Titelangaben
Bischoff, Wolfgang ; Miller, Frank:
Lack-of-fit-efficiently optimal designs to estimate the highest coefficient of a polynomial with large degree.
In: Statistics & probability letters. 76 (2006).
- S. 1701-1704.
ISSN 0167-7152
Kurzfassung/Abstract
To check regression models, the authors [Optimal designs which are efficient for lack of fit tests. Ann. Stat., to appear; see also J. Stat. Plann. Inference 136, No. 12, 4239--4249 (2006; Zbl 1098.62098)] introduced optimal designs to estimate a parameter in the class of designs which guarantee a certain efficiency with respect to the power of a lack of fit (LOF-) test. One part of such an optimal design is absolutely continuous with respect to the Lebesgue measure and the other part consists of a finite number of mass points. The optimal design to estimate the highest coefficient of a polynomial regression of fixed degree $k-1$ $(\bold e_{k}$-optimal design) in the class of designs with LOF-efficiency of at least $r$ has the same mass points as the classical $\bold e_{k}$-optimal design if $r$ is small enough. We investigate the set of efficiencies $r$ with that property.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | polynomial regression model; efficient designs for lack of fit tests; efficient $\bold e_k$-optimal designs |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
Peer-Review-Journal: | Ja |
Verlag: | North Holland Publ. Co. |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 2755 |
Letzte Änderung: 28. Jan 2010 11:18
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/2755/