∞

1

dα+2
γ

∫∫
I 2γ

|ΔDγ γ (s, t)|2 dt ds.

Each summand in the last line fits the pattern of Lemma 5.6, so we are finished with
bounding (5.4).

In dealing with (5.5), again the important technique is creative rewriting. In this
case, we sum up two terms which differ only by exchanging η1 and η2:

α(α + 2)

2

(
〈Δγ

dγ
,
Δη1

dγ
〉 + G1(γ ; η1)

dγ

)
· 1

dα+2
γ

(〈Δγ,Δη2〉 − dγG1(γ ; η2)
)

+ α(α + 2)

2

(
〈Δγ

dγ
,
Δη2

dγ
〉 + G1(γ ; η2)

dγ

)
· 1

dα+2
γ

(〈Δγ,Δη1〉 − dγG1(γ ; η1)
)

= α(α + 2)
1

dα+4
γ

(〈Δγ,Δη1〉〈Δγ,Δη2〉 − d2
γG1(γ ; η1)G2(γ ; η2)

) = (5.5).

The first factor of each summand on the left-hand side is bounded above by 2
‖η′

i‖L∞
vγ

,
because of the upcoming estimate (5.20) and the fact that

|G1(γ ; ηi )| =
∣∣∣∣∣
∫

Iγ
〈γ ′(t),

η′
i (t)

|γ ′(t)| 〉 dt

∣∣∣∣∣ ≤
∥∥η′

i

∥∥
L∞

vγ
dγ .

The second factor of each summand on the left-hand side is L p-bounded because of
Lemma 5.5 and thus, also (5.5) is L p-bounded.
Now let us really prove that F1 is the Fréchet-derivative.

Claim 3. F1(γ, η) is the Fréchet-derivative of ep
α (γ ) in direction η ∈ B.

From now on, fix γ ∈ Bir and ε > 0 such that for all η with ‖η‖B < ε one has not
only that γ + η ∈ Bir(R/Z,R

n), but also the following:

Ξ(γ + η) < 2Ξ(γ ) (5.6)

∥∥η′∥∥
L∞ < min

{
BiLip(γ )

2
,
vγ

12
,L(γ )

}
. (5.7)
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Furthermore, let γt := γ + tη1 and decompose Σ = U (η1) ∪ V (η1) with

U (η1) := {(x, y) ∈ Σ |for all t ∈ [0, 1], Iγt (x, y) = Iγ (x, y)
}
and

V (η1) := {(x, y) ∈ Σ |there exists t ∈ [0, 1] such that Iγt (x, y) �= Iγ (x, y)
}
.

On U (η1), eα(γt ) is differentiable with respect to t because dγt is differentiable as
long as Iγt is fixed. By Taylor’s theorem, we have for (x, y) ∈ U (η1)

|eα(γ + η1)− eα(γ )− F1(γ ; η1)| =
∣∣∣∣
∫ 1

0
(1 − t)F2(γt ; η1, η1) dt

∣∣∣∣ ,

so taking the L p-norm on U (η1) yields, with Jensen’s inequality, Tonelli’s variant of
Fubini’s theorem, Theorem 2 and (5.6):

∫∫
U (η1)

|eα(γ + η)− eα(γ )− F1(γ ; η1)|p dy dy

≤
∫∫

U (η1)

(∫ 1

0
(1 − t)|F2(γt ; η1, η1)| dt

)p

dy dx

≤
∫ 1

0
(1 − t)p

∫∫
U (η1)

|F2(γt ; η1, η1)|p dy dx dt

≤
∫ 1

0
(1 − t)pΞ(γt )

p ‖η1‖2p
B dt

≤ 2pΞ(γ )p
∫ 1

0
(1 − t)p dt ‖η1‖2p

B ≤ 2pΞ(γ )p ‖η1‖2p
B .

(5.8)

Instead of trying to show that the same holds true on the “bad” set V (η1), we will show
in Theorem 4 that there, eα(γ )(x, y) is locally Lipschitz continuous with respect to γ
and has a Lipschitz constant that is uniform in (x, y). If that is the case,

|F1(γ ; η1)(x, y)| = lim
h→0

∣∣∣∣eα(γ + hη1)(x, y)− eα(γ )(x, y)

h

∣∣∣∣ ≤ Leα ‖η1‖B

and consequently
∫∫

V (η1)
|eα(γ + η1)− eα(γ )− F1(γ ; η1)|p dy dx

≤ C(p)
∫∫

V (η1)
|eα(γ + η1)− eα(γ )|p + |F1(γ ; η1)|p dy dx

≤ C(p)
∫∫

V (η1)
2L p

eα ‖η1‖p
B dy dx .

If we can furthermore show that |V (η1)| ≤ C(γ ) ‖η1‖B, see Theorem 5, we obtain
∫∫

V (η1)
|eα(γ + η1)− eα(γ )− F1(γ ; η1)|p dy dx ≤ 2C(p)C(γ )L p

eα ‖η1‖p+1
B
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and can use this together with (5.8) to show that

‖eα(γ + η1)− eα(γ )− F1(γ ; η1)‖L p ≤ C̃(γ ) ‖η1‖1+
1
p

B ,

which is enough for Fréchet-differentiability.

Claim 4. There is a constant Leα = Leα (α, γ, n, p) such that

‖eα(γ + η)− eα(γ )‖L∞ ≤ Leα ‖η‖B
for all ‖η‖B < ε. Here,

Leα (γ )

= CE (α, n, p)

(
α

( L(γ )
3 ‖γ ′‖L∞

)−α ( BiLip (γ )

2

)−α−1

+ α

(L(γ )
6

)−α−1 2

vγ
L(γ )

)
.
(5.9)

The key ingredient is the local Lipschitz continuity of the intrinsic distance dγ as
a mapping from Bir to L∞((R/Z)2). Since Σ has full measure, it suffices to look at
(x, y) ∈ Σ and differentiate between two cases: The first case is Iγ = Iγ̃ (setting
γ̃ = γ + η with ‖η‖B < ε). Then we may simply compute

|dγ̃ (x, y)− dγ (x, y)| =
∣∣∣∣∣
∫

Iγ
|γ̃ ′(t)| − |γ ′(t)| dt

∣∣∣∣∣ ≤ |Iγ | ∥∥η′∥∥
L∞ ≤ ∥∥η′∥∥

L∞ .

The other case is when the shortest connections do not match, i.e. Iγ �= Iγ̃ . In this
case, we need more precise control of the integrands, so let us first find bounds for
them. We know that ||γ̃ ′(t)| − |γ ′(t)|| ≤ ∥∥η′∥∥

L∞ and so

|γ̃ ′(t)| ≥ |γ ′(t)| − ∥∥η′∥∥
L∞ ≥ |γ ′(t)| − |γ ′(t)|

vγ

∥∥η′∥∥
L∞ .

Performing the same estimates for an upper bound, we arrive at the fact that

|γ ′(t)|
(
1 − 1

vγ

∥∥η′∥∥
L∞

)
≤ |γ̃ ′(t)| ≤ |γ ′(t)|

(
1 + 1

vγ

∥∥η′∥∥
L∞

)
.

Then, we use the fact that the connection between γ̃ (x) and γ̃ (y) via Iγ is longer than
the one via Iγ̃ to estimate

∫
Iγ̃

|γ ′(t)|
(
1 − 1

vγ

∥∥η′∥∥
L∞

)
dt ≤

∫
Iγ̃

|γ̃ ′(t)| dt

≤
∫

Iγ
|γ̃ ′(t)| dt ≤

∫
Iγ

|γ ′(t)|
(
1 + 1

vγ

∥∥η′∥∥
L∞

)
dt (5.10)

which implies
∫

Iγ̃

|γ ′(t)| ≤
∫

Iγ
|γ ′(t)| dt +

∫
Iγ ∪Iγ̃

1

vγ

∥∥η′∥∥
L∞ |γ ′(t)| dt =

∫
Iγ

|γ ′(t)| dt + 1

vγ

∥∥η′∥∥
L∞ L(γ ).

(5.11)
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Consequently, this time using the fact that Iγ̃ parametrises the longer connection
between γ (x) and γ (y), we have

∣∣∣∣∣
∫

Iγ̃

|γ ′(t)| −
∫

Iγ
|γ ′(t)| dt

∣∣∣∣∣ =
∫

Iγ̃

|γ ′(t)| dt −
∫

Iγ
|γ ′(t)| dt

(5.11)≤ 1

vγ

∥∥η′∥∥
L∞ L(γ ).

Furthermore, we can use the definition of γ̃ and the fact that 1 ≤ |γ ′(t)|
vγ

to obtain

∣∣∣∣∣
∫

Iγ̃

|γ̃ ′(t)| − |γ ′(t)| dt

∣∣∣∣∣ ≤
∫

Iγ̃

||γ̃ ′(t)| − |γ ′(t)|| dt

≤
∫

Iγ̃

∥∥η′∥∥
L∞

1

vγ
|γ ′(t)| dt ≤ 1

vγ

∥∥η′∥∥
L∞ L(γ ).

Combining the last two estimates yields

|dγ̃ (x, y)− dγ (x, y)|

=
∣∣∣∣∣
∫

Iγ̃

|γ̃ ′(t)| dt −
∫

Iγ
|γ ′(t)| dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Iγ̃

|γ̃ ′(t)| − |γ ′(t)| dt

∣∣∣∣∣+
∣∣∣∣∣
∫

Iγ̃

|γ ′(t)| dt −
∫

Iγ
|γ ′(t)| dt

∣∣∣∣∣
≤ 2

vγ

∥∥η′∥∥
L∞ L(γ ),

(5.12)

so we have proven the local Lipschitz property of dγ .

To apply this result to eα , we first provide a simple local Lipschitz estimate for
x �→ x−α . Assume x, x + h > 0 , then

|x−α − (x + h)−α| =
∣∣∣∣h
∫ 1

0
−α(x + th)−α−1 dt

∣∣∣∣
≤ |α|max

{
|x |−α−1, |x + h|−α−1

}
|h|.

(5.13)

Rewriting eα a bit, we obtain

|eα(γ̃ )(x, y)− eα(γ )(x, y)|
=
∣∣∣ 1

|Δγ̃ |α − 1

dα
γ̃

− 1

|Δγ |α + 1

dαγ

∣∣∣

≤ |x − y|−α
R/Z

∣∣∣
( |x − y|R/Z

|Δγ̃ |
)α −

( |x − y|R/Z
|Δγ |

)α∣∣∣+
∣∣∣ 1
dαγ

− 1

dα
γ̃

∣∣∣. (5.14)
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In order to use (5.13), we need to make sure that the γ̃ -terms do not veer too far from
their γ -counterparts. For the Δ-terms, consider that for all k ∈ Z, we have∣∣∣∣ Δγ

|x − y|R/Z − Δγ̃

|x − y|R/Z
∣∣∣∣

=
∣∣∣∣
∫ 1

0
γ̃ ′(x + t (y + k − x))− γ ′(x + t (y + k − x)) dt

∣∣∣∣ |y + k − x |
|y − x |R/Z

≤ ∥∥η′∥∥
L∞

|y + k − x |
|y − x |R/Z .

Taking the minimum over all k, the fraction on the right-hand side becomes 1 and so
we obtain

∥∥η′∥∥
L∞ as an upper bound. By (5.7), this means that

∣∣∣ Δγ̃

|x − y|R/Z
∣∣∣ ≥

∣∣∣ Δγ

|x − y|R/Z
∣∣∣− 1

2
BiLip(γ ) ≥ 1

2
BiLip(γ ),

so the first part of (5.14) is bounded above by

|x − y|−α
R/Zα

(
BiLip(γ )

2

)−α−1 ∥∥η′∥∥
L∞ . (5.15)

In order to apply (5.13) to the dγ -terms of (5.14), we need a lower bound for dγ̃ (x, y).

To achieve this, assume for the moment that dγ (x, y) ≥ L(γ )
3 , which we will prove in

(5.17). Then, by (5.12) and (5.7),

dγ̃ (x, y) = dγ (x, y)− (dγ (x, y)− dγ̃ (x, y)
) ≥ dγ (x, y)− 2

vγ

∥∥η′∥∥
L∞ L(γ )

≥ L(γ )
3

− 2

vγ

∥∥η′∥∥
L∞ L(γ ) ≥ L(γ )

6
.

Applying (5.13) and (5.12), we obtain that the second part of (5.14) is bounded above
by

α
(L(γ )

6

)−α−1 2

vγ

∥∥η′∥∥
L∞ L(γ ). (5.16)

The last thing we need for Lipschitz continuity of eα on V (η1) is that x and y cannot
get too close. The tuple (x, y) is in V (η1) if and only if Iγ (x, y) �= Iγt (x, y), so it
suffices to establish that this cannot happen when |x − y|R/Z is small.

Assume dγ (x, y) ≤ L(γ )
3 . We will show that this is impossible thus establishing

(5.17) below, since

|x − y|R/Z =
∣∣∣∣
∫ y

x

|γ ′(t)|
|γ ′(t)| dt

∣∣∣∣ ≥ 1

‖γ ′‖L∞

∣∣∣∣
∫ y

x
|γ ′(t)| dt

∣∣∣∣ ≥ 1

‖γ ′‖L∞
dγ (x, y).

Under our assumption and by means of (5.10) (recall that γ̃ = γ + η) and (5.7),

∫
Iγ

|γ ′(t)+ η′(t)| dt ≤
∫

Iγ
|γ ′(t)| dt

(
1 +

∥∥η′∥∥
L∞

vγ

)
≤ L(γ )

3

(
1 +

∥∥η′∥∥
L∞

vγ

)
<

L(γ )
2

.
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Thus, Iγ = Iγ̃ for all γ̃ ∈ Bε(γ ), so (x, y) /∈ V (η1) a contradiction. Thus,

dγ (x, y) >
L(γ )
3

and |x − y|R/Z > L(γ )
3 ‖γ ′‖L∞

for all (x, y) ∈ V (η1). (5.17)

Combining the upper bounds (5.15) and (5.16) for the right-hand side of (5.14) with
(5.17), we obtain

|x − y|−α
R/Z

α

(
BiLip(γ )

2

)−α−1

+ α

(L(γ )
6

)−α−1 2

vγ
L(γ )

(5.17)
< α

( L(γ )
3 ‖γ ′‖L∞

)−α (BiLip(γ )
2

)−α−1

+ α

(L(γ )
6

)−α−1 2

vγ
L(γ ) =: L̃eα (γ )

as Lipschitz constant for γ �→ eα(γ ) as a mapping from W 1,∞ to L∞. Finally, using
the embedding from Proposition A.3 (ii) to estimate

∥∥η′∥∥
L∞ by CE (α, n, p) ‖η‖B

(with k1 = k2 = 1, s1 = αp−1
2p − 1, ρ1 = 2p and some μ ∈ (0, s1 − 1

ρ1
)) yields

Leα (α, γ, n, p) = CE (α, n, p)L̃eα (γ ).
To wrap up the proof of Theorem 3, we need that V (η1) is small.

Claim 5. |V (η1)| ≤ 6
BiLip(γ )

∥∥η′
1

∥∥
L∞ .

For (x, y) ∈ V (η1), there is t ∈ [0, 1] such that the intrinsic distance is parametrised
over Iγ̃ instead of Iγ , so let us take a closer look at the corresponding integral. The
fundamental theorem of calculus yields

∫
Iγ̃

|γ ′
t (s)| ds =

∫
Iγ̃

|γ ′(s)| + t
∫ 1

0
〈Dγτ t γτ t (s), η

′
1(s)〉 dτ ds

and so, for the fitting t ,

dγt (x, y) =
∫

Iγ̃

|γ ′
t (s)| ds ≥

∫
Iγ̃

|γ ′(s)| − t

∣∣∣∣
∫ 1

0
〈Dγτ t γτ t (s), η

′
1(s)〉 dτ

∣∣∣∣ ds

≥
∫

Iγ̃

|γ ′(s)| ds − ∥∥η′
1

∥∥
L∞ ≥ L(γ )

2
− ∥∥η′

1

∥∥
L∞ .

Note that for each (x, y) ∈ V (η1), there is exactly one x̃ = x̃(x, t) such that
dγt (x, x̃) = 1

2L(γt ) and because it does not matter which arc of γt we travel through
to get from γt (x) to γt (x̃), dγt (x, x̃) = dγt (x, y) + dγt (x̃, y). Thus, dγt (x, y) =
1
2L(γt )− dγt (x̃, y). Consequently,

∥∥η′
1

∥∥
L∞ ≥ 1

2
L(γ )− dγt (x, y) = 1

2
(L(γ )− L(γt ))+ dγt (x̃, y)

and so

dγt (x̃, y) ≤ ∥∥η′
1

∥∥
L∞ + 1

2
(L(γt )− L(γ )) = ∥∥η′

1

∥∥
L∞

+1

2

∫ 1

0
|γ ′

t (s)| − |γ ′(s)| ds ≤ 3

2

∥∥η′
1

∥∥
L∞ .
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By (5.7), dγt (x̃, y) ≥ vγt |x̃ − y|R/Z ≥ 1
2 BiLip(γ )|x̃ − y|R/Z, and therefore

|x̃ − y|R/Z ≤ 3

BiLip(γ )

∥∥η′
1

∥∥
L∞ (5.18)

for (x, y) ∈ V (η1), x̃ = x̃(x). Let us set V1(x) := {y ∈ [0, 1]|(x, y) ∈ V (η1)} and
BR/Z

r (x) := {y ∈ [0, 1]||x − y|R/Z < r
}
. Note that

|BR/Z
r (x)| =

∣∣∣∣BR/Z
r

(
1

2

)∣∣∣∣ ≤
∣∣∣∣Br

(
1

2

)∣∣∣∣ = 2r.

We may use this in combination with (5.18) to estimate

|V (η1)| =
∫ 1

0
|V1(x)| dx ≤

∫ 1

0
|BR/Z

3
BiLip(γ )‖η′

1‖L∞
(x̃(x))| dx

=
∫ 1

0

6

BiLip(γ )

∥∥η′
1

∥∥
L∞ dx = 6

BiLip(γ )

∥∥η′
1

∥∥
L∞ .

Next, we prove that F1 is continuous in γ .

Claim 6. The mapping

Bir → L
(
B, L p((R/Z)2)

)
, γ �→ F1(γ, ·)

is continuous.

It suffices to show that ‖F1(γ + η1; η2)− F1(γ ; η2)‖L p((R/Z)2) ≤ ‖η2‖B o(1) as
η1 → 0, the Landau symbol being uniform in η2. Let us once again split the domain
of integration into U (η1) and V (η1). On the former, we can use that t �→ F1(γt ; η2)
is differentiable, as well as Jensen’s inequality, Tonelli’s variant of Fubini’s theorem,
Theorem 2 and (5.6):
∫∫

U (η1)
|F1(γ + η1; η2)− F1(γ, η2)|p dy dx =

∫∫
U (η1)

|
∫ 1

0
F2(γt ; η2; η1) dt |p dy dx

≤
∫∫

U (η1)

∫ 1

0
|F2(γt ; η2; η1)|p dt dy dx =

∫ 1

0

∫∫
U (η1)

|F2(γt ; η2; η1)|p dy dx dt

≤ Ξ p(γt ) ‖η1‖p
B ‖η2‖p

B dt ≤ (2Ξ(γ ))p ‖η1‖p
B ‖η2‖p

B .

On V (η1)wemay use Theorem 4 and Theorem 5. Note that because of (5.7) and (5.9),
Leα (γ + η) ≤ C Leα (γ ) for all ‖η‖B < ε and we can thus estimate∫∫

V (η1)
|F1(γ + η1; η2)− F1(γ, η2)|p dy dx

≤ C(p)
∫∫

V (η1)
|F1(γ + η1; η2)|p + |F1(γ, η2)|p dy dx

≤ C(p)(C p + 1)L p
eα

6

BiLip(γ )

∥∥η′
1

∥∥
L∞ ‖η2‖p

B .

�
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Lemma 5.2. Let p > 1 and O := {γ ∈ W 1,∞(R/Z,Rn)|vγ > 0
}
. Then, the map

‖·‖p
L p· ((R/Z)2)

: O × L p((R/Z)2) → R,

(γ, g) �→
∫∫

(R/Z)2
|g(x, y)|p|γ ′(x)||γ ′(y)| dy dx

is continuously differentiable.

The authors are indebted to the anonymous referee for pointing out an error in the
original version of this lemma and for giving the idea for the following, simpler proof.

Note that each regular C1-curve, and consequently each W
1+ αp−1

2p ,2p

ir -curve, is in O
enabling us to use this lemma in the proof of Theorem 5.1.

Proof. First note that O is an open subset of W 1,∞(R/Z,Rn) and that we can write

‖g‖p
L p
γ ((R/Z)

2,R)
:= 〈|g|p, |γ ′| ⊗ |γ ′|〉L1,L∞

:=
∫∫

(R/Z)2
|g(x, y)|p(|γ ′| ⊗ |γ ′|)(x, y) dy dx

for (|γ ′| ⊗ |γ ′|)(x, y) := |γ ′(x)||γ ′(y)|. As both

〈·, ·〉L1,L∞ : L1((R/Z)2,R)× L∞((R/Z)2,R) → R

and

· ⊗ · : L∞(R/Z,R)× L∞(R/Z,R) → L∞((R/Z)2,R)

are bilinear and bounded, they are smooth. By the chain- and product rule for Banach
spaces (see, for example, [45, Propositions 4.10 and 4.11]), it suffices to establish
continuous differentiability of the mappings

L p((R/Z)2,R) → L1((R/Z)2,R), g �→ |g|p and O → L∞(R/Z,R), γ �→ |γ ′|.

Checking continuous differentiability of the former is straight-forward, so let us deal
with the latter.
Consider γ ∈ O and η ∈ W 1,∞(R/Z,Rn) such that

∥∥η′∥∥
L∞ ≤ vγ

2 . Then, we may
estimate the pointwise difference between |γ ′ + η′| and its first-order approximation,
omitting the x-dependence:

∣∣∣|γ ′ + η′| − |γ ′| − 〈Dγ γ, η
′〉
∣∣∣ =

∣∣∣∣
∫ 1

0
〈Dγ+tη(γ + tη)− Dγ γ, η

′〉 dt

∣∣∣∣
≤ ∥∥η′∥∥

L∞

∫ 1

0
|Dγ+tη(γ + tη)− Dγ γ | dt.
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It suffices to show that the integrand is of order o(1) as ‖η‖W 1,∞ goes to 0 to have
Fréchet differentiability. To see that this is the case, we rewrite it as
∣∣∣∣ |γ

′|(γ ′ + tη′)− |γ ′ + tη′|γ ′

|γ ′ + tη′||γ ′|
∣∣∣∣

≤ 2v−2
γ ||γ ′|(γ ′ + tη′)− |γ ′|γ ′ + |γ ′|γ ′ − |γ ′ + tη′|γ ′| ≤ 4v−2

γ t |γ ′||η′|
(5.19)

which behaves exactly as required.
To establish continuous differentiability, we may recycle (5.19) with t = 1 and

some W 1,∞-small perturbation η satisfying the same bound as above. This is because
we then obtain
∥∥〈Dγ γ, (·)′〉 − 〈Dγ+η(γ + η), (·)′〉∥∥L(W 1,∞,L∞) ≤ ∥∥Dγ γ − Dγ+η(γ + η)

∥∥
L∞

≤ 4v−2
γ

∥∥γ ′∥∥
L∞
∥∥η′∥∥

L∞

which tends to 0 as ‖η‖W 1,∞ → 0. �

Lemma 5.3. Let α > 0, p ≥ 1, 2 < αp < 2p + 1, k ∈ N, ϕ ∈ R, ψ > 0, and

γ ∈ W
1+ αp−1

2p ,2p

ir (R/Z,Rn). Furthermore, let b : (Rn)k → R be a k-multilinear map
and

Bϕ,ψγ : (W 1+ αp−1
2p ,2p

(R/Z,Rn))k → R, (η1, . . . , ηk) �→
∫∫

(R/Z)2

∣∣∣∣∣b(L1η1, . . . , Lkηk)
dγ (x, y)ϕ+ψ+2−α

|Δγ |ϕ ·
(

1

|Δγ |2+ψ − 1

d2+ψ
γ

)∣∣∣∣∣
p

dy dx

where Li u ∈
{
Δ
dγ
, η �→ Dγ η(x), η �→ Dγ η(y)

}
. Then, Bϕ,ψγ is well-defined and

|Bϕ,ψγ (η1, . . . , ηk)| ≤ Ξ(γ ) ‖b‖p
Lk (Rn ,R)

k∏
i=1

∥∥η′
i

∥∥p
L∞ .

Here, Ξ(γ ) > 0 continuously depends on γ with respect to the W 1+ αp−1
2p ,2p-norm.

Remark 5.4. This as well as Lemma 5.5 and Lemma 5.6 are also valid for the case
αp = 2 if one considers the intersection W 1+ αp−1

2p ,2p ∩ W 1,∞. We do not make the
effort to include this case as we do not want to deal with the more complicated space
in Theorem 5.1.

Proof. Similarly to the proof of Theorem 5.1, we write B for W 1+ αp−1
2p ,2p

(R/Z,Rn)

and A instead of W
αp−1
2p ,2p

(R/Z,Rn) in the following. Let us begin by bounding the
b-term:

|b(L1η1, . . . , Lkηk)| ≤ ‖b‖Lk (Rn ,R)

k∏
i=1

|Liηi |.
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All |Liηi | may be bounded above by
∥∥Dγ ηi

∥∥
L∞ ≤ 1

vγ

∥∥η′
i

∥∥
L∞ , which is clear for the

second and third option for Li . For the first one, we calculate

d−1
γ |Δη| = d−1

γ

∣∣∣∣∣
∫

Iγ
η′(t) |γ

′(t)|
|γ ′(t)| dt

∣∣∣∣∣ ≤ d−1
γ

∥∥Dγ η
∥∥

L∞

∣∣∣∣∣
∫

Iγ
|γ ′(t)| dt

∣∣∣∣∣ =
∥∥Dγ η

∥∥
L∞ .

(5.20)

We continue by defining a function ζ which helps reduce the integrand to its most
relevant content: ζ : (0,∞) → R, r �→ r2+ϕ r2+ψ−1

r2−1
. With this, we may rewrite the

second part of the integrand:

dγ (x, y)ϕ+ψ+2−α

|Δγ |ϕ ·
(

1

|Δγ |2+ψ − 1

d2+ψ
γ

)
= 1

2
ζ

(
dγ

|Δγ |
)

1

d2+α
γ

(2d2
γ − 2|Δγ |2).

The last difference can be written in terms of the unit tangents τγ = γ ′
|γ ′| :

2d2
γ − 2|Δγ |2

=
∫∫

I 2γ

(|τγ (s)|2 + |τγ (t)|2)|γ ′(s)||γ ′(t)| dt ds

− 2
∫∫

I 2γ

〈τγ (s), τγ (t)〉|γ ′(s)||γ ′(t)| dt ds

=
∫∫

I 2γ

|τγ (s)− τγ (t)|2|γ ′(s)||γ ′(t)| dt ds.

Let us show that ζ is bounded. By L’Hôpital’s rule, it is continuous in r = 1 and for
all other r , too.
Now, let us bound the argument of ζ : Setting I as the interval in R/Z connecting x

and y with length at most 1
2 (so |I | = |x − y|R/Z), we obtain that

dγ (x, y) =
∫

Iγ
|γ ′(s)| ds ≤

∫
I
|γ ′(s)| ds ≤ |I | ∥∥γ ′∥∥

L∞ = |x − y|R/Z
∥∥γ ′∥∥

L∞

and thus
BiLip(γ )

‖γ ′‖L∞
≤ BiLip(γ )|x − y|R/Z

dγ
≤ |Δγ |

dγ

(5.20)≤
∥∥γ ′∥∥

L∞
vγ

.

Consequently, we may bound |ζ( |Δγ |
dγ
)| in terms of a constant Cζ that continuously

depends on BiLip(γ ), vγ and
∥∥γ ′∥∥

L∞ . It only remains to find an upper estimate for
the L p-Norm of

1

d2+α
γ

∫∫
I 2γ

|τγ (s)− τγ (t)|2|γ ′(s)||γ ′(t)| dt ds.

Seeing as we may bound |γ ′(·)| by ∥∥γ ′∥∥
L∞ , let us concentrate on the remaining

integral, ∫∫
(R/Z)2

( 1

d2+α
γ

∫∫
I 2γ

|τγ (s)− τγ (t)|2 dt ds
)p

dy dx
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which we can bound above by

C(α, n, p)v−(α+8)p−2
γ

∥∥γ ′∥∥2
L∞
∥∥γ ′∥∥4p

A
according to Lemma 5.6. Combining our estimates, we arrive at

Ξ(γ ) = v−(α+8)p−k−2
γ Cζ (BiLip(γ ), vγ ,

∥∥γ ′∥∥
L∞)

∥∥γ ′∥∥2p+2
L∞ C(α, n, p)

∥∥γ ′∥∥4p
A .

All the γ -dependent parameters of Ξ are continuously dependent on γ with respect
to the B-norm. �

Lemma 5.5. Let α > 0, p ≥ 1, 2 < αp < 2p + 1 and γ ∈ W
1+ αp−1

2p ,2p

ir . Then, the

map Bγ : (W 1+ αp−1
2p ,2p

(R/Z,Rn))2 → R sending (η1, η2) to the double integral

∫∫
(R/Z)2

∣∣∣∣
(

2

dγ (x, y)

∫
Iγ (x,y)

〈Dγ η1(s), Dγ η2(s)〉|γ ′(s)| ds

− 2
〈Δη1

dγ
,
Δη2

dγ

〉
(x, y)

)
· 1

dγ (x, y)α

∣∣∣∣
p

dy dx

is well-defined and satisfies

|Bγ (η1, η2)|
≤ C(α, n, p)

∥∥γ ′∥∥2p+2
L∞ v−(8+α)p−2

γ

∥∥γ ′∥∥2p

W
αp−1
2p ,2p

∥∥η′
1

∥∥p

W
αp−1
2p ,2p

∥∥η′
2

∥∥p

W
αp−1
2p ,2p

.

Proof. As above, we use the shorthand A for W
αp−1
2p ,2p

(R/Z,Rn). Note that

2

dγ

∫
Iγ

〈Dγ η1(s), Dγ η2(s)〉|γ ′(s)| ds

= 1

d2
γ

∫∫
I 2γ

(〈Dγ η1(s), Dγ η2(s)〉 + 〈Dγ η1(t), Dγ η2(t)〉
)|γ ′(s)||γ ′(t)| dt ds

and

2

〈
Δη1

dγ
,
Δη2

dγ

〉

= 1

d2
γ

∫∫
I 2γ

(〈Dγ η1(s), Dγ η2(t)〉 + 〈Dγ η1(t), Dγ η2(s)〉
)|γ ′(s)||γ ′(t)| dt ds.

With these identities, we may rewrite the integrand and then bound it via the Cauchy-
Schwarz-inequality as follows:

1

d(2+α)p
γ

(∫∫
I 2γ

〈ΔDγ η1,ΔDγ η2〉(s, t)|γ ′(s)||γ ′(t)| dt ds

)p

≤
∥∥γ ′∥∥2p

L∞

d(2+α)p
γ

2∏
i=1

(∫∫
I 2γ

|ΔDγ ηi (s, t)|2 dt ds

) p
2
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Integrating over (R/Z)2 and using Cauchy-Schwarz again, we arrive at a new bound
to which we can apply Lemma 5.6:

∥∥γ ′∥∥2p
L∞

2∏
i=1

(∫∫
(R/Z)2

1

d(2+α)p
γ

(∫∫
I 2γ

|ΔDγ ηi (s, t)|2 dt ds

)p

dy dx

) 1
2

≤ C(α, n, p)
∥∥γ ′∥∥2p+2

L∞ v−(8+α)p−2
γ

∥∥γ ′∥∥2p
A
∥∥η′

1

∥∥p
A
∥∥η′

2

∥∥p
A .

�

Lemma 5.6. Let α > 0, β ∈ (2, α + 2], p ≥ 1, 2 < αp < 2p + 1, γ ∈
W

1+ αp−1
2p ,2p

ir (R/Z,Rn) and η ∈ W 1+ αp−1
2p ,2p

(R/Z,Rn). Then,

∫∫
(R/Z)2

(
1

dβγ

∫∫
I 2γ

|ΔDγ η(s, t)|2 dt ds

)p

dy dx

≤ Cv−(β+6)p−2
γ

∥∥γ ′∥∥2
L∞
∥∥γ ′∥∥2p

W
αp−1
2p ,2p

∥∥η′∥∥2p

W
αp−1
2p ,2p

for some constant C = C(α, β, n, p) > 0.

Proof. We once more employ the shorthands B for W 1+ αp−1
2p ,2p

(R/Z,Rn) and A in-

stead ofW
αp−1
2p ,2p

(R/Z,Rn).Weprove this statement via substitutionswith the inverse
arc length function aγ := L(γ, ·)−1, where L(γ, ·) : R → R, s �→ ∫ s

0 |γ ′(t)| dt . As

L(γ, ·) is in W 1+ αp−1
2p ,2p

(R/Z,R), see [27, LemmaB.2], it is also inC1
loc(R,R). Since

it is strictly increasing and its derivative is equal to |γ ′(x)| ≥ vγ > 0, aγ ∈ C1
loc(R,R)

with a′
γ (x) = 1

L(γ,·)′(aγ (x)) = 1
|γ ′(aγ (x))| and so

|a′
γ (x)| ≤ 1

vγ
. (5.21)

Using integration by substitution, our bound on a′
γ (5.21), and periodicity of the

outermost integrand, we obtain that

∫∫
(R/Z)2

(
dγ (x, y)−β

∫∫
Iγ (x,y)2

|Dγ η(s)− Dγ η(t)|2 dt ds

)p

dy dx

≤ v−2
γ

∫∫
(R/LZ)2

(
dγ (aγ (x̃), aγ (ỹ))

−β
∫∫

Iγ (aγ (x̃),aγ (ỹ))2
|Dγ η(s)− Dγ η(t)|2 dt ds

)p

d ỹ dx̃

= v−2
γ

∫ L

0

∫ x̃+ L
2

x̃− L
2

(
dγ (aγ (x̃), aγ (ỹ))

−β
∫∫

Iγ (aγ (x̃),aγ (ỹ))2
|Dγ η(s)− Dγ η(t)|2 dt ds

)p

d ỹ dx̃ .

(5.22)
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Although it may not seem this way at first, this representation is in fact simpler, as our
parametrisation fits both dγ and Iγ : Let x̃, ỹ ∈ R. Then, there is k ∈ Z such that

dγ (aγ (x̃), aγ (ỹ)) =
∣∣∣
∫ aγ (ỹ)+k

aγ (x̃)
|γ ′(s)| ds

∣∣∣ = |L(γ, aγ (ỹ)+ k)− L(γ, aγ (x̃))|
= |L(γ, aγ (ỹ))+ kL − L(γ, aγ (x̃))| = |ỹ + kL − x̃ |.

As dγ (aγ (x̃), aγ (ỹ)) ≤ L
2 , we obtain that

dγ (aγ (x̃), aγ (ỹ)) = |ỹ + kL − x̃ | = |ỹ − x̃ |R/LZ.

In particular, if |x̃ − ỹ| < L
2 , we have that Iγ (aγ (x̃), aγ (ỹ)) = [aγ (x̃), aγ (ỹ)],

employing the short-hand notation [a, b] := [b, a] if b < a.

Thus, we may rewrite our integral from (5.22) as

v−2
γ

∫ L

0

∫ x̃+ L
2

x̃− L
2

(
|x̃ − ỹ|−β

∫∫
[aγ (x̃),aγ (ỹ)]2

|Dγ η(s)− Dγ η(t)|2 dt ds

)p

d ỹ dx̃ .

First substituting ỹ by y = ỹ − x̃ and then (s, t) by (aγ (x̃ + θ1y), aγ (x̃ + θ2y)), we
obtain by virtue of (5.21)

v−2
γ

∫ L

0

∫ L
2

− L
2

(
|y|−β

∫∫
[aγ (x̃),aγ (x̃+y)]2

|Dγ η(s)− Dγ η(t)|2 dt ds

)p

dy dx̃

≤ v−2−2p
γ

∫ L

0

∫ L
2

− L
2(

|y|−β
∫∫

[0,1]2
|Dγ η(aγ (x̃ + θ1y))− Dγ η(aγ (x̃ + θ2y))|2|y|2 dθ2 dθ1

)p

d ỹ dx̃ .

For the moment dropping the factor v−2−2p
γ , employing Jensen’s inequality, Tonelli’s

variant of Fubini’s theorem, the substitution u = x̃ + θ2y as well as the L-periodicity
of the integrand with respect to u, we obtain the new estimate

∫ L

0

∫ L
2

− L
2

|y|(2−β)p
∫∫

[0,1]2
|Dγ η(aγ (x̃ + θ1y))− Dγ η(aγ (x̃ + θ2y))|2p dθ2 dθ1 d ỹ dx̃

=
∫∫

[0,1]2

∫ L
2

− L
2

∫ L

0
|y|(2−β)p|Dγ η(aγ (u + (θ1 − θ2)y))− Dγ η(aγ (u))|2p du dy dθ2 dθ1.
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Two further substitutions, θ2 by ϑ = θ1 − θ2 and y by w = ϑy yield a new upper
bound. Note that we dropped the θ1-integral as its domain has measure 1 and nothing
depends on θ1 after enlarging the domain of integration for ϑ .

∫ 1

0

∫ θ1

θ1−1

∫ L
2

− L
2

∫ L

0
|y|(2−β)p|Dγ η(aγ (u + ϑy))− Dγ η(aγ (u))|2p du dy dϑ dθ1

≤
∫ 1

−1

∫ L
2

− L
2

∫ L

0
|y|(2−β)p|Dγ η(aγ (u + ϑy))− Dγ η(aγ (u))|2p du dy dϑ

=
∫ 1

−1

∫ |ϑ | L
2

−|ϑ | L
2

∫ L

0

∣∣∣w
ϑ

∣∣∣(2−β)p|Dγ η(aγ (u + w))− Dγ η(aγ (u))|2pϑ−1 du dw dϑ

≤
∫ 1

−1
|ϑ |(β−2)p−1 dϑ

∫ L
2

− L
2

∫ L

0
|w|(2−β)p|Dγ η(aγ (u + w))− Dγ η(aγ (u))|2p du dw

= C(β, p)
[
(Dγ η) ◦ aγ

]2p
(β−2)p−1

2p ,2p
≤ C̃(α, β, p)

[
(Dγ η) ◦ aγ

]2p
αp−1
2p ,2p

.

For the definition of the Gagliardo seminorm [·]s,ρ , see Appendix A. In the last line,
we used that 2 < β ≤ α + 2. Using Lemma A.5 and Lemma A.4, we may estimate

[
(Dγ η) ◦ aγ

]
αp−1
2p ,2p,R/LZ ≤

∥∥∥a′
γ

∥∥∥
1
2p + (β−2)p−1

2p

C0
v

− 1
p

aγ

[
Dγ η

]
αp−1
2p ,2p,R/Z

≤ C(β, n, p)
∥∥∥a′
γ

∥∥∥
(β−2)p

2p

C0
v

− 1
p

aγ v
−2
γ

∥∥γ ′∥∥A
∥∥η′∥∥A

Seeing as vaγ = ∥∥γ ′∥∥−1
L∞ and

∥∥∥a′
γ

∥∥∥
C0

= v−1
γ and taking into account the factor v−2−2p

γ

we dropped along the way, we arrive at

C(α, β, n, p)v−(β+6)p−2
γ

∥∥γ ′∥∥2
L∞
∥∥γ ′∥∥2p

A
∥∥η′∥∥2p

A

as our final upper bound. �
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A. Properties of low-order Sobolev-Slobodeckiı̌ Functions

In the following, we collect some basic statements concerning Sobolev-Slobodeckiı̌
spaces. Recall that for k ∈ N, s ∈ (0, 1), ρ ≥ 1 and l > 0, the Sobolev-Slobodeckiı̌
space W k+s,ρ(R/ lZ,Rn) is the space of all l-periodic W k,ρ

loc (R,R
n)-functions f such

that the Gagliardo seminorm of the highest order derivative f (k),

[
f (k)
]

s,ρ,R/ lZ
:=
(∫ l

0

∫ l
2

− l
2

| f (k)(u + w)− f k(u)|ρ
|w|1+sρ

dw du

) 1
ρ

is finite. If there is no concern of confusion, we omit the domain and simply write
[·]s,ρ .

Lemma A.1 (Uniform convexity) Let n ∈ N, k ∈ N0, s ∈ (0, 1), and ρ, θ ∈ (1,∞).
The space W := W k+s,ρ (R/Z,Rn) is uniformly convex and reflexive. Furthermore
its norm and the norm of its dual space W∗ are continuously Fréchet-differentiable
except at the origin. Consequentially, the θ -duality mapping JW,θ maps W homeo-
morphically onto W∗.

Proof. In order to show all the claims, we exploit the fact that W is isometrically
isomorphic to a subspace of

Z :=
⎛
⎝ k⊕

j=0

Lρ(R/Z,Rn)

⎞
⎠⊕ Lρ

(
(R/Z × R/Z, ν),Rn)

equipped with the ρ-norm |(a0, . . . , ak, ak+1)|ρρ = ∑k+1
j=0 |a j |ρ for the direct sums

and where ν is the measure given by

ν(A) =
∫∫

A

dxdy

|x − y|R/Z , for Borel subsets A ⊂ R/Z × R/Z.

In the following, we abbreviate Lρ := Lρ (R/Z,Rn), and

Lρ(ν) := Lρ
(
(R/Z × R/Z, ν),Rn).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Let the fractional difference quotient Δs
Höl : W s,ρ → Lρ(ν) be given by

Δs
Hölg(x, y) := g(x)− g(y)

|x − y|s
R/Z

.

The map Ψ : W → Z defined by Ψ ( f ) := (
Ψ0( f ), . . . , Ψk+1( f )

)
with Ψ j ( f ) =

f ( j) for j ∈ {0, . . . , k} and Ψk+1( f ) := Δs
Höl f (k) is a linear isometry, since

‖ f ‖ρW =
⎛
⎝ k∑

j=0

∥∥∥ f ( j)
∥∥∥ρ

Lρ

⎞
⎠+

∫
R/Z

∫
R/Z

| f (k)(x)− f (k)(y)|ρ
|x − y|1+sρ

R/Z

dxdy

=
⎛
⎝ k∑

j=0

∥∥∥ f ( j)
∥∥∥ρ

Lρ

⎞
⎠+

∥∥∥Δs
Höl f (k)

∥∥∥ρ
Lρ(ν)

= ‖Ψ ( f )‖ρZ .

Wededuce from the following two results that Z is uniformly convex. Firstly, in [19,
Theorem 2 & p. 507] it is shown for non-negative measures μ̃, numbers 1 < ρ̃ < ∞,
and Banach spaces B̃ that L ρ̃ (μ̃; B̃) is uniformly convex if B̃ is. The space B̃ := R

n

endowed with the Euclidean 2-norm satisfies this condition. Secondly, an immediate
consequence of [19, Theorem 3 & p. 504] is that l ρ̃-direct sums of finitely many
uniformly convex Banach spaces are uniformly convex. It is straightforward to check
that uniform convexity is inherited by subspaces and preserved by linear isometries.
Therefore, Ψ (W) and W are uniformly convex.
Next, we show the Fréchet-differentiability of ‖·‖W on W \ {0}. Since Ψ is a

bounded linear operator, it is Fréchet-differentiable. It remains to investigate ‖·‖Z . In
[29, Theorem 2.5] it is shown for every non-negative measure μ̃, 1 < ρ̃ < ∞, and
Banach space B̃, that the norm on L ρ̃ (μ̃, B̃) is Fréchet-differentiable except at 0 if
and only if the norm on B̃ is Fréchet-differentiable except at 0. Obviously, B̃ := R

n

with the Euclidean 2-norm satisfies this condition. Since ρ̃ > 1, the map ‖·‖ρ̃
L ρ̃ (μ̃,B̃)

is differentiable everywhere. We infer that the map

Z � (g0, . . . , gk+1) �→ ‖(g0, . . . , gk+1)‖ρZ =
⎛
⎝ k∑

j=0

∥∥g j
∥∥ρ

Lρ

⎞
⎠+ ‖gk+1‖ρLρ(ν)

is differentiable.
The remaining claims follow from general results on Banach spaces. Since W is

uniformly convex, it is reflexive by theMilman-Pettis Theorem; see, for example, [18,
Theorem II.2.9]. Another consequence of the uniform convexity ofW is that the norm
of its dual space is Fréchet-differentiable away from 0, see [18, Theorem II.2.13].
By, [20, Corollary 8.5], both norms are actually continuously Fréchet-differentiable.
Finally, [18, Corollary II.3.15] asserts that the duality mapping JW,θ is a homeomor-
phism between W and its dual W∗. �
Lemma A.2 (Injective regular curves form open subsets.) The function space
C1
ir (R/Z, R

n) is open in C1 (R/Z,Rn) with respect to the C1-topology. In par-

ticular, W 1+s,ρ
ir (R/Z, R

n) ⊂ W 1+s,ρ (R/Z,Rn) is open with respect to its norm
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topology, as well as Bir ⊂ B for any Banach space B continuously embedded in
W 1+s,ρ (R/Z,Rn).

Proof. The statement for C1-curves was shown in [27, Lemma B.3]. For the Sobolev-
Slobodeckiı̌ spaces and therefore for Banach spaces continuously embedded in those,
this claim follows from the following standard embedding result, Proposition A.3. �

The following proposition gathers well-known embedding results for Sobolev-
Slobodeckiı̌ spaces. See, for example, the appendix of [31] for a proof based on the
Besov space theory presented in [43].

Proposition A.3. (Embedding Theorem) Let k1, k2 ∈ N0, s1, s2 ∈ (0, 1), μ ∈ (0, 1],
and 1 < ρ1, ρ2 < ∞.

(i) If k1 + s1 − (k2 + s2) > max
{

1
ρ1

− 1
ρ2
, 0
}

, then the identity operator

id : W k1+s1,ρ1(R/Z,Rd) → W k2+s2,ρ2(R/Z,Rd)

is compact.
(ii) If k1 + s1 − (k2 + μ) > 1

ρ1
, then the identity operator

id : W k1+s1,ρ1(R/Z,Rd) → Ck2,μ(R/Z,Rd)

is compact.

Now we estimate the fractional Sobolev norm of the derivative with respect to arc
length Dγ η that is repeatedly used in the calculations of Sect. 5

Lemma A.4. Let l > 0, ρ ∈ (1,∞), s ∈ ( 1
ρ
, 1) and γ, η ∈ W 1+s,ρ(R/ lZ,Rn) with

vγ > 0. Then, the differential operator Dγ η := η′/|γ ′| satisfies

∥∥Dγ η
∥∥

W s,ρ ≤ Cv−2
γ

∥∥γ ′∥∥
W s,ρ

∥∥η′∥∥
W s,ρ

for some C = C(n, s, ρ) > 0.

Proof. First, we show that with γ ′, also |γ ′| is in W s,ρ . For the Lρ-norm, this is clear
immediately, so let us look at the Gagliardo-seminorm:

[|γ ′|]ρs,ρ =
∫
R/ lZ

∫ l
2

− l
2

||g′(x + h)| − |g′(x)||ρ
|h|1+sρ

dh dx

≤
∫
R/ lZ

∫ l
2

− l
2

|g′(x + h)− g′(x)|ρ
|h|1+sρ

dh dx = [γ ′]ρ
s,ρ .

Now,weneed only use the fact that
∥∥∥ 1

|γ ′|
∥∥∥

W s,ρ
≤ v−2

γ

∥∥|γ ′|∥∥W s,ρ , see [27, LemmaA.6],

and the product rule for fractional Sobolev functions which embed into C1, see, for
example, [27, Proposition A.5], to obtain the desired bound. �
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Weneed to knowhow fractional Sobolev functions behave under reparametrisations.
To that goal, we prove a simpler variant of [27, Lemma A.4].

Lemma A.5. Let s ∈ (0, 1),ρ ≥ 1and l, L > 0. Furthermore, let f ∈ W s,ρ(R/ lZ,Rn)

and g ∈ C1
loc(R,R) such that g is injective, g(x + L) = g(x) + l for all x ∈ R as

well as vg = infx∈[0,L]|g′(x)| > 0. Then,

‖ f ◦ g‖Lρ(R/LZ,Rn) ≤ v
− 1
ρ

g ‖ f ‖Lρ(R/ lZ,Rn) and

[ f ◦ g]s,ρ,R/LZ ≤ ∥∥g′∥∥ 1
ρ
+s

C0 v
− 2
ρ

g [ f ]s,ρ,R/ lZ .

Proof. The first bound is the simpler one. We only need to use the change of variables
formula and an estimate:

∫
R/LZ

| f (g(x))|ρ dx =
∫
R/LZ

| f (g(x))|ρ |g′(x)|
|g′(x)| dx ≤ v−1

g

∫
R/LZ

| f (g(x))|ρ |g′(x)| dx

= v−1
g

∫
R/ lZ

| f (y)|ρ dy.

For the second estimate, the idea is similar, but we first need to bound the denominator.
In order to do this, we first prove that |g(x)−g(v)|R/ lZ ≤ ∥∥g′∥∥

C0 |x −v|R/LZ. Seeing
as we consider the l-periodic distance on the left-hand side and g(y + L) = g(y)+ l,
we may replace y by y + kL for any integer k. Then,

|g(x)− g(y)|R/ lZ ≤ |g(x)− g(y + kL)|
= ∣∣
∫ y+kL

x
g′(τ ) dτ

∣∣ ≤ |y + kL − x | ∥∥g′∥∥
C0 .

Taking the minimum over all k ∈ Z yields the estimate.

With this and another change of variables, we may calculate

∫∫
[0,L]2

| f (g(x))− f (g(y))|ρ
|x − y|1+sρ

R/LZ

dy dx

≤ ∥∥g′∥∥1+sρ
C0

∫∫
[0,L]2

| f (g(x))− f (g(y))|ρ
|g(x)− g(y)|1+sρ

R/ lZ

dy dx

≤ ∥∥g′∥∥1+sρ
C0

∫∫
[0,L]2

| f (g(x))− f (g(y))|ρ
|g(x)− g(y)|1+sρ

R/ lZ

|g′(x)||g′(y)|
v2g

dy dx

= ∥∥g′∥∥1+sρ
C0 v−2

g

∫∫
[g−1(0),g−1(L)]2

| f (x̃)− f (ỹ)|ρ
|x̃ − ỹ|1+sρ

R/ lZ

dỹ dx̃ .

Note that our assumptions on g imply its surjectivity. Finally,wemayuse that g−1(L) =
g−1(0)+l and periodicity to see that the double integral on the right-hand side is indeed
the desired seminorm. �
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