Titelangaben
Erdmann, Elena ; Boczek, Karin ; von Nordheim, Gerret ; Pölitz, Christian ; Molina, Alejandro ; Morik, Katharina ; Müller, Henrik ; Rahnenführer, Jörg ; Kersting, Kristian:
Machine Learning meets Data-Driven Journalism : Boosting International Understanding and Transparency in News Coverage.
arXiv, 2016
Volltext
Link zum Volltext (externe URL): http://arxiv.org/abs/1606.05110 |
Kurzfassung/Abstract
Migration crisis, climate change or tax havens:
Global challenges need global solutions. But agreeing on a joint approach is difficult without a common ground for discussion. Public spheres are highly segmented because news are mainly produced and received on a national level. Gaining a global view on international debates about important issues is hindered by the enormous quantity of news and by language barriers. Media analysis usually focuses only on qualitative research. In this position statement, we argue that it is imperative to pool methods from machine learning, journalism studies and statistics to help bridging the segmented data of the international public sphere, using the Transatlantic Trade and Investment Partnership (TTIP) as a case study.
Weitere Angaben
Publikationsform: | Preprint, Working paper, Diskussionspapier |
---|---|
Zusätzliche Informationen: | presented at 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, New York, NY |
Schlagwörter: | media analysis; data; international; TTIP |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Sprach- und Literaturwissenschaftliche Fakultät > Journalistik > Juniorprofessur für Digitalen Journalismus |
DOI / URN / ID: | arXiv:1606.05110 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 29035 |
Letzte Änderung: 21. Feb 2022 22:20
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29035/