Titelangaben
Bischoff, Wolfgang ; Miller, Frank:
Adaptive two-stage test procedures to find the best treatment in clinical trials.
In: Biometrika. 92 (2005) 1.
- S. 197-212.
ISSN 0006-3444 ; 1464-3510
Kurzfassung/Abstract
A main objective in clinical trials is to find the best treatment in a given finite class of competing treatments and then to show superiority of this treatment against a control treatment. The traditional procedure estimates the best treatment in a first trial. Then in an independent second trial superiority of this treatment, estimated as best in the first trial, is to be shown against the control treatment by a size $\alpha$ test.\par We investigate these two trials of this traditional procedure as a two-stage test procedure. Additionally we introduce competing two-stage group-sequential test procedures. Then we derive formulae for the expected number of patients. These formulae depend on unknown parameters. When we have a prior for the unknown parameters we can determine the two-stage test procedure of size $\alpha$ and power $\beta$ that is optimal, in that it needs a minimal number of observations. The results are illustrated by a numerical example, which indicates the superiority of the group-sequential procedures.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Adaptive design; Bayes procedure; Clinical trial; Expected number of patients with respect to a prior; Group-sequential test; Two-stage test; Unknown variance |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
Peer-Review-Journal: | Ja |
Verlag: | Biometrika Trust |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 2764 |
Letzte Änderung: 01. Jan 2010 21:33
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/2764/