Titelangaben
Rühr, Alexander ; Streich, David ; Berger, Benedikt ; Hess, Thomas:
A classification of decision automation and delegation in digital investment management systems.
In: Proceedings of the 52nd Hawaii International Conference on System Sciences, HICSS 2019. -
Grand Wailea, Maui, Hawaii, USA, 2019. - S. 1435-1444
ISBN 978-0-9981331-2-6
Volltext
|
Text (PDF)
Download (602kB) | Vorschau |
|
Link zum Volltext (externe URL): https://scholarspace.manoa.hawaii.edu/handle/10125... |
Kurzfassung/Abstract
Digital investment management systems, commonly known as robo-advisors, provide new alternatives to traditional human services, offering competitive investment returns at lower cost and customer effort. However, users must give up control over their investments and rely on automated decision-making. Because humans display aversion to high levels of automation and delegation, it is important to understand the interplay of these two aspects. This study proposes a taxonomy of digital investment management systems based on their levels of decision automation and delegation along the investment management process. We find that the degree of automation depends on the frequency and urgency of decisions as well as the accuracy of algorithms. Notably, most providers only invest in a subset of funds pre-selected by humans, potentially limiting efficiency gains. Based on our taxonomy, we identify archetypical system designs, which facilitate further research on perception and adoption of digital investment management systems.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Schlagwörter: | autonomous systems, decision automation, decision delegation, robo advisory, taxonomy |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > Juniorprofessur für Digital Finance |
DOI / URN / ID: | 10.24251/HICSS.2019.174 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Begutachteter Aufsatz: | Ja |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 31725 |
Letzte Änderung: 21. Apr 2023 11:48
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/31725/