Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Machine Learning meets Data-Driven Journalism : Boosting International Understanding and Transparency in News Coverage

Titelangaben

Verfügbarkeit überprüfen

Erdmann, Elena ; Boczek, Karin ; von Nordheim, Gerret ; Pölitz, Christian ; Molina, Alejandro ; Morik, Katharina ; Müller, Henrik ; Rahnenführer, Jörg ; Kersting, Kristian:
Machine Learning meets Data-Driven Journalism : Boosting International Understanding and Transparency in News Coverage.
arXiv, 2016

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
http://arxiv.org/abs/1606.05110

Kurzfassung/Abstract

Migration crisis, climate change or tax havens:
Global challenges need global solutions. But agreeing on a joint approach is difficult without a common ground for discussion. Public spheres are highly segmented because news are mainly produced and received on a national level. Gaining a global view on international debates about important issues is hindered by the enormous quantity of news and by language barriers. Media analysis usually focuses only on qualitative research. In this position statement, we argue that it is imperative to pool methods from machine learning, journalism studies and statistics to help bridging the segmented data of the international public sphere, using the Transatlantic Trade and Investment Partnership (TTIP) as a case study.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Zusätzliche Informationen:presented at 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, New York, NY
Schlagwörter:media analysis; data; international; TTIP
Sprache des Eintrags:Englisch
Institutionen der Universität:Sprach- und Literaturwissenschaftliche Fakultät > Journalistik > Juniorprofessur für Digitalen Journalismus
DOI / URN / ID:arXiv:1606.05110
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Nein
KU.edoc-ID:29035
Eingestellt am: 03. Dez 2021 08:47
Letzte Änderung: 21. Feb 2022 22:20
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29035/
AnalyticsGoogle Scholar