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Motivated by results of Dyatlov on Fourier uncertainty principles for Cantor sets and 
by similar results of Knutsen for joint time-frequency representations (i.e., the short-
time Fourier transform (STFT) with a Gaussian window, equivalent to Fock spaces), 
we suggest a general setting relating localization and uncertainty and prove, within 
this context, an uncertainty principle for Cantor sets in Bergman spaces on the unit 
disk, where the Cantor set is defined as a union of annuli that are equidistributed 
in the hyperbolic measure. The result can be written in terms of analytic Cauchy 
wavelets. As in the case of the STFT considered by Knutsen, our result consists 
of a two-sided bound for the norm of a localization operator involving the fractal 
dimension log 2/ log 3 in the exponent. As in the STFT case and in Dyatlov’s fractal 
uncertainty principle, the (hyperbolic) measure of the dilated iterates of the Cantor 
set in the disk tends to infinity, while the corresponding norm of the localization 
operator tends to zero.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Fractal uncertainty principles for the Fourier transform

The uncertainty principle is a collection of statements in harmonic analysis, each of them quantifying 
in some form the fundamental duality between a function f and its Fourier transform Ff , which prevents 
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both representations from being “simultaneously concentrated in small sets” [25]. Let us consider the Fourier 
transform F : L2(R) → L2(R) given by

Ff(ξ) = f̂(ξ) = (2π)−1/2
∫
R

e−ixξf(x)dx for f ∈ L1(R) ∩ L2(R),

and the h-dilated Fourier transform Fh : L2(R) → L2(R)

Fhf(ξ) = h−1/2 · Ff(h−1ξ).

Several mathematical manifestations of the uncertainty principle consist of bounds on the norm of the 
operator which concentrates the energy of f in a set X and the energy of Ff in a set Y . Following Dyatlov’s 
definition in [9], one can resort to the h-dilated Fourier transform, and declare a pair of real h-dependent 
sets X ⊂ R and Y ⊂ R to satisfy an uncertainty principle with exponent β > 0 if, as h → 0,∥∥1XFh1Y

∥∥
op

= O(hβ) → 0, (1.1)

where the operator T = 1XFh1Y acts via Tf = 1X · Fh[1Y f ] with 1X denoting the indicator function of 
the set X. For instance, if X, Y = [0, h] then the Hölder inequality, combined with the estimate ‖Fhf‖L∞ ≤
h−1/2 ‖f‖L1 gives the uncertainty principle∥∥1XFh1Y

∥∥
op

= O(h 1
2 ) → 0. (1.2)

Given R > 0, set h = R−2. Then∥∥1XFh1Y
∥∥
op

=
∥∥∥1X/

√
hF1Y/

√
h

∥∥∥
op

= ‖1RXF1RY ‖op . (1.3)

Now, (1.2) becomes an uncertainty principle for the Fourier transform and the dilated sets RX and RY : as 
R → ∞, ∥∥1RXF1RY

∥∥
op

= O(R−1) → 0.

Moreover, as R → ∞, (1.1) becomes

‖1XFh1Y ‖op =
∥∥∥1X/

√
hF1Y/

√
h

∥∥∥
op

= ‖1RXF1RY ‖op = O(R−2β) → 0.

We want to emphasize the following aspect of the fractal uncertainty principle [9,8,7]: it covers situations 
where RX and RY are close to having a fractal structure (they depend on R and approach fractals when 
R → ∞), where their volume approaches ∞ as R → ∞, but nevertheless RX and RY satisfy an uncertainty 
principle (their operator norm decays like O(R−β) for some β > 0). This can roughly be described by saying 
that no function can be localized close to a fractal set in both time and frequency.

For illustration and motivation, consider the dilated real Cantor set C(R; R) ⊂ [0, R] defined as

C(R;R) =
∞⋂

n=1
Cn(R;R) =

∞⋂
n=1

RCn,

where Cn is the n-th step in the iterative construction of the Cantor set, where Cn+1 is obtained from Cn

by noting that Cn is a finite union of intervals, from each of which one removes the middle third to obtain 
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Cn+1; for instance, C0 = [0, 1], C1 = [0, 13 ] ∪ [ 23 , 1], etc. The set Cn(R; R) thus consists of 2n disjoint intervals 
In,j ⊂ [0, R], each with measure vol(In,j) = 3−nR. Taking n such that vol(In,j) 
 1/R, then 3n/2 
 R and

vol(Cn(R;R)) = 2n vol(In,j) 
 R−1+2 ln 2
ln 3 → ∞,

as R → ∞. Using this volume bound and Hölder’s inequality as in (1.2), leads to∥∥1Cn(R;R)F1Cn(R;R)
∥∥
op

� R−1+2 ln 2
ln 3 → ∞,

therefore not enough to assure that X = Y = C(R; R) satisfy an uncertainty principle according to Dyatlov’s 
definition (see also Equation (1.3)). However, from Example 2.6 and Theorems 2.12 and 2.13 in [9] it follows 
that there exists an exponent β > 0 such that, as R → ∞, (1.1) holds for RX, RY = Cn(R; R) and h = R−2. 
Since R 
 3n/2, as n → ∞, also R → ∞ and Equation (1.3) implies that∥∥1Cn(R;R)F1Cn(R;R)

∥∥
op

= O(R−2β) → 0. (1.4)

1.2. Uncertainty and localization

The time-frequency localization operator of the previous paragraph suggests a construction in a general 
Lebesgue space L2(Λ) (with Λ being a metric measure space). If L2(Λ) has a reproducing kernel K(z, w) (for 
a subspace of L2(Λ)), one can define a localization/Toeplitz operator PΩ mapping the function f ∈ L2(Λ)
to a smooth function PΩf ∈ L2(Λ) essentially concentrated in a bounded region Ω ⊂ Λ. The operator PΩ is 
explicitly defined as

(PΩf)(w) =
∫
Ω

f(z)K(z, w)dμ(z).

In this context, we say that Ω = Ω(R) (R > 0) satisfies an uncertainty principle if, as R → ∞,

‖PΩ‖op = O(R−β) for some β > 0.

As in the previous paragraph, one can look for bounds of ‖PΩ‖op when Ω is a fractal set. In [18], the case of 
the Fock space setting has been considered, in the equivalent formulation provided by the short-time-Fourier 
transform [12, Chapter 3]. For the analogy with our results, it will be convenient to rephrase the results in 
the Fock space. This corresponds to the choice of the measure dμ(z) = e−π|z|2dz on Λ = C (where dz is 
Lebesgue measure), of the kernel

K(z, w) = KFock(z, w) = eπzw,

and of Ω ⊂ C as the n-th iterate Cn(R; C) of the planar Cantor set, i.e.,

Cn(R;C) := {z ∈ C : |z|2 ∈ Cn(R2;R)}. (1.5)

The set Cn(R; C) is a disjoint union of 2n annuli ICn,j , each of measure vol(ICn,j(R2)) = π R2

3n , so that for each 
annulus we consider a 1/3n part of the initial disk with area πR2. For this measure to be well distributed 
among [0, πR2], one takes vol(ICn,j(R2)) = 1/(π R2), yielding (π R2)2 
 3n and

vol(Cn(R;C)) 
 R−2+4 ln 2
ln 3 → ∞,
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as R → ∞. Moreover, as R → ∞, it is proven in [18, Corollary 4.1] that∥∥PCn(R;C)
∥∥
op


 R−2+2 ln 2
ln 3 → 0.

Thus, in the Fock case, the measure of the dilates of the iterated Cantor set tends to ∞, while the norm of 
the operator tends to zero.

Small operator norms facilitate recovery in signal analysis problems [2]. The operator norm of PΩ for the 
Fock case discussed above is maximized when Ω is a disk [23], while there exist sets Ω with infinite Lebesgue 
measure such that the operator norm of PΩ is arbitrarily small [10]. In the wavelet case, the operator norm 
is maximized when the localization domain is a pseudohyperbolic disk [24].

We will show in this paper that, in the case of the disk, we have a similar situation: one can define a 
Cantor set in the disk, whose hyperbolic measure tends to infinity, and an associated Toeplitz operator, 
whose operator norm tends to zero.

Our contributions are organized as follows: A disk version of the Cantor set is considered in the next 
section. In the same section, the main result on the fractal uncertainty principle on Bergman spaces is stated 
and translated to the language of analytic wavelets. More details and proofs are given in the following two 
sections, with the most technical estimates delegated to the last section of the paper.

2. Fractal uncertainty principles for the Bergman space

In this paper, we consider the reproducing kernel of the weighted analytic Bergman space associated to 
the measure dAα(z) = 2α (1 − |z|2)2α−1dA(z) on the disk D = {z ∈ C : |z| < 1}, where α ∈ (0, ∞) and 
where dA(z) = dz

π , with dz denoting the planar Lebesgue measure. As shown in [13, Pages 4 and 5], this 
reproducing kernel is explicitly given by

Kα
D(z, w) = 1

(1 − zw)2α+1 =
∞∑

n=0
eαn(z)eαn(w), (2.1)

where

eαn(z) = √
γnz

n, and γn = γα
n := Γ(n + 1 + 2α)

Γ(n + 1)Γ(1 + 2α) = 1
2α [B(n + 1, 2α)]−1.

Given this reproducing kernel, we consider the associated localization operator

(P (α)
Cn(R;D)f)(w) =

∫
Cn(R;D)

f(z)Kα
D(z, w)dAα(z), (2.2)

where the fractal localization region is now the following disk version of the iterates of the Cantor set

Cn(R;D) :=
{
z ∈ D : |z|2

1 − |z|2 ∈ Cn(R;R)
}
. (2.3)

We will show (see Proposition 3.1) that Cn(R; D) is a disjoint union of 2n annuli D(n)
� (0, R), each of 

hyperbolic measure μD
(
D

(n)
� (0, R)

)
= R

3n . Here, the hyperbolic measure μD is given by

μD(M) :=
∫
M

(1 − |z|2)−2 dA(z) for M ⊂ D Borel measurable, (2.4)

so that the hyperbolic measure of the disk D(0, r) = {w ∈ C : |w| < r} with r ∈ [0, 1) is given by
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μD(D(0, r)) =
∫

D(0,r)

(1 − |z|2)−2dA(z) = 2
r∫

0

s

(1 − s2)2 ds = r2

1 − r2 . (2.5)

Thus, as in the previous examples, for this measure to be well distributed among [0, R] we take n such 
that μD

(
D

(n)
� (0, R)

)

 1/R, leading to 3n 
 R2 and to R2 ln 2

ln 3 
 2n, so that

μD
(
Cn(R;D)

)
= R ·

(
2
3

)n


 R2 ln 2
ln 3−1 → ∞,

as R, n → ∞. So far, everything is perfectly tuned with our model Fourier and time-frequency/Fock cases. 
However, the analogue of the conditions (1.4) only holds in the asymptotic case. The bounds on the non-
asymptotic case depend on the size of R.

Theorem 2.1. Given α ∈ (0, ∞), there are constants 0 < C1 ≤ C2 < ∞ (which only depend on α) such that 
the operator norm of the time-scale localization operator P (α)

Cn(R;D) satisfies for all n ∈ N and R ∈ (0, ∞)
the estimate

C1

⎧⎪⎪⎨⎪⎪⎩
( 2

3
)n

R, if 0 < R ≤ 1( 2
3
)n

R1− ln 2
ln 3 , if 1 ≤ R ≤ 3n

1, if R ≥ 3n
≤

∥∥∥P (α)
Cn(R;D)

∥∥∥
op

≤ C2

⎧⎪⎪⎨⎪⎪⎩
( 2

3
)n

R, if 0 < R ≤ 1,( 2
3
)n

R1− ln 2
ln 3 , if 1 ≤ R ≤ 3n,

1, if R ≥ 3n.

Furthermore, if R is chosen so that R2 
 3n, then

∥∥∥P (α)
Cn(R;D)

∥∥∥
op



(

2
3

)n
2


 R
ln 2
ln 3−1 → 0,

as R → ∞.

We note that the term

δ = δC(R;R) = ln 2
ln 3

appearing in the exponent of R−1+ ln 2
ln 3 is the Hausdorff dimension of the Cantor set. The uncertainty 

principles in [9] consider more general fractal sets and the results are obtained in terms of their Hausdorff 
dimensions. See [19,20] for new developments in this direction in the planar case. As in the joint time-
frequency case, following the suggestion in the comments after [18, Corollary 4.1], where the bound R−2+2δ

is obtained for the planar Cantor set, this opens interesting problems, if one considers more general fractal 
sets and seeks bounds of the associated Toeplitz operator in terms of the Hausdorff dimension of the sets.

2.1. Fractal uncertainty principle for analytic wavelets

In this section we outline how our result can be written in terms of analytic wavelets. We will use the 
basic notation for H2(C+), the Hardy space in the upper half plane C+, as the space of analytic functions 
f : C+ → C such that

sup
0<s<∞

∞∫
|f(x + is)|2dx < ∞.
−∞
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To simplify the computations it is often convenient to use the equivalent definition (since the Paley-Wiener 
theorem (see [6] or [27, Theorem 19.2]) shows up to canonical identifications that F(H2(C+)) = L2(0, ∞))

H2(C+) =
{
f ∈ L2(R) : (Ff)(ξ) = 0 for almost all ξ < 0

}
.

The wavelet transform of a function f ∈ H2(C+) with mother wavelet ψ ∈ H2(C+), such that its admissi-
bility constant Cψ = 2π · ‖Fψ‖2

L2(R+,t−1dt) is finite, is defined as

Wψf(z) :=
∫
R

f(t)s− 1
2ψ(s−1(t− x))dt =

√
s

∞∫
0

f̂(ξ)ψ̂(sξ)eixξdξ, z = x + is ∈ C+. (2.6)

The analytic wavelets are the functions ψα
0 defined via their Fourier transforms by

(Fψα
0 )(ξ) = ξ

α
2 · e−ξ · 1(0,∞)(ξ), ξ ∈ R.

As proven recently in [14], Wψf(z) leads to analytic (Bergman) phase spaces only for this special choice of 
ψ (up to a phase factor). Nevertheless, it is customary to refer to Wψf(z) as the analytic wavelet transform, 
due to the discard of negative frequencies. We will write

dμ+(z) = (Imz)−2
dz,

where dz is the Lebesgue measure on C+. The orthogonality relations for the wavelet transform∫
C+

Wψ1f1(z)Wψ2f2(z)dμ+(z) = 2π · 〈Fψ1,Fψ2〉L2(R+,t−1dt) · 〈f1, f2〉H2(C+) (2.7)

are valid for all f1, f2 ∈ H2(C+) and all admissible ψ1, ψ2 ∈ H2(C+); see [4, Proposition 2.4.1]. Then, 
setting ψ1 = ψ2 = ψ and f1 = f2 in (2.7), gives∫

C+

|Wψf(z)|2 dμ+(z) = Cψ · ‖f‖2
H2(C+) ,

showing that the continuous wavelet transform provides an (up to a constant factor) isometric inclusion

Wψ : H2(C+) → L2(C+, μ+).

Writing z = x + is and setting ψ1 = ψ2 = ψ and f2 = π(z)ψ, where

[π(z)]ψ(t) := s−
1
2 · ψ(s−1(t− x)),

in (2.7), then for every f ∈ H2(C+), one has

Wψf(z) = 1
Cψ

∫
C+

Wψf(w)〈π(w)ψ, π(z)ψ〉dμ+(w), z ∈ C+.

Thus, the range of the wavelet transform

Wψ :=
{
F ∈ L2(C+, μ+) : F = Wψf, f ∈ H2(C+)

}
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is a closed subspace of L2(C+, μ+), with reproducing kernel

kψ(z, w) = 1
Cψ

〈π(w)ψ, π(z)ψ〉H2(C+) = 1
Cψ

Wψψ(w−1z), and kψ(z, z) = ‖ψ‖2
2

Cψ
.

Here, the multiplication (and inversion) on C+ is not the usual multiplication inherited from C, but stems 
from identifying C+ ∼= R × (0, ∞) with the ax + b group, so that (x + is)(y + iv) = x + sy + isv.

For z = x + is, w = y + iv ∈ C+, the kernel kψ2α
0

(z, w) is given by1

kψ2α
0

(z, w) = 1
Cψ2α

0

Wψ2α
0
ψ2α

0 (w−1 · z) = 22αα

π
·
(√

Im z Imw

−i(z − w)

)2α+1

. (2.8)

This is a multiple of the reproducing kernel of the Bergman space

A2α−1(C+) :=

⎧⎨⎩f : C+ → C holomorphic :
∫
C+

|f(z)|2 · Im(z)2α−1dz < ∞

⎫⎬⎭ .

Therefore, (Im ·)−α−1/2 Wψ2α
0

: H2(C+) → A2α−1(C+) is an (up to a constant factor) isometric inclusion. 
Moreover, A2α−1(C+) is conformally equivalent to the Bergman space A2α−1(D) on the unit disk under the 
transformation

z ∈ C+ �→ ξ(z) = z − i

z + i
∈ D;

see [6]. It follows that P (α)
Cn(R;D) can be unitarily mapped to (a constant multiple of) the operator

(
Pξ−1(Cn(R;D))f

)
(w) =

∫
ξ−1(Cn(R;D))

f(z) · kψ2α
0

(z, w)dz. (2.9)

Thus, Theorem 2.1 is equivalent to an uncertainty principle for wavelet representations on the Cantor set 
of C+ defined by ξ−1(Cn(R; D)). The analyzing wavelets ψ2α

0 are the only ones leading to an analytic 
structure [14]. Considering more general classes of analyzing wavelets, as those leading to a polyanalytic 
decomposition in [29,1,15], or the slightly different ones connected to Maass forms and hyperbolic Landau 
levels [22,21], may be a natural extension of the problem we have considered here. The Toeplitz operator 
(2.9) has been first considered by Daubechies and Paul [3] for n = 0, i.e., for C0(R; D) The approach based 
on double orthogonality that we use is due to Seip [28] and provides some insight on why the approach 
using circular symmetric sets in the plane and in the disk considerably simplifies the problem. With square 
time-frequency regions, as required by the Fourier transform approach of Dyatlov, one has no access to 
explicit eigenvalue formulas. The general eigenvalue problem of Gabor and wavelet localization operators 
has been considered in [5].

1 To see this, first note that 
∫∞
0 xz−1e−sx dx = Γ(z)

sz for all s, z ∈ C with Re s, Re z > 0; this can be seen by keeping z fixed and ver-
ifying the identity for s ∈ (0, ∞); this is enough, since both sides of the identity are holomorphic functions. Combining this formula 
with the definition of ψ2α

0 and the right-hand side of Equation (2.6) easily implies Wψ2α
0
ψ2α

0 (x +is) = s
1
2
+α ∫∞

0 ξ2αe−(1+s−ix)ξ dξ =
s

1
2
+α Γ(2α+1)

(1+s−ix)2α+1 . Furthermore, directly from the definition of Cψ and of ψ2α
0 , we see Cψ2α

0
= 2π

∫∞
0 ξ2αe−2ξ dξ

ξ = π
22α−1 Γ(2α). 

From this, Equation (2.8) follows easily.
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3. The Cantor set

3.1. The Cantor set in the line

The usual Cantor set C ⊂ [0, 1] is defined as C =
⋂∞

n=1 Cn, where each of the sets Cn is a finite union of 
closed intervals which are iteratively constructed by the usual operation of “removing the middle third” of 
each of the intervals; see e.g. [26, Section 2.44]. For instance,

C0 = [0, 1], C1 = [0, 1
3 ] ∪ [ 23 , 1], and C2 = [0, 1

9 ] ∪ [ 29 ,
1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1].

Now, given R > 0, we consider the dilated real Cantor set C(R; R) = R · C ⊂ [0, R]. Therefore, we have

C(R;R) =
∞⋂

n=1
Cn(R;R),

where

Cn(R;R) := R · Cn with Cn =
⊎

a∈{0,2}n

⎡⎣ n∑
j=1

aj
3j , 3−n +

n∑
j=1

aj
3j

⎤⎦ . (3.1)

To simplify the notation, let Ω(n) := {0, 2}n, and for a = (a1, . . . , an) ∈ Ω(n) define

ba = b(n)
a :=

n∑
j=1

aj
3j ,

so that

Cn =
⊎

a∈{0,2}n

I(n)
a with I(n)

a :=
[
b(n)
a , 3−n + b(n)

a

]
. (3.2)

For analyzing the size of the endpoints ba, it is convenient to introduce for a ∈ Ω(n) \ {0} the order of its 
index as

ωa := min
{

 ∈ {1, . . . , n} : a� �= 0

}
,

which gives rise to the restricted index sets

Ω(n)
m :=

{
a ∈ Ω(n) \ {0} : ωa = m

}
for m ∈ {1, . . . , n}.

It is straightforward to verify that Ω(n)
m = {0}m−1 × {2} × {0, 2}n−m, and hence

#Ω(n)
m = 2n−m. (3.3)

We will frequently use the estimate

2
3m ≤ ba =

n∑ aj
3j ≤ 2

3m
∞∑

3−� = 3
3m ∀ a ∈ Ω(n)

m . (3.4)

j=m �=0
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3.2. The Cantor set in the plane

The key properties of the Cantor-type set defined in the complex plane in [18] will be preserved in the 
construction of the next subsection (modulo the required adaptations to the disk). First, since Cn(R2; R)
is a disjoint union of 2n intervals, the set Cn(R; C) from (1.5) is a disjoint union of 2n annuli. Furthermore, 
the condition |z|2 ∈ Cn(R2; R) is chosen since it ensures that all of the 2n annuli have the same Lebesgue 
measure.

3.3. The Cantor set in the disk

Our goal is to define the n-th iterate of the Cantor-type set in the disk such that it is a union of 2n
disjoint annuli with the same hyperbolic measure, where we saw in Equation (2.5) that

μD(D(0, r)) = r2

1 − r2 for D(0, r) = {w ∈ C : |w| < r} and r ∈ [0, 1).

This suggests defining the n-th Cantor set as the set of all w ∈ D such that ϕ(|w|) ∈ Cn(R; R), where

ϕ : [0, 1) → [0,∞), r �→ ϕ(r) = r2

1 − r2 .

More explicitly, as in (2.3), we define

Cn(R;D) :=
{
w ∈ D : |w|2

1 − |w|2 ∈ Cn(R;R)
}
.

We next show that this construction indeed yields a set Cn(R; D) that behaves similarly to the set Cn(R; C)
from [18] discussed in Sections 3.2 and 1.2. For a ∈ Ω(n), let us write

D(n)
a (0, R) :=

{
w ∈ D : ϕ(|w|) ∈ R · I(n)

a

}
with I(n)

a = [ba, 3−n + ba] as in (3.2). (3.5)

Proposition 3.1. The n-th disk Cantor set Cn(R; D) is a disjoint union of 2n annuli:

Cn(R;D) =
⊎

a∈Ω(n)

D(n)
a (0, R) with D(n)

a (0, R) as in (3.5).

Each annulus has hyperbolic measure μD(D(n)
a (0, R)) = R

3n . Therefore,

μD (Cn(R;D)) =
(

2
3

)n

·R.

Proof. Recall the definition (2.4) of the hyperbolic measure μD. Next, given an arbitrary measurable function 
F : [0, ∞) → [0, ∞], introduce polar coordinates, set s = r2 and then t = s

1−s to yield

∫
D

F

(
|z|2

1 − |z|2
)
dμD(z) = 2

1∫
0

F

(
r2

1 − r2

)
r

(1 − r2)2 dr

=
1∫

0

F

(
s

1 − s

)
(1 − s)−2 ds =

∞∫
0

F (t) dt.
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Since Cn(R; R) =
⊎

a∈Ω(n) R·I(n)
a , where the intervals I(n)

a = [ba, 3−n+ba] ⊂ [0, ∞) have length |I(n)
a | = 3−n, 

then

Cn(R;D) =
⊎

a∈Ω(n)

D(n)
a (0, R) =

⊎
a∈Ω(n)

{
w ∈ D : ϕ−1(R · ba) ≤ |w| ≤ ϕ−1(R · (3−n + ba))

}
is a disjoint union of 2n annuli, each of which has μD-measure

μD

(
D(n)

a (0, R)
)

=
∫
D

1
R·I(n)

a

(
|z|2/(1 − |z|2)

)
dμD(z)

=
∞∫
0

1
R·I(n)

a
(t) dt = R

3n . �

4. Localization to the Cantor set in the disk

In this section, we study the spectral properties of the time-scale localization operators

P
(α)
Cn(R;D) for R ∈ (0,∞), n ∈ N, and α ∈ (0,∞),

as defined in (2.2).

4.1. Eigenvalues of the Cantor-type localization operator

Proposition 4.1. Let α, R ∈ (0, ∞) and n ∈ N. Then the eigenvalues of the operator P (α)
Cn(R;D) introduced in 

Equation (2.2) are given by

λk = λ
(α)
k (Cn(R;D)) =

∞∫
0

gk(t;α) 1Cn(R;R)(t) dt for k ∈ N0,

where gk(· ; α) : (0, ∞) → (0, ∞) is given by

gk(t;α) = [B(k + 1, 2α)]−1 ·
(

t

1 + t

)k

· (1 + t)−(1+2α). (4.1)

Proof. Observe that the orthogonality of the basis functions eαk (z) = √
γkz

k in the reproducing kernel 
expansion (2.1) holds for any radial measure μ(|z|)dA(z), with μ : [0, ∞) → [0, ∞) satisfying 

∫ 1
0 μ(r)dr < ∞. 

This follows from the following calculation, for k �= 
:

∫
D

zk z� μ(|z|)dA(z) = 1
π

1∫
0

2π∫
0

(reiθ)k(re−iθ)�μ(|reiθ|)rdθdr

= 1
π

1∫
0

rk+�+1μ(r)
2π∫
0

eiθ(n−m)dθdr = 0.

Thus, we can set

μ(|z|) = 2α · (1 − |z|2)2α−1 · 1Cn(R;D)(z) = 2α · (1 − |z|2)2α−11Cn(R;R)

(
|z|2

2

)

1 − |z|
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and combine (2.1) with the orthogonality of the eαk (z) with respect to μ(|z|)dA(z) to obtain2

[
P

(α)
Cn(R;D)(e

α
k )

]
(w) =

∫
D

eαk (z)Kα
D(z, w)μ(|z|)dA(z) =

⎡⎣∫
D

|eαk (z)|2 μ(|z|)dA(z)

⎤⎦ eαk (w).

Thus, eαk is an eigenfunction of P (α)
Cn(R;D) with eigenvalue

λ
(α)
k (Cn(R;D)) =

∫
D

|eαk (z)|2 μ(|z|)dA(z)

= 2αγk
∫
D

|z|2k · (1 − |z|2)2α−1 · 1Cn(R;R)

(
|z|2

1 − |z|2
)
dA(z)

= 4αγk
1∫

0

1Cn(R;R)

(
r2

1 − r2

)
· r2k+1 · (1 − r2)2α−1 dr.

Using the substitutions s = r2 and t = s
1−s = 1

1−s − 1, we finally see

λ
(α)
k (Cn(R;D)) = 2αγk

1∫
0

1Cn(R;R)

(
s

1 − s

)
· sk · (1 − s)2α−1 ds

= 2αγk
∞∫
0

1Cn(R;R)(t) ·
(

t

1 + t

)k

· (1 + t)−(2α+1) dt

=
∞∫
0

1Cn(R;R)(t) · gk(t;α) dt. �

Remark 4.2. We observe that the function gk(· ; α) is the density function of the Beta prime distribution
β′(k + 1, 2α) with form parameters k + 1 and 2α; see [17, Equation (25.79)]. In particular, this implies

∞∫
0

gk(t;α) dt = 1 (4.2)

and the following probabilistic interpretation of the eigenvalues

λ
(α)
k (Cn(R;D)) = E

(
1Cn(R;R)(X)

)
if X ∼ β′(k + 1, 2α).

Recalling the definition of gk(· ; α) and applying [11, Section 3.197.8] (with μ = 1, ν = k + 1, α = 1, 
λ = −(k + 1 + 2α) and u = y) shows that the cumulative distribution function of β′(k + 1, 2α) is given by

Fk,α(y) =
y∫

0

gk(t;α) dt = y1+k

(1 + k) ·B(1 + k, 2α) · 2F1(k + 1 + 2α, k + 1; k + 2;−y),

2 Here, we use that the series for Kα
D(·, w) given in (2.1) is a power series which is convergent on D and thus converges locally 

on D. Since the measure μ has compact support in D (since Cn(R; D) ⊂ D is compact), this allows to interchange the series with 
the integral.
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in terms of the ordinary hypergeometric function 2F1(a, b, c; z) =
∑∞

j=0
(a)j(b)j
j!(c)j zj . When n = 0, then 

1C0(R;R) = 1[0,R] and thus

λ
(α)
k (C0(R;D)) = R1+k

(1 + k) ·B(1 + k, 2α) · 2F1(k + 1 + 2α, 1 + k; k + 2;−R).

4.2. Upper bounding the eigenvalues

The upper bounds for the eigenvalues depend on the following pointwise estimate for the density functions 
gk(· ; α). The details of the proof are in Section 5.

Lemma 4.3. For each α ∈ (0, ∞), there is a constant C = C(α) > 0 satisfying

gk(x;α) ≤ C · (1 + x)−1 ∀x ∈ (0,∞) and k ∈ N0.

In this section, we prove the following upper bound for the eigenvalues λ(α)
k (Cn(R; D)):

Proposition 4.4. For each α ∈ (0, ∞), there is a constant C = C(α) > 0 satisfying

λ
(α)
k (Cn(R;D)) ≤ C

⎧⎪⎪⎨⎪⎪⎩
(2/3)n ·R, if 0 < R ≤ 1,
(2/3)n ·R1− ln 2

ln 3 , if 1 ≤ R ≤ 3n,
1, if R ≥ 3n

for all k ∈ N0, n ∈ N, and R ∈ (0, ∞).

Proof. First of all, recall from Equation (4.2) that each gk(· ; α) is a probability density function on (0, ∞), 
so that

λ
(α)
k (Cn(R;D)) =

∫
Cn(R;R)

gk(y;α) dy ≤
∞∫
0

gk(y;α) dy = 1.

This establishes the desired estimate in case of R ≥ 3n. Next, recall that the Lebesgue measure λ(Cn(R; R))
of the Cantor set Cn(R; R) is λ(Cn(R; R)) = (2/3)n · R. Furthermore, Lemma 4.3 yields a constant C =
C(α) > 0 satisfying gk(x; α) ≤ C · (1 + x)−1 ≤ C for all x ∈ (0, ∞) and k ∈ N0. Therefore,

λ
(α)
k (Cn(R;D)) =

∫
Cn(R;R)

gk(y;α) dy ≤ C · λ(Cn(R;R)) = C · (2/3)n ·R.

This proves the desired estimate for the case that 0 < R ≤ 1. Finally, let us consider the case 1 ≤ R ≤ 3n. 
Due to this assumption on R, there is t ∈ {0, . . . , n − 1} such that

3t ≤ R ≤ 3t+1 and hence lnR

ln 3 − 1 ≤ t ≤ lnR

ln 3 .

Using the representation (3.1) of the Cantor set Cn(R; R) and Ω(n) \ {0} =
⊎n

m=1 Ω(n)
m , we see

λ
(α)
k (Cn(R;D)) =

R/3n∫
gk(y;α) dy +

n∑
m=1

∑
(n)

R·(ba+3−n)∫
gk(y;α) dy.
0 a∈Ωm R·ba
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First, note as a consequence of gk(x; α) ≤ C ·(1 +x)−1 ≤ C that 
∫ R/3n

0 gk(y; α) dy ≤ C R
3n . Next, note that if 

a ∈ Ω(n)
m , then (3.4) implies ba ≥ 2/3m ≥ 3−m and R · ba ≥ 3t−m. This implies for y ∈ [R · ba, R · (ba + 3−n)]

that

(1 + y)−1 ≤ (1 + 3t−m)−1 ≤ 3−(t−m)+ where x+ := max{0, x},

and hence

R·(ba+3−n)∫
R·ba

gk(y;α) dy ≤ C

R·(ba+3−n)∫
R·ba

(1 + y)−1 dy ≤ C · R

3n · 3−(t−m)+ .

Recalling, from (3.3) that #Ω(n)
m = 2n−m, we conclude

n∑
m=1

∑
a∈Ω(n)

m

R·(ba+3−n)∫
R·ba

gk(y;α) dy ≤ C · (2/3)n ·R · 2−t
n∑

m=1
2t−m3−(t−m)+ .

Introducing the new summation index 
 = t −m, we see that

n∑
m=1

2t−m3−(t−m)+ ≤
∑
�∈Z

2�3−�+ =
−1∑

�=−∞
2� +

∞∑
�=0

(2/3)� = 1 + 1
1 − 2

3
= 4.

Furthermore, since t ≥ lnR
ln 3 − 1, we have 2−t ≤ 2 · 2− lnR/ ln 3 = 2 · R− ln 2/ ln 3. By combining the estimates 

that we collected, we finally conclude that

λ
(α)
k (Cn(R;D)) ≤ C

R

3n + 8C · (2/3)n ·R1− ln 2
ln 3 .

It remains to observe that R/3n ≤ (2/3)n ·R1− ln 2
ln 3 , which easily follows from the condition R ≤ 3n. �

4.3. Lower bounding the first eigenvalue

In this subsection we prove that the eigenvalue λ(α)
0 (Cn(R; D)) of P (α)

Cn(R;D) fulfills a lower bound which 
matches the upper bound from Proposition 4.4.

Proposition 4.5. For each α ∈ (0, ∞), there is a constant C = C(α) > 0 satisfying

λ
(α)
0 (Cn(R;D)) ≥ C

⎧⎪⎪⎨⎪⎪⎩
(2/3)n ·R, if 0 < R ≤ 1,
(2/3)n ·R1− ln 2

ln 3 , if 1 ≤ R ≤ 3n,
1, if R ≥ 3n

for all n ∈ N and R ∈ (0, ∞).

Proof. In case of R ≥ 3n, we have Cn(R; R) ⊃ [0, R/3n] ⊃ [0, 1], and hence

λ
(α)
0 (Cn(R;D)) ≥

1∫
g0(y;α) dy =: C1(α) > 0,
0
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since g0(· ; α) is a positive continuous function. Likewise, if 0 < R ≤ 1, then Cn(R; R) ⊂ [0, 1]. Since the 
continuous, positive function g0(· ; α) is lower bounded on the compact set [0, 1] (say, g0(x; α) ≥ C2 for 
x ∈ [0, 1] with C2 = C2(α) > 0), we thus see

λ
(α)
0 (Cn(R;D)) =

∫
Cn(R;R)

g0(y;α) dy ≥ C2

∫
Cn(R;R)

1 dy = C2 · (2/3)n ·R,

proving the desired bound for the case 0 < R ≤ 1. Finally, consider the case 1 ≤ R ≤ 3n. For brevity, define 
C3 := [B(1, 2α)]−1. Choose t ∈ {0, . . . , n − 1} such that 3t ≤ R ≤ 3t+1, whence lnR

ln 3 − 1 ≤ t ≤ lnR
ln 3 . Using 

the representation (3.1) of the Cantor set, and observing that Ω(n)
t+1 ⊂ Ω(n) since t +1 ∈ {1, . . . , n}, it follows 

that

λ
(α)
0 (Cn(R;D)) ≥ C3

∑
a∈Ω(n)

t+1

R·(ba+3−n)∫
R·ba

(1 + y)−(1+2α) dy.

Now, note that if a ∈ Ω(n)
t+1 and y ≤ R · (ba + 3−n), then Equation (3.4) shows that

y ≤ R · (ba + 3−n) ≤ R · (3 · 3−(t+1) + 3−n) ≤ 4R · 3−(t+1) ≤ 4,

whence (1 + y)−(1+2α) ≥ 5−(1+2α) =: C4. Next, recall from Equation (3.3) that #Ω(n)
t+1 = 2n−t−1. Overall, 

we thus see as desired that

λ
(α)
0 (Cn(R;D)) ≥ C3C4 · 2n−t−1 R

3n = C3C4

2 · (2/3)n ·R · 2−t

≥ C3C4

2 · (2/3)n · 2− ln R
ln 3 ·R = C3C4

2 · (2/3)n ·R1− ln 2
ln 3 . �

4.4. Proof of Theorem 2.1

Since P (α)
Cn(R;D) : L2(dAα) → L2(dAα) is self-adjoint, with P (α)

Cn(R;D) = 0 on the orthogonal complement 
of span{eαk : k ∈ N0}, we see by combining Propositions 4.1, 4.4 and 4.5 that

C1

⎧⎪⎪⎨⎪⎪⎩
(2
3 )n ·R, if 0 < R ≤ 1

(2
3 )n ·R1− ln 2

ln 3 , if 1 ≤ R ≤ 3n

1, if R ≥ 3n
≤

∥∥∥P (α)
Cn(R;D)

∥∥∥
op

≤ C2

⎧⎪⎪⎨⎪⎪⎩
(2
3 )n ·R, if 0 < R ≤ 1,

(2
3 )n ·R1− ln 2

ln 3 , if 1 ≤ R ≤ 3n,
1, if R ≥ 3n.

(4.3)

The condition 3n 
 R2 implies (for R → ∞) that 1 � R 
 3n/2 � 3n. The same condition also implies 
that R ln 2

ln 3 
 2n/2, and thus R2 ln 2
ln 3 
 2n. This implies for R → ∞ that

(2/3)n ·R1− ln 2
ln 3 
 (2/3)n/2 
 R−1+ ln 2

ln 3

and the result follows from (4.3). �
5. Proof of Lemma 4.3

Recall that the goal is to prove that there exists a constant C = C(α) > 0 satisfying

gk(x;α) ≤ C · (1 + x)−1 ∀x ∈ (0,∞) and k ∈ N0,
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where the function

gk(x;α) = [B(k + 1, 2α)]−1 ·
(

x

1 + x

)k

· (1 + x)−(1+2α)

was defined in Equation (4.1).
The proof will be given in three steps. All implied constants will either be absolute constants or constants 

that only depend on α.

Step 1 (Estimating the Beta function): By definition, the Beta function can be written in terms of the 
Gamma function as B(x, y) = Γ(x) Γ(y)

Γ(x+y) for x, y > 0. Furthermore, a precise form of Stirling’s formula (see 
[16]) shows that the Gamma function satisfies

Γ(x) =
√

2π/x · (x/e)x · eμ(x) for x > 0 where 0 ≤ μ(x) ≤ (12x)−1

and therefore

Γ(x) 
 x−1/2 · (x/e)x ∀x ≥ 1,

which is the only case that we will need. Indeed, using this estimate, we see for k ≥ 1 that

[B(k + 1, 2α)]−1 = Γ(k + 1 + 2α)
Γ(2α) Γ(1 + k)



√

1/(k + 1 + 2α) ·
(
k+1+2α

e

)k+1+2α

Γ(2α) ·
√

1/(k + 1) ·
(
k+1
e

)k+1

�
√

k + 1
k + 1 + 2α ·

(
k + 1 + 2α

e

)2α

·
(

1 + 2α
k + 1

)k+1

(∗)
�

(
k + 1 + 2α

e

)2α

� k2α since k ≥ 1.

Here, the step marked with (∗) used the well-known fact that (1 + x
k )k −−−−→

k→∞
ex for all x ∈ R, and thus 

(1 + 2α
k+1 )k+1 � 1, with the implied constant only depending on α.

We remark that the estimate for the Beta function that we derived in this step is probably well-known. 
We nevertheless decided to give the relatively easy proof since we could not locate a handy reference.

Step 2 (Estimating k2α · yk): Let y ∈ (0, 1) be fixed, and define

f : [0,∞) → [0,∞), t �→ t2α · yt.

Then f is differentiable on (0, ∞) with derivative

f ′(t) = 2α t2α−1yt + t2α ln(y) yt = t2α−1 · yt(2α + t ln(y)).

From this, it follows that if we define t0 := − 2α
ln y = 2α

ln(1/y) ∈ (0, ∞), then f ′(t) > 0 for t ∈ (0, t0) and 
f ′(t) < 0 for t ∈ (t0, ∞). Hence, f has a global maximum in t = t0, showing that

t2αyt = f(t) ≤ f(t0) =
(

2α
ln(1/y)

)2α

y−
2α

ln(y) =
(

2α
ln(1/y)

)2α

e−2α � [ln(1/y)]−2α

for all t ∈ [0, ∞) and y ∈ (0, 1).
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Step 3 (Completing the proof): If we apply the estimate from the preceding step for t = k and y = x
1+x ∈

(0, 1) (where x ∈ (0, ∞)), then we see that

k2α ·
(

x

1 + x

)k

�
[
ln 1 + x

x

]−2α

= [ln(1 + x−1)]−2α ∀x ∈ (0,∞).

Now, for x ≥ 1 note that 1 + x−1 ≤ 2, and hence

ln(1 + x−1) =
1+x−1∫

1

t−1 dt ≥ 1
2 x−1

from which we see—because of α > 0—that

[ln(1 + x−1)]−2α ≤ 22α · x2α ≤ 22α · (1 + x)2α.

Likewise, if 0 < x ≤ 1 then ln(1 + x−1) ≥ ln(2) and hence

[ln(1 + x−1)]−2α ≤ [ln(2)]−2α ≤ [ln(2)]−2α · (1 + x)2α.

All in all, we have thus shown that

k2α ·
(

x

1 + x

)k

� (1 + x)2α ∀x ∈ [0,∞) and k ∈ N0.

Combining this with the estimate from Step 1, we see for k ≥ 1 that

gk(x;α) = [B(k + 1, 2α)]−1 ·
(

x

1 + x

)k

· (1 + x)−(1+2α)

� k2α ·
(

x

1 + x

)k

· (1 + x)−2α (1 + x)−1 � (1 + x)−1.

Finally, in case of k = 0, we see directly from the definition of the Beta function that

B(k + 1, 2α) = B(1, 2α) =
1∫

0

(1 − t)2α−1 dt =
1∫

0

s2α−1 ds = 1
2α,

and hence

g0(x;α) = 2α · (1 + x)−(1+2α) ≤ 2α · (1 + x)−1,

since 1 + x ≥ 1 and 1 + 2α ≥ 1. �
Acknowledgments

We thank Helge Knutsen for several comments and corrections on an earlier version of the manuscript.



L.D. Abreu et al. / J. Math. Anal. Appl. 519 (2023) 126699 17
References

[1] L.D. Abreu, Superframes and polyanalytic wavelets, J. Fourier Anal. Appl. 23 (1) (2017) 1–20.
[2] L.D. Abreu, M. Speckbacher, Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces, Bull. Sci. 

Math. 171 (2021) 103032.
[3] I. Daubechies, T. Paul, Time-frequency localisation operators - a geometric phase space approach: II. The use of dilations, 

Inverse Probl. 4 (3) (1988) 661–680.
[4] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 1992.
[5] F. DeMari, H.G. Feichtinger, K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, J. Lond. 

Math. Soc. 65 (3) (2002) 720–732.
[6] P. Duren, E.A. Gallardo-Gutiérrez, A. Montes-Rodríguez, A Paley-Wiener theorem for Bergman spaces with application 

to invariant subspaces, Bull. Lond. Math. Soc. 39 (3) (2007) 459–466.
[7] S. Dyatlov, J. Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle, Geom. Funct. Anal. 26 (4) (2016) 

1011–1094.
[8] S. Dyatlov, J. Bourgain, Fourier dimension and spectral gaps for hyperbolic surfaces, Geom. Funct. Anal. 27 (4) (2017) 

744–771.
[9] S. Dyatlov, An introduction to fractal uncertainty principle, J. Math. Phys. 60 (8) (2019) 081505.

[10] A. Galbis, Norm estimates for selfadjoint Toeplitz operators on the Fock space, Complex Anal. Oper. Theory 16 (15) 
(2021).

[11] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, 7th edition, Academic Press, 2007.
[12] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
[13] H. Hedenmalm, B. Korenblum, K. Zhu, The Theory of Bergman Spaces, Springer, ISBN 978-0-387-98791-0, 2000.
[14] N. Holighaus, G. Koliander, Z. Průša, L.D. Abreu, Characterization of analytic wavelet transforms and a new phaseless 

reconstruction algorithm, IEEE Trans. Signal Process. 67 (15) (2019) 3894–3908.
[15] O. Hutník, Wavelets from Laguerre polynomials and Toeplitz-type operators, Integral Equ. Oper. Theory 71 (2011) 

357–388.
[16] G. Jameson, A simple proof of Stirling’s formula for the gamma function, Math. Gaz. 99 (544) (2015) 68–74.
[17] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Vol. 2 (Vol. 289), John Wiley & Sons, 1995.
[18] H. Knutsen, Daubechies’ time-frequency localization operator on Cantor type sets I, J. Fourier Anal. Appl. 26 (47) (2020) 

47.
[19] H. Knutsen, Daubechies’ time-frequency localization operator on Cantor type sets II, J. Funct. Anal. 282 (9) (2022).
[20] H. Knutsen, A fractal uncertainty principle for the short-time Fourier transform and Gabor multipliers, preprint, arXiv :

2204 .03068, 2022.
[21] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen 

durch Funktionalgleichungen, Math. Ann. 121 (1949) 141–183.
[22] Z. Mouayn, Characterization of hyperbolic Landau states by coherent state transforms, J. Phys. A, Math. Gen. 36 (29) 

(2003) 8071–8076.
[23] F. Nicola, P. Tilli, The Faber-Krahn inequality for the short-time Fourier transform, Invent. Math. 230 (2022) 1–30, 

https://doi .org /10 .1007 /s00222 -022 -01119 -8.
[24] J.P.G. Ramos, P. Tilli, A Faber-Krahn inequality for wavelet transforms, preprint, arXiv :2205 .07998, 2022.
[25] B. Ricaud, B. Torresani, A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math. 

40 (3) (2014) 629–650.
[26] W. Rudin, Principles of Mathematical Analysis, third edition, International Series in Pure and Applied Mathematics, 

McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.
[27] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill Book Co., New York, ISBN 0-07-054234-1, 1987.
[28] K. Seip, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, SIAM J. Math. Anal. 22 (3) 

(1991) 856–876.
[29] N.L. Vasilevski, On the structure of Bergman and poly-Bergman spaces, Integral Equ. Oper. Theory 33 (4) (1999) 471–488.

http://refhub.elsevier.com/S0022-247X(22)00713-2/bib94A990462684A2FBB5DFC7FAB1C8975Ds1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib8414F7BA81ED7AD2A9C4F354740A84A5s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib8414F7BA81ED7AD2A9C4F354740A84A5s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibF34A451D498493FDA413777B5CD99C34s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib937BC256051F9B866F15EBDD6BF3328Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib937BC256051F9B866F15EBDD6BF3328Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibDCC0F5D8C1F5BB9F6BD8B6D092B9BE9Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibDCC0F5D8C1F5BB9F6BD8B6D092B9BE9Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib193DD46D2D222C9A65E268C6BA9CCCCFs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib193DD46D2D222C9A65E268C6BA9CCCCFs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib0A5A4D7386065C6C6AC19C303768C7E1s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib0A5A4D7386065C6C6AC19C303768C7E1s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib4DC74A7D362C910C827BD47EBA4A8865s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib64C3E924CE26A9661D6FABAD15ECFA2Es1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib64C3E924CE26A9661D6FABAD15ECFA2Es1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib2112272A0132ABEBEB037188E89602EBs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibFECF28BD3AD06C80610FF42840E0F85Cs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibE6003BD5CC5A13758533E45A6C361300s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibD675C5CBDE78B754F9BB5FA86D077B46s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibD675C5CBDE78B754F9BB5FA86D077B46s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib3E5B5B3F006DA13ED85C334EEABAB329s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib3E5B5B3F006DA13ED85C334EEABAB329s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibD437EAEE38D3CFD5AAD53A876EDD2960s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibB4DD13A31916796480707D7B75E57B06s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib807712B15A26CD6A6C8A388921F64D03s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib807712B15A26CD6A6C8A388921F64D03s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibE0F06A2D81B9388A0AF2C874642DD567s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib20B5367E8F4AD116D834A917AA702169s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib20B5367E8F4AD116D834A917AA702169s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib90D4AD158E9205A12DE3C84F2423C9D4s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib90D4AD158E9205A12DE3C84F2423C9D4s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibA5E15C0CA04E1B07294322C827BD5802s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibA5E15C0CA04E1B07294322C827BD5802s1
https://doi.org/10.1007/s00222-022-01119-8
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibECBF9B68CEB66AF501EA68BFEC844EBDs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib705610ED3E5EC724F5CB0D76A5FD3AA1s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib705610ED3E5EC724F5CB0D76A5FD3AA1s1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib064675B91E6659A8A12082535AA8582Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib064675B91E6659A8A12082535AA8582Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib8F51C7B55B550140A9E3EBBB68D7B92Fs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibE8B6537B58FE9B898682E101E023E54Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bibE8B6537B58FE9B898682E101E023E54Bs1
http://refhub.elsevier.com/S0022-247X(22)00713-2/bib0A8D23202D6F910262B3D9C8608F5663s1

	A fractal uncertainty principle for Bergman spaces and analytic wavelets
	1 Introduction
	1.1 Fractal uncertainty principles for the Fourier transform
	1.2 Uncertainty and localization

	2 Fractal uncertainty principles for the Bergman space
	2.1 Fractal uncertainty principle for analytic wavelets

	3 The Cantor set
	3.1 The Cantor set in the line
	3.2 The Cantor set in the plane
	3.3 The Cantor set in the disk

	4 Localization to the Cantor set in the disk
	4.1 Eigenvalues of the Cantor-type localization operator
	4.2 Upper bounding the eigenvalues
	4.3 Lower bounding the first eigenvalue
	4.4 Proof of Theorem 2.1

	5 Proof of Lemma 4.3
	Acknowledgments
	References


