Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Crowdsourced logistics : the pickup and delivery problem with transshipments and occasional drivers

Titelangaben

Verfügbarkeit überprüfen

Voigt, Stefan ; Kuhn, Heinrich:
Crowdsourced logistics : the pickup and delivery problem with transshipments and occasional drivers.
In: Networks : an international journal. 79 (2022) 3. - S. 403-426. - 24 S.
ISSN 0028-3045 ; 1097-0037

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1002/net.22045

Kurzfassung/Abstract

This article considers a setting in which a courier, express, and parcel service provider operates a fleet of vehicles with regular drivers (RDs) to ship parcels from pickup to delivery points. Additionally, the company uses a platform where occasional drivers (ODs) offer their willingness to take on requests that are on or near the route they had originally planned. There exist transshipment points (TPs) to better integrate these ODs. ODs or RDs may transfer load at these predetermined TPs. The problem is modeled as a mixed-integer programming model and called pickup and delivery problem with transshipments and occasional drivers (PDPTOD). We develop a solution approach based on an adaptive large neighborhood search. The article provides insights on how the number and location of TPs impact the cost advantages achieved by integrating ODs. It also shows that the cost savings are highly sensitive to the assumed flexibility and compensation scheme.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Supply Chain Management & Operations
DOI / URN / ID:10.1002/net.22045
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Wiley
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:27604
Eingestellt am: 23. Jun 2021 10:20
Letzte Änderung: 19. Jul 2022 16:03
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/27604/
AnalyticsGoogle Scholar