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Abstract. Problem definition: We compare several approaches for generating a prioritized
list of items to be counted in a retail store, with the objective of detecting inventory record
inaccuracy and unknown out of stocks. Academic/practical relevance: We consider both
“rule-based” approaches, which sort items based on heuristic indices, and “model-based”
approaches, which maintain probability distributions for the true inventory levels updated
based on sales and replenishment observations. Methodology: Our study evaluates these
approaches onmultiplemetrics using data from inventory audits we conducted at European
home and personal care retailer dm-drogerie markt.Results:Our results support arguments
for both rule-based and model-based approaches. We find that model-based approaches
provide versatile visibility into inventory states and are useful for a broad range of objectives
but that rule-based approaches are also effective as long as they are matched to the retailer’s
goal. We find that “high-activity” rule-based policies, which favor items with high sales vol-
umes, inventory levels, and past errors, are more effective at detecting inventory discrepan-
cies. The best policies uncover over twice the discrepancies detected by random selection. A
“low-activity” rule-based policy based on low recorded inventory levels, on the other hand,
is more effective at detecting unknown out of stocks. The best policy detects over eight times
the unknown out of stocks found by random selection.Managerial implications: Our find-
ings provide immediate guidance to our retail partner on appropriate methods for detecting
inventory record inaccuracy and unknown out of stocks. Our approach can be replicated at
other retailers interested in customized optimization of their counting programs.

Funding: This work was supported by the Bavarian Ministry for Science and Arts [Grant BayInt-
An_KUEI_2018_43] and the EHI Foundation and GS1 Germany [Prize for Best Collaboration
Between Science and Practice in Retail Research (2019)]. A. J. Mersereau thanks the Sarah Gra-
ham Kenan Foundation for support.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.1119.
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1. Introduction
Inventory record inaccuracy (IRI) is defined as dis-
crepancy between a firm’s actual and recorded inven-
tory levels. An examination of IRI by DeHoratius and
Raman (2008) found that 65% of the inventory records
examined at a U.S. retailer were inaccurate. Further
empirical evidence supports the existence of IRI at
comparable orders of magnitude across a variety of
retail contexts (Kang and Gershwin 2005, Beck and
Peacock 2009, Hardgrave et al. 2013, Chuang et al.
2016, Goyal et al. 2016, Barratt et al. 2018, Rekik et al.
2019).

The economic impacts of inaccurate inventory records
include both lost sales and excess inventory costs stem-
ming from inventory uncertainty (Fleisch and Tellkamp

2005, DeHoratius et al. 2008, DeHoratius and Raman
2008), the costs of counting and other corrective proc-
esses, and demand estimation bias (Mersereau 2015).
Of these, a particularly troublesome consequence for re-
tailers is lost sales arising from unknown out of stocks
(OOS). Unknown OOS occurs when an item is out of
stock on the shelf, even though the inventory record in a
computerized system shows positive stock. The advent
of omnichannel retailing magnifies the importance of
eliminating IRI. Retail executives highlight poor inven-
tory record accuracy as a barrier to the effective adoption
of omnichannel fulfillment strategies, such as “buy
online, ship from store” or “buy online, pick up in store”
(Cooke 2013, Kumar et al. 2017). When inventory
records are inaccurate, retailers may cancel customer
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orders scheduled for in-store pickup, leading to cus-
tomer frustration.

We focus on IRI correction through the design of
efficient counting policies. Many retailers periodically
perform an exhaustive count of all store inventory,
often driven by accounting requirements. In addition
or instead, many retailers also periodically count sub-
sets of items in a practice known as cycle counting.
Our primary research objective is to understand how
to prioritize items for cycle counting by identifying
items in a store likely to have inaccurate inventory
records and/or be in an unknown OOS state.

Practitioner recommendations on this prioritization
often hinge on rankings and “ABC” classifications
based on item cost or value, sales volumes, lead time,
or strategic criticality (Piasecki 2003, Sheldon 2004,
Schooneveldt 2010). In the academic literature, there
has been some past work designing counting policies
under various assumptions (e.g., Morey and Dittman
1986, Kök and Shang 2007, DeHoratius et al. 2008, Huh
et al. 2010, Bassamboo et al. 2019, Chen 2021). These
papers typically seek to optimize counting frequency
or count triggering given a mathematical model of
inventory inaccuracy. Although the insights gained
from these analyses are valuable, they rely on assump-
tions that may not hold in retail practice. We believe
that the question of howbest to trigger inventory counts
is ultimately an empirical one and explore herein which
rules and methods work well in practice. We compile
a variety of prioritization approaches identified by
practitioners and academic researchers and compare
their performance across a number of different key
metrics in the context of our retail partner, European
home and personal care retail chain dm-drogerie markt
GmbH + Co. KG (hereafter, “dm”). Our interest is in
the specific problem of generating a store-specific pri-
oritized list of stock-keeping units (hereafter “items”)
to count each morning. We consider policies that gen-
erate this list based on past data including past re-
plenishments, sales, and count observations across
items and stores. We validate various list-generating
policies using a set of physical audits of 500 items at 10
stores conducted by a team of students under our direc-
tion. Given these data, we can evaluate the performance
of a given count priority list by comparing the audited
inventory positions with the inventory records of items
on the list.

We consider two sets of count triggering policies.
What we refer to as “rule-based” policies sort items by
indices based on readily obtained operational metrics,
such as the number of days since the last count, recorded
inventory positions, and sales forecasts. These metrics
reflect those used in retail cycle counting practices of
which we are aware at dm and other retailers. We also
consider “model-based” approaches inspired by explicit
error and inventory models developed in the academic

literature. We find that model-based audit prioritization
methods based on the “Bayesian Inventory Record”
of DeHoratius et al. (2008) yield results that are statisti-
cally indistinguishable from the best policy for all per-
formance measures we considered. These performance
measures include the number of inventory record dis-
crepancies found, the number of positive and negative
inventory discrepancies found, the magnitude of dis-
crepancies found normalized by average inventory lev-
els, and unknown OOS. We also observe that for each of
these performance measures, there is a rule-based heu-
ristic that is also statistically indistinguishable from the
best policy, with different heuristics excelling for differ-
ent performance measures. We find that the best rule-
based policies for detecting IRI favor items with high
levels of sales volume, inventory, and past errors (“high-
activity” policies), whereas the best rule-based policy for
detecting unknownOOS favors itemswith low recorded
inventory levels.

Our results, therefore, support arguments in favor
of both rule-based and model-based approaches. The
model-based approaches provide detailed visibility into
inventory positions, which in the presence of IRI, are
hidden from the manager. This visibility can be readily
adapted to new performance measures. On the other
hand, model-based approaches are complex and require
more effort on estimation and computation than rule-
based approaches, which can be effective as long as the
rule is chosen carefully to match the retailer’s goal. We
also suggest hybrid policies that combine multiple heu-
ristics. Finally, we investigate how the challenges of
detecting inventory errors and the effectiveness of poli-
cies depend on item characteristics.

The remainder of the paper is organized as follows.
In Section 2, we review related literature on inventory
record inaccuracy and on counting policies. We intro-
duce our retail partner in Section 3 and summarize the
data collected. Section 4 includes descriptions of all of
the audit prioritization policies considered. We pro-
vide detailed results on the performance of each policy
in Section 5 and provide additional analyses in Section
6 before concluding in Section 7.

2. Review of Related Literature
The academic literature on inventory record inaccuracy
falls primarily into one of two streams. One stream
focuses on empiricalmeasurement and the identification
of IRI drivers in various settings. DeHoratius and
Ton (2015) survey existing research in this stream. A sec-
ond stream models decision making in settings where
inventory records are inaccurate. Several papers (e.g.,
Bensoussan et al. 2007; 2011; Atali et al. 2009, Mersereau
2013) consider inventory replenishment decisions but
not counting decisions in settings with inventory inac-
curacy. Chen and Mersereau (2015) provide a review of
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this work. Other papers focus on the value of tracking
technologies, like radio frequency identification (Gaukler
et al. 2007, Lee and Özer 2007, Camdereli and Swamina-
than 2010, Hardgrave et al. 2013).

Early academic work on counting in inaccurate in-
ventory systems explores how frequently to conduct
inventory counts to meet a prespecified accuracymetric
(Iglehart and Morey 1972, Morey 1985, Morey and
Dittman 1986). In multiple-item inventory systems, a
typical approach is to prioritize counts across items
according to ABC classification schemes, in which high-
priority “A” items get counted more frequently than
lower-priority “B” or “C” items. Priorities are deter-
mined based on item cost, sales volume, item “value”
(often defined as cost times volume), supply lead time,
or criticality (Cantwell 1985, Stahl 1998,Muller 2011).

Our work differs from these approaches in a few
ways. First, scheduling counts according to predeter-
mined frequencies is static, in that count triggering is
not adapted to real-time observations. Instead, most
of the policies we consider are dynamic count triggers
that account for evolving sales and replenishment
information. We are interested in detecting individual
items in need of corrective action in the short term,
thereby improving record accuracy in the long term.
Second, because our work focuses on the detection of
IRI and OOS, we do not attempt to account for item
cost and criticality.

A recent stream of academic literature seeks to opti-
mize inventory counts based onmathematical models of
inventory and error processes. Kök and Shang (2007)
characterize a joint inspection and replenishment policy
based on a mean-zero random error process perturbing
the physical inventory each period. DeHoratius et al.
(2008) use the Bayes rule to maintain a probabilistic
belief of the inventory level each period that depends on
observations of sales and replenishments given a general
discrete error process and a particular model of inven-
tory dynamics and error accumulation. They propose a
heuristic audit triggering policy based on this probabilis-
tic belief. Huh et al. (2010) and Bassamboo et al. (2019)
show that the problem of jointly optimizing audits and
replenishment can be simplified in environments satis-
fying certain assumptions. Chen (2021) formulates a
model in which an item’s true inventory position can be
secretly reduced to zero in a period with some probabil-
ity. They show that an optimal inspection policy is to
inspect whenever the number of consecutive zero-sales
days exceeds a threshold. These papers differ from each
other in their assumptions about inventory dynamics,
objectives, and what is observable by the decision
maker. Following Chen (2021), two of our rule-based
approaches rely on strings of zero-sales days. Further-
more, we implement two model-based approaches in
our comparisons: one following the work of DeHoratius
et al. (2008) and one employing core assumptions of Kök

and Shang (2007). Our retail setting does not satisfy
the structural assumptions needed for the simplifica-
tions of Huh et al. (2010) and Bassamboo et al. (2019)
to hold, namely one-sided errors and inventory becom-
ing known upon stockouts and replenishments. These
papers also optimize joint replenishment and audit deci-
sions, whereas replenishment optimization is beyond
the scope of ourworkwith dm.

Like us, Chuang et al. (2016) and Montoya and
Gonzalez (2019) both validate approaches for detect-
ing inventory anomalies with data from the field.
Chuang et al. (2016) partner with an external retail
service provider to deploy auditors to stores in order
to correct out of stocks, and they monitor these inter-
ventions over 12 weeks for four items in 60 stores.
Their primary objective is to measure the system
impact of implementing an external audit and correc-
tion program. Their policy triggers an intervention
when a predetermined number of consecutive days
of zero sales occurs, an approach similar to one of
our rule-based policies. Montoya and Gonzalez (2019)
propose a hidden Markov model (HMM) to detect
when sales patterns may indicate an OOS situation,
and they validate their approach based on inspec-
tions of 14 items in 10 stores at a big box retailer.
They model transitions among HMM states as func-
tions of daily prices (which we do not have), but they
do not make use of replenishment data or inventory
records (which we do have).

In contrast to previous work, we test a variety of
audit triggering mechanisms from practice and exist-
ing research on their ability to detect IRI and unknown
OOS in the field. Our paper responds to calls for work
that synthesizes various heuristics (Zipkin 1986) and
that validates models with data (Fisher et al. 2020).

3. Research Setting and Data
We introduce our retail partner, dm, and review its
current counting procedures. We also describe the
process whereby we collected our data and present
some descriptive statistics.

3.1. Field Setting and Data
3.1.1. Background on Retail Partner. Our partner, dm,
is a market-leading home and personal care retail
company in Europe, operating over 3,600 stores in 13
European countries. dm is headquartered in Germany,
where 55% of its stores are located. The assortment of
dm consists of approximately 12,500 items in catego-
ries including beauty, health, baby, personal care, and
household products. Nearly all items are distributed to
stores via retailer-operated distribution centers. The
company has made efforts in recent years to improve
in-store operations, including revamping their logistics
planning procedures, optimizing store deliveries so as
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to reduce backroom inventories, and improving inven-
tory accuracy to display in-store inventory quanti-
ties online.

To better understand dm’s existing inventory accu-
racy practices, we reviewed internal documents
describing store practices and conducted field visits to
stores, distribution centers, and corporate headquar-
ters. During these field visits, we observed counting
practices, interviewed store employees, and met with
senior executives of the inventory and supply chain
teams at dm. We identified three categories of existing
counting practices.

1. dm has in place annual counting plans by product
category to uphold a legal obligation to count each item
at least once per year and to count high-theft items in the
last months of the fiscal year. Auditing advisors design
these counts together with dm’s financial department
and support from the retailer’s information technology
system.

2. dm also conducts daily counts at each store using
a counting list that is generated automatically for each
store and day. This list includes all items that show
some data irregularities or other abnormalities: for
example, items showing negative system inventory
records and items showing no sales within a time span
determined by the item’s average sales volume.

3. dm regularly executes “zero-balance walks,” which
complement the daily counting lists. Store employees
walk through the stores and backrooms and note items
that appear to be out of stock. Store employees also are
encouraged to count items presumed to have too little
inventory to cover demand until the next shipment
arrives or itemswith exceptionally high inventory. There
are guidelines in place recommending how this process
should be conducted in an individual store, but detailed
records of zero-balance walks are typically not kept.
There are enough degrees of freedom in executing the
procedure that we have no assurance that zero-balance
walks are performed the sameway in each store.

The management of dm deemed zero-balance walks
to be inefficient, as most situations with zero stock did
not correspond with inaccurate inventory records.
dm’s collaboration with us was driven, in part, by a
desire to add sophistication to the generation of the
daily counting lists so as to focus labor attention on
those items most likely to have inaccurate records.

3.1.2. Description of Company Data. In addition to the
qualitative insights regarding various counting proc-
esses gathered through our field tests, we also col-
lected archival data relating to 150 dm stores located in
the state of Bavaria in Germany and 5,000 items
sampled from most of dm’s product categories (except
for categories consisting mostly of short-lived promo-
tional and seasonal items). These data include static
store data (e.g., store type), static item-level data (e.g.,

product category), store-specific item data (e.g., rotation
speed class), and dynamic store-specific item data
(including records of deliveries, sales, inventory re-
cords, and counting results and corrections). We ob-
tained delivery, sales, and inventory data for a period of
one-year prior to the start of our project. Historical
counts span a period two years prior to the start of
our project.

3.1.3. Audit Data Collection. We designed and exe-
cuted a series of physical inventory audits for a subset
of items and stores to supplement the archival com-
pany data we collected. These audits serve as a valida-
tion set for our audit triggering policies. A group of
students from the Ingolstadt School of Management
at the Catholic University of Eichstätt-Ingolstadt in
Germany executed the audits under our direction. For
feasibility, we focused on 10 stores within a reason-
able travel distance for the students, including a store
close to the main train station in Munich located 80
kilometers away from the school. Although we were
unable to choose a geographically representative set
of dm stores because of practical constraints, we chose
stores to exhibit diverse characteristics with respect to
size, turnover, and location type (city area, rural area,
shopping mall, etc.). Table 3 in Online Appendix A
provides an overview of the main store characteristics.
(All appendices can be found in the online appendix.)

We defined 2 counting days per week for each store
over a period of eight weeks during the spring of
2017, resulting in a total of 16 counting days per store.
On each counting day, student teams counted an
identical set of items in each of the 10 stores. Student
teams counted on weekdays before replenishment
deliveries took place to avoid confusion with newly
arriving units. Counts were also scheduled soon after
store opening to minimize the complication of cus-
tomers with units in their shopping baskets. We
adjusted the counting data to account for any sales
that occurred between the store opening and the time
when an item was counted.

We employed a total of 40 undergraduate and 10
graduate students to perform the counting. Teams of
five students collected data in each store, with two
groups of two undergraduate students each counting
approximately 250 items per store. (Each student in
the group counted the same items as a double check.)
Each team included one graduate student who super-
vised the two counting groups; monitored multiple
placements of items, backroom inventory, etc.; and
served as a substitute if one of the counting students
was absent on a given day. Students did not make cor-
rections in dm’s inventory system, and we directed
students not to move or alter inventory in the stores.
The counts were executed manually with the assis-
tance of handheld devices to scan items, which helped
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avoid mix-ups between similar-looking items. The
students recorded the inventory quantity on the shelf,
secondary placements, and backroom inventory. The
students were also advised to check nearby shelf posi-
tions for misplaced items.

We focused on themain assortment of dm consisting
of nine categories: hair, housekeeping, health, baby,
body care, personal hygiene, pet, paper goods, and
cosmetics. We excluded items that dm did not offer on
a regular basis and auxiliary items, such as clothing
and accessories. From each of the nine categories, we
selected two product groups that reflect representative
sales patterns and price characteristics within the cate-
gory. The chosen product groups show similar distri-
butions of price classes and rotation speed classes to
their overall categories. To simplify the counting proc-
ess, we favored pairs of groups in each category that
were typically located close together on the same shelf.
Table 4 in Online Appendix A lists the product groups
chosen for our empirical study.

We selected 15–60 items per chosen product group,
yielding between 523 and 574 items per store. The
number differed across stores because not all items
were carried in all stores, and some items in our selec-
tion were delisted during the counting horizon. In the
end, we received counting and inventory data for
approximately 500 items that were carried in all 10
stores for the entire eight-week counting horizon.

3.2. Descriptive Statistics
We present herein a few key characteristics of the
counting data we collected. Because of autocorrelation
between counts executed on different days, we focus
here and in our subsequent analysis on one of our
counts executed during the thirdweek of counting. Fig-
ure 1 shows the distribution of inventory discrepancies
for that count expressed in absolute terms and relative
to average inventory. Discrepancies are measured as
system inventory recorded minus actual inventory

found. Thus, positive (negative) discrepancies indicate
missing (excess) stock. We observe that there are sub-
stantial numbers of both positive and negative dis-
crepancies, with positive discrepancies (system greater
than actual; also known as “phantom inventory”) being
more prevalent than negative ones (system less than
actual; also known as “hidden inventory”). These obser-
vations are consistent with the findings of DeHoratius
and Raman (2008), although we see just 31% of the
items at dm showing nonzero discrepancies in contrast
to 65% of the items at the “Gamma Corporation” of
DeHoratius and Raman (2008).

Figure 2 shows the variation in inaccuracies and
unknown OOS across stores. We see considerable
across-store variation, with inaccuracy rates varying
from 19% to 45% and unknown OOS varying between
0.4% and 2.0% among the 10 stores in our study. Fur-
thermore, for each store we see discrepancies in both
positive and negative directions, with positive (system
greater than actual) discrepancies more likely than
negative (system less than actual) ones in every case.
Figure 4(a) reveals that this store variation correlates
with store transaction volume, which is not surprising
given that customer activity and replenishment activ-
ities correlate with many of the known underlying
causes of inaccurate inventory records (DeHoratius
and Raman 2008).

Figure 3 reveals similar heterogeneity of inaccura-
cies and unknown OOS across the nine product cate-
gories in our study, with inaccuracies ranging from
18% to 42% and unknown OOS ranging from 0.3% to
1.8%. Similar to the store-level breakdown, here we
see that positive discrepancies occur more frequently
than negative discrepancies in all product categories.

Finally, Figure 4 shows an inverse relationship be-
tween inventory inaccuracy rates and item prices and a
positive correlation between inventory inaccuracy and
inventory turns. (Prior research (e.g., Gaur et al. 2005)
highlights the inverse relationship between price and

Figure 1. (Color online) Distributions of Inventory Discrepancies at the Store-Item Level Detected in OurWeek 3 Count Meas-
ured as Absolute Discrepancies and Relative to Average Inventory Levels
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inventory turns.) These findings foreshadow the strong
performance of a count triggering policy based on sales
volume.

4. Counting Policies
We compare several policies for prioritizing the items
to be counted at a given point in time in a given store.
These include “rule-based” policies that sort items by
easily obtained operational metrics and “model-
based” methods that use multivariate data inputs to
maintain probabilistic beliefs around true inventory
levels. Each policy produces a sorted list of items by
store, which we evaluate using the audit data col-
lected by our student teams.

In what follows, we index days by t and items by
i � 1, : : : ,n. At a given store location, we let uit indicate
the (typically unobserved) actual inventory level of item
i at the beginning of day t prior to any replenishments

or sales (also known as “actual stock”). We use the nota-
tion ûit to denote the system inventory record for item
i at the beginning of day t updated by subtracting
sales and adding replenishments arriving that day (also
known as “system stock”). We assume that a replenish-
ment yit ≥ 0 of item i is received at the beginning of
day t. We let sit ≥ 0 indicate the unit sales observed for
item i during day t, and we define σi(t) � r as the most
recent day r, prior to day t, for which sir > 0. We let
τi(t) � r indicate the day r of the most recent count of
item i prior to day t.

For some of the policies, we will make use of dm’s
proprietary demand forecasts ŝit as inputs, where ŝit
represents a point forecast of unit sales of item i in day
t. The company derives a forecast for every item in
every store one week in advance using the Forecast &
Replenishment module of SAP Retail. In dm’s configu-
ration of this forecasting tool, more than 20 different

Figure 2. Proportion of Items Found with Positive and Negative Inventory Discrepancies and Unknown OOS Broken
Down by Store

Note. Stores are sorted in decreasing order of their total inventory inaccuracy rates.

Figure 3. Proportion of Items Foundwith Positive and Negative Inventory Discrepancies and UnknownOOS Broken Down by
Item Category

Note. Categories are sorted in decreasing order of their total inaccuracy rates.
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forecasting methods are performed in parallel (e.g.,
various exponential smoothing and regression-based
models). The various models are then evaluated on a
rolling-horizon basis, and the most promising model is
chosen for the ensuing weeks. Finally, the weekly fore-
casts are broken down to daily forecasts using percen-
tages estimated at the product subgroup level.

4.1. Rule-Based Counting Policies
In practice, many retailers prioritize their counting
efforts by indexing items based on basic operational
metrics. We present several such methods here. We
categorize most of the rule-based policies we consider
into two categories: “high-activity” rule-based policies
that tend to prioritize items with high levels of retail
activity (measured in terms of sales volume, system
inventory, or past errors) and “low-activity” rule-
based policies that tend to prioritize items with slow or
zero sales or low inventory. Our explorations of dm’s
data (e.g., Figure 4(a)) suggest that inventory inaccura-
cies correlate with high levels of retail activity, and our

experience with other retailers suggests that similar
correlations hold in other retail settings. Therefore, we
expect that high-activity policies will perform rela-
tively well at detecting IRI. On the other hand, we
hypothesize that low-activity policies may work better
at detecting unknown OOS given that (i) unknown
OOS is more likely to occur when recorded inventory
levels are low and (ii) lack of sales can signal OOS con-
ditions. We test multiple policies from each category to
see which works best in our setting and in which situa-
tions. Table 1 summarizes the rule-based policies we
consider.

4.1.1. High-Activity Rule-Based Counting Policies. We
will nickname as “SALES” a heuristic that ranks items
in decreasing order of sales accumulated since the most
recent recorded inventory count. That is, this heuristic
prioritizes items i in a store in decreasing order of the
following quantity at time t:

∑t−1
r�τi(t) sir. This policy

accounts for the sales rates of items while emphasizing
items that have not been counted recently. We would

Table 1. Summary of the Rule-Based Count Prioritization Policies Considered

Grouping Policy Description

High activity SALES Decreasing order of sales since the most recent count
INVENTORY DEC Decreasing order of system stock
PAST ERROR Decreasing order of historical error rate extrapolated from

the most recent count
Low activity INVENTORY INC Increasing order of system stock

FORECASTED SALES Decreasing order of forecasted sales since last actual sale
RELATIVE DAYS Decreasing order of days since previous sales divided by

forecasted days per sale
Other DAYS Decreasing order of days since most recent count

Figure 4. (a) Relationship Between Observed Inaccuracy Rates and Transaction Volume for the 10 Stores Included in Our
Physical Audits, (b) Observed Inaccuracy Rates of Items by Price Quartile

(a) (b)

Notes. Bubble sizes are proportional to the average inventory turns within the price quartile.
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expect it to work well in settings where errors accumu-
late proportionally to transaction volume.

The policy “INVENTORY DEC” ranks items in
decreasing order of their system inventory records ûit.
Items with high inventory records tend to be fast
movers, which may incur frequent errors in the course
of heavy replenishment and sales volumes. On the
other hand, we expect this policy to perform relatively
poorly at detecting unknown OOS because high
inventory levels typically include safety stock to pro-
tect against stockouts.

The policy “PAST ERROR” incorporates past count
results in a relatively straightforward way. Specifi-
cally, we estimate the historical error rate observed for
an item-store combination over the past two years
and then extrapolate this error rate from the last audit
event to the present. That is, we sort items in a store in
decreasing order of the quantity η̂it[t− τi(t)], where η̂it
is an estimated error rate for item i. We generate esti-
mates η̂it by smoothing absolute deviations detected
in past audits using a linear regression model involv-
ing store and item fixed effects.

4.1.2. Low-Activity Rule-Based Counting Policies. The
policy “INVENTORY INC” sorts items based on sys-
tem inventory records ûit just like the “INVENTORY
DEC” policy but in an increasing direction rather than
a decreasing direction. This prioritizes items likely to
have negative, zero, or low inventory levels, which
are, therefore, vulnerable to unknown OOS.

The policies “FORECASTEDSALES” and “RELATIVE
DAYS” specifically detect items with strings of days
with zero sales, which may signal unknown OOS states
(Chen 2021). This logic is reflected in dm’s current
counting efforts, as discussed in Section 3.1. The policy
nicknamed “FORECASTED SALES” ranks items in
decreasing order of the accumulated expected sales
forecast since the most recent day with positive sales;
that is,

∑t−1
r�σi(t)+1 ŝir.

The policy “RELATIVE DAYS” relies on an alterna-
tive assessment of time without positive sales, where
we normalize this time using the sales forecast. Here,
we sort items in a store in decreasing order of the index
(t− σi(t))=ẑit, where ẑit is an estimate of the expected
time between positive sales events for item i. Our
approach to calculating ẑit is based on the retailer’s
proprietary forecast ŝit. Starting in the day following
the most recent positive sales observation, we count
the number of days for the cumulative unit sales fore-
cast to exceed one. That is, ẑit � arg min{z :∑t−1

r�t−z
ŝir ≥ 1}. This quantity is one day for many items but
can be up to a fewweeks for slow-moving items.

Although low-activity policies will tend to pick
up on signals indicating OOS, they may miss nega-
tive (system less than actual) IRI and small positive

IRI that are unlikely to impact sales patterns or induce
exceptionally low inventory records. This may limit
their effectiveness at detecting IRI.

4.1.3. Time Since Last Count (DAYS) Policy. Our rule-
based heuristic “DAYS” sorts items in decreasing
order of the number of days since the last recorded
inventory count, t− τi(t). This policy reflects a com-
mon logic behind many cycle counting policies in
practice, which is to count items on a common fre-
quency. This would naturally work well in settings
where errors accumulate uniformly across items and
over time, and therefore, it does not fit naturally in
either our “high-activity” or “low-activity” categories.

4.2. Model-Based Probabilistic Inventory Records
We implement two approaches that maintain probabil-
ity distributions around the amount of physical inven-
tory available (i.e., probabilistic inventory records).

4.2.1. Bayesian Probability Record (BAYESIAN). Fol-
lowing the work of DeHoratius et al. (2008), we con-
struct a probabilistic inventory record calculated based
on a particular model of inventory and error dynamics.
In particular, the model assumes (1) that inventory dis-
crepancies result from a hidden daily random process
we call “invisible demand” that impacts actual stock
but not system stock, (2) that invisible demand occurs
each day following the arrival of legitimate “visible”
demand (which can increase actual inventory or reduce
it by any discrete amount up to uit and may be statisti-
cally dependent on visible sales in the same day), and
(3) that replenishments are delivered at the beginning
of a day and are assumed to be recorded accurately.

A probabilistic inventory record is a vector of prob-
abilities pit(u) for u � 0, 1, : : : , where pit(u) is the proba-
bility of u being the actual inventory level of item i
at the beginning of day t, conditional on the actual
stock uiτi(t) as of the last count and the ensuing
sequence of replenishment observations yiτi(t), : : : ,yi,t−1
and sales observations siτi(t), : : : , si,t−1. That is, pit(u) �
Pr{Uit � u | φit}, where φit�{uiτi(t),yiτi(t), : : : ,yi,t−1, siτi(t),
: : : , si,t−1}.

We further assume that the following probability
distributions are known. The probability mass func-
tion (pmf) πit(d) describes visible demand for item i in
day t. The pmf θit(v; sit) describes invisible demand
for item i in day t, potentially dependent on observed
sales sit. We discuss the estimation of these pmfs in
Section 4.2.3 and Online Appendix B.2. Online Appen-
dix B.1 shows how the Bayesian probabilistic inven-
tory record pit(·) can be updated each day based on
observed data, and Section 4.2.3 discusses how we pri-
oritize items for counting based on a set of pit(·).
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The BAYESIAN approach is designed to explicitly
account for historical error rates and the information
included in sales observations. However, this comes
at the expense of some mathematical complexity, sev-
eral modeling assumptions (listed), and the burden of
estimating demand and invisible demand probability
distributions. An open question we seek to answer in
Section 5 is whether the potential benefits are realized
in a setting in which the assumptions may not hold
and the inputs must be estimated from available data.
Of course, there are potential innovations to themodel,
assumptions, and estimation beyond what we present
here, and so, we can view our results as representing
a lower bound on what is possible with the BAYE-
SIAN approach.

4.2.2. Convolution-Based Probability Record (CONVO-
LUTION). Here, we maintain an alternative probabil-
ity distribution qit(·) of inventory for item i under a
simplified set of assumptions. In particular, we allow
the distribution qit to have support for negative inven-
tory positions. Unlike the Bayesian approach of the
previous subsection, here we ignore the signaling
effect of sales observations on the underlying inven-
tory state. This is justifiable when an item’s inventory
level is typically much larger than inventory discrep-
ancies, and therefore, we expect the CONVOLUTION
approach to perform relatively well for high-service
level items and when detecting OOS is not a priority.
Updating qit(·) under these assumptions is much sim-
pler than in the previous case and can be expressed as
a convolution of the previous day’s inventory distri-
bution and the invisible demand pmf:

qi,t+1(u) �
∑+∞

z�−∞
θit(z− u− sit + yit; sit)qit(z): (1)

The assumptions underlying this model are similar
to those in Kök and Shang (2007), although that paper
assumes that errors follow a normal distribution rather
than the discrete distribution we assume here.

4.2.3. Operationalizing Counts Based on Probabilistic
Inventory Records. Armed with a probabilistic inven-
tory record (either pit(·) or qit(·) for each item i in day
t), we index items in a store in various ways for the
purpose of prioritizing counts, depending on the per-
formance metric of interest. For detecting OOS, we
rank items in decreasing order of pit(0) (or

∑0
u�−∞

qit(u)), the assessed probability that each item has non-
positive inventory available. We detect inventory dis-
crepancies (i.e., IRI), however, by ranking items in
decreasing order of the variances of the probability
distributions described by pit(·) or qit(·). We will in-
troduce other ways to rank items based on pit(·) and
qit(·) in later sections.

In order to implement the probabilistic inventory
records, we require probability mass functions πit(·)
describing visible demand and probability mass func-
tions θit(·; sit) describing invisible demand. In Online
Appendix B.2, we describe a procedure for estimating
the invisible demand pmf θit(·; sit). To estimate the visi-
ble demand distribution πit(·), we estimate its mean
using the firm’s proprietary forecast for the day.We esti-
mate an overall variance by taking the mean squared
difference between the firm’s forecasts and actual sales
by day, and we estimate daily variances by scaling the
overall variance by the term [ŝit= Mean(ŝi·)]2, where the
mean in this expression is taken over a year of past data.
This “denormalization” produces a constant coefficient
of variation over time. We fit a negative binomial distri-
bution (when mean is less than variance) or binomial
distribution (when mean is greater than variance) by
matching of moments. We find that the results benefit
from the added complexity of this model compared
with a simpler model using Poisson distributions with
means calibrated to the firm’s forecasts ŝit.

5. Results
In this section, we test the performance of the counting
methods described in Section 4 using historical simula-
tion. We seek to answer several questions, including
the following. How do rule-based approaches compare
with model-based ones? Which rule-based approaches
perform best for various performance metrics? What
are the benefits of detailed models, such as the BAYE-
SIANmodel, andwhen can these benefits be realized in
a practical setting?

We use available data to rank the items to audit in
each store among our focal product categories prior to
our third week of counting. We then evaluate each
ranked list using the actual observations made during
our third week count. Note that we exclude the first
two weeks of counting because we view them as a
learning opportunity for students to familiarize them-
selves with the stores and counting process. Further-
more, because our counts do not result in corrections,
there is significant correlation among the results in
different weeks of our counts. We find that our results
do not differ substantially when using data from other
weeks to evaluate policy performance.

As it is too costly for a retailer to count every item
in the store every day or every week, we evaluate per-
formance across different lengths of counting lists.
Specifically, we determine the number of items to
count as a percentage of items available, and we refer
to this percentage as “counting depth.” That is, a
counting depth of x% reflects an assumption that
labor is available to count x% of items on each priori-
tized list. We consider counting depths ranging from
0% to 4%. A typical store at dm includes roughly
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10,000 items in its core assortment, which means that
a 1% counting depth would translate to counting
approximately 100 items.

We evaluate policy performance using a variety of
metrics used in practice. For example, retailers seeking
to identify inventory theft or shrink may set an objec-
tive of identifying positive discrepancies (i.e., when
actual inventory is less than the inventory record).
Other retailers may be more focused on unknown OOS
detection. Even within the same retail organization,
counts may be used for multiple purposes. Retail loss
prevention teams, for example, may conduct counts
to identify theft, whereas item availability teams may
count tomeasure andmanage stockouts.

We will evaluate performance using several metrics
in what follows (Sections 5.1–5.4). In Section 5.5, we
make some general observations and obtain further
insights by breaking our results down by certain item
covariates.

5.1. IRI Detection
Here,we explore the effectiveness of eachpolicy at detect-
ing the presence of any discrepancies between recorded
and actual inventory levels. Figure 5(a) shows the per-
centage of inaccuracies detected among all existing inac-
curacies for each policy as a function of counting depth.
For example, counting 1% of the available items chosen
using the SALES audit method would uncover 2.17% of
the inaccuracies in our data; counting 4% of available
items using the same method would uncover 8.66% of
the inaccuracies. These curves are increasing; regardless
of the policy used, a retailer able to dedicate more resour-
ces to countingwill tend to detectmore errors.

Figure 5(a) reveals that each of the policies tested,
with the exception of INVENTORY INC, performs
at least as well as random sampling. The SALES
and BAYESIAN policies uncover over twice the inac-
curacies as random selection and outperform other
methods regardless of the quantity counted. The per-
formances of the two policies, evaluated at a 4%
counting depth, are not statistically different from
one another at the 10% significance level, but their
performances are each significantly different from
the performances of the remaining policies. (Hypoth-
esis tests are based on variation across stores. A full
set of difference test results is included in the online
appendix.) Of course, a retailer may not be indiffer-
ent between these policies when it comes to imple-
mentation. The SALES approach is especially easy to
implement compared with more complicated meth-
ods, whereas BAYESIAN requires more involved
computation and parameter estimation.

Among the remaining policies, we see that prioritiz-
ing counts based on the low-activity policy INVEN-
TORY INC (i.e., sorting in increasing order of inventory
records) yields the worst performance, and we find that
the best-performing high-activity policy (SALES) detects
approximately twice as many discrepancies as the low-
activity policies RELATIVE DAYS and FORECASTED
SALES. As we will see later, INVENTORY INC per-
forms considerably better when the retailer is trying
to detect unknown OOS. The fact that SALES outper-
forms the other high-activity policies PAST ERROR and
INVENTORY DEC suggests that there is a benefit to
monitoring real-time activity versus looking solely at
historical measures of error or activity.

Figure 5. (Color online) (a) Results onDetecting IRI as a Function of Counting Depth, (b) Results on Detecting Relative Inventory
Discrepancies (i.e., |Discrepancy|Divided by the Average Inventory Position over the Past Year) as a Function of CountingDepth

(a) (b)

Notes. The dashed lines represent the expected performance of a counting policy that selects items at random. We indicate statistical significance
and the random selection benchmark using the same conventions in several figures to follow. Asterisks indicate that the labeled policy’s perform-
ance is significantly different from the best-performing policy at a 4% counting depth at the 10% (*), 5% (**), and 1% (***) significance levels.

***1% significance level; **5% significance level; *10% significance level.
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Among the two model-based policies, recall that the
BAYESIAN policy uses sales observations as signals
of the true inventory position (i.e., low sales may indi-
cate low stock), whereas the CONVOLUTION policy
ignores this information. We see from Figure 5(a) that
the added sophistication of the BAYESIAN policy
seems to pay off when detecting IRI in our data.

5.2. Relative IRI Detection
The results of Figure 5(a) do not distinguish major
errors from minor ones, but some retailers may find it
useful to consider the relative severity of an error.
Ernst et al. (1993), for example, argue that normalizing
the absolute difference between recorded and inven-
tory record by the recorded inventory is a good metric
for distinguishing among items. A discrepancy of 2
units may be perceived differently when there are 100
units in the record compared with 5 units.

Figure 5(b) shows the performance of each of our
policies when we measure success using a relative
error metric. For each item, we calculate the absolute
deviation between recorded and actual inventory lev-
els and divide by the average recorded inventory
quantity over the year prior to our count. We evaluate
each approach based on the total of weighted discrep-
ancies found across all items and averaged across
stores. For the model-based policies (BAYESIAN and
CONVOLUTION), we form counting lists by prioritiz-
ing items according to criteria specific to the evaluation
metrics; specifically, we rank items by the expected
discrepancy implied by pit(·) or qit(·) divided by the
average inventory record over the past year.

Here, we see that the BAYESIAN and CONVOLU-
TION approaches are similar in their effectiveness, with
an advantage of these approaches being the ability to

customize how they prioritize items to the relative error
metric. Among rule-based policies, SALES performs
well for relative IRI detection as it did for detecting the
presence of IRI, but in fact, only the DAYS, INVEN-
TORY INC, and PAST ERROR results in Figure 5(b) are
significantly different from BAYESIAN at the 10% sig-
nificance level for a 4% counting depth.

It is insightful to compare the performances of count
policies across the IRI and relative IRI metrics. Figure 6
reexpresses the IRI and relative IRI results as percen-
tages of the maximum possible discrepancies that
could be found at each counting depth by an oracle
with full knowledge of actual discrepancies. This view
reveals that detecting relative inventory discrepancies
is considerably more challenging than detecting the
presence of discrepancies. For example, at the 4%
counting depth, the top-performing policies detect
nearly 70% of possible IRI discrepancies in the left
panel of Figure 6, whereas the top-performing policy
in the right panel detects just 15% of relative IRI. We
believe this is because much of the item-level IRI at our
site is correlated with activity, which in turn, is corre-
lated with inventory levels. Once we in essence control
for inventory levels through the relative IRI metric, the
weighted discrepancies become harder to identify.
Indeed, some of the items with the largest relative IRI
are low-volume and low-inventory items for which the
denominator in the relative IRI metric is small. The
low-activity policies INVENTORY INC and FORE-
CASTED SALES performwell for low counting depths
in Figure 6 in part because they prioritize some of
these low-inventory items. The other policies all show
upward-sloping performances as a function of count-
ing depth in the right panel of Figure 6. This suggests
that some of the items with the largest relative IRI are

Figure 6. (Color online) Comparison of IRI and Relative IRI Detection Results as Percentages of Maximum Possible Discrepan-
cies Detectable at Each Counting Depth

Notes. The dashed lines represent the expected performance of a counting policy that selects items at random. We indicate statistical significance
and the random selection benchmark using the same conventions as in Figure 5. Asterisks indicate that the labeled policy’s performance is signif-
icantly different from the best-performing policy at a 4% counting depth at the 10% (*), 5% (**), and 1% (***) significance levels.

***1% significance level; **5% significance level; *10% significance level.
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“needles in the haystack” that are difficult to detect
using sales volumes and past error histories.

5.3. Positive and Negative IRI Detection
In addition to knowing whether a discrepancy exists,
some retailers also care about the direction of the dis-
crepancy. Positive discrepancies, which arise when an
item’s inventory record exceeds what is physically
present in the store, can indicate “shrink” (or stock loss)
that is a significant concern for many retailers. Such dis-
crepancies are problematic because they may be a sign
of inventory theft in the store, and they can lead to the
phenomenon of “freezing” (Kang and Gershwin 2005),
where the automated inventory system fails to replenish
a stocked-out item because the inventory record is
greater than the reorder point. Negative discrepancies
exist when the actual quantity on the shelf is greater
than the recorded quantity. In these cases, the store has
more inventory than expected. Some retailers may place
more emphasis on identifying, correcting, and prevent-
ing discrepancies in one direction over another. We,
therefore, evaluate each of the counting methods on
their ability to distinctly detect positive and negative IRI.
Figure 7 presents the percentage of negative deviation
events detected and the percentage of positive deviation
events detected for each of our tested policies.We priori-
tize items for the model-based methods based on the
variance of the probabilistic inventory records for both
metrics.

When detecting positive IRI (system greater than
actual), SALES is the best-performing policy across
counting depths, with the other high-activity policies
(INVENTORY DEC, PAST ERROR) and the BAYE-
SIAN policy among the best-performing policies. The
remaining five policies’ performances (FORECASTED

SALES, RELATIVE DAYS, INVENTORY INC, DAYS,
CONVOLUTION) are statistically different from that
of the best-performing SALES policy.

When detecting negative IRI (system less than
actual), the BAYESIAN policy performs best across
various counting depths, with SALES ranking second
for most counting depths. At a 4% counting depth
and at the 10% significance level, the performances of
the BAYESIAN, SALES, CONVOLUTION, DAYS,
and PAST ERROR policies are not statistically differ-
ent from one another. None of the low-activity rule-
based policies (INVENTORY INC, FORECASTED
SALES, RELATIVE DAYS) are among the best per-
formers for the negative IRI metric.

Overall, our results suggest that the SALES and
BAYESIAN policies provide retailers with the most
flexibility in detecting IRI, relative IRI, and both posi-
tive and negative IRI. Although the simpler CONVO-
LUTION model-based method performs comparably
with BAYESIAN for certain metrics (e.g., relative IRI),
BAYESIAN provides more consistently strong per-
formances. Among rule-based metrics, high-activity
policies generally outperform low-activity policies on
IRI-based metrics in our data.

5.4. Unknown Out-of-Stock Detection
The ability to detect OOS in the retail context is impor-
tant because retailers recognize that unplanned or
unknown OOS can negatively influence store per-
formance through lost sales. See Aastrup and Kotzab
(2010) for a detailed summary of research on OOS in
the retail setting. We, therefore, evaluate the perform-
ance of each policy on its ability to detect OOS. We
focus on detecting unknown OOS: that is, situations in
which the retailer believes that there is inventory on

Figure 7. (Color online) Results on Detecting Negative and Positive Inventory Discrepancies as a Function of Counting Depth

Notes. The dashed lines represent the expected performance of a counting policy that selects items at random. We indicate statistical significance
and the random selection benchmark using the same conventions as in Figure 5. Asterisks indicate that the labeled policy’s performance is signif-
icantly different from the best-performing policy at a 4% counting depth at the 10% (*), 5% (**), and 1% (***) significance levels.

***1% significance level; **5% significance level; *10% significance level.
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the shelf (i.e., items with positive recorded inventory)
and yet, there is no inventory physically present.
That is, we exclude from our metric items where the
system inventory record indicates a stockout (i.e., sys-
tem stock is zero). In addition to its relationship with
lost sales, the detection of unknown OOS is also im-
portant because absent a physical count, the retailer
will wrongly believe there is inventory to fill customer
demand and may estimate incorrect service levels
(Mersereau 2015).

Figure 8 shows the effectiveness of each policy at
detecting unknownOOS as a function of counting depth.
The INVENTORY INC and BAYESIAN policies, when
counting 4% of items, are able to detect 42.19% and
38.67% of the existing unknownOOS, respectively,which
are dramatically higher than the other policies and over
eight times higher than random selection. The BAYE-
SIAN policy substantially outperforms the CONVOLU-
TION policy, indicating the value of low sales as a signal
of low actual stock in updates of its probabilistic inven-
tory record when detecting unknown OOS. In addition
and in contrast with results on IRI-based objectives, we
observe that the low-activity policy INVENTORY INC
substantially outperforms the other rule-based policies
FORECASTEDSALES andRELATIVEDAYS.A possible
explanation is that these twopolicies detect strings of con-
secutive zero-sales days, which dm already has proce-
dures in place tomitigate.

Interestingly, the best policy in Figure 8 detects
over 42% of unknown OOS, whereas the best policy in

Figure 5(a) detects just under 9% of IRI. We attribute
the difference to the fact that, whereas small inventory
discrepancies can leave little if any signature on the
sales and inventory records, unknown OOS is more
likely to happen when the recorded inventory is low
(which the INVENTORY INC prioritizes), and it leads
to sequences of zero sales (which the BAYESIANpolicy
responds to). Unknown OOS is a special case of IRI,
and Figures 2 and 3 show that there are many more
incidents of IRI than unknownOOS in our data.

5.5. Results Summary and Insights
Table 2 summarizes the results from Sections 5.1–5.4.
One key observation is that the BAYESIAN inventory
record, coupled withmetric-specific triggering policies
(see Section 4.2.3), yields results that are among the
best for all performancemetrics at a 4% counting depth.
(We see similar results for 1% and 2% counting
depths.) We observe that BAYESIAN performs ap-
proximately as well as CONVOLUTION on some met-
rics and better on others, demonstrating that there can
be value to accounting for potential stockouts in the
modeling of probabilistic inventory records.

A second observation is that for each metric, there
is a rule-based prioritization approach that is not stat-
istically different from the best approach. Of course,
there is no single rule-based approach that performs
uniformly well for all metrics. We have found high-
activity policies (in particular, the SALES policy that
sorts items in decreasing order of cumulative sales
since the last audit) to work well for detecting IRI-
related metrics and low-activity policies (in particular,

Figure 8. (Color online) Results on Detecting UnknownOOS
as a Function of Counting Depth

Notes. The dashed line represents the expected performance of a
counting policy that selects items at random. We indicate statistical
significance and the random selection benchmark using the same con-
ventions as in Figure 5. Asterisks indicate that the labeled policy’s
performance is significantly different from the best-performing policy
at a 4% counting depth at the 10% (*), 5% (**), and 1% (***) signifi-
cance levels.

***1% significance level; **5% significance level; *10% significance
level.

Table 2. Summary Table Indicating Which Policies’
Performances for 4% Counting Depth Are Not Significantly
Different from the Best-Performing Policy for Each Metric
at the 10% Significance Level
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the INVENTORY INC policy that sorts items in
increasing order of their system inventory record) to
work particularly well for detecting unknown OOS.

Finally, we observe that the DAYS policy is not a
winning policy except under the negative IRI metric.
This policy reflects a common cycle counting practice
to count all items in a category on a common fre-
quency, but our results show it to be relatively ineffec-
tive relative to policies that account for dynamic
inventory and sales activity.

Our results support arguments in favor of both rule-
and model-based approaches. Rule-based approaches
will typically be simpler to implement and to under-
stand, and our results show that they can be effective
as long as they are chosen to match the retailer’s goals
(e.g., IRI detection, unknown OOS detection). Model-
based methods are more complicated to implement,
requiring parameter estimation and computation on
an ongoing basis. We believe that their chief advantage
is to give visibility to the inventory system that is inde-
pendent of specific performancemetrics.

This visibility manifests itself in the versatility of the
BAYESIAN approach on display in Figure 9, which
plots the performance of each policy in terms of both
its IRI and unknown OOS detection at a 4% counting
depth. The rule-based policy INVENTORY INC is
effective at unknown OOS detection but relatively
ineffective at detecting IRI, and SALES is effective at
IRI detection but relatively poor at finding unknown
OOS. On the other hand, the BAYESIAN approach
excels on both metrics. We find similar results at 2%
and 1% counting depths.

We gain further insights into the relative perform-
ance of counting policies by conditioning our results
on the values of item covariates. It is well known in the
operations management literature that low-volume
items bring unique challenges to demand forecasting
(e.g., Akçay et al. 2015) and inventory management
(e.g., Schultz 1989). For these reasons, we show results
in Figure 10(a) evaluated separately for low- and high-
rotation items, defined as items with below-median
and above-median inventory rotation, respectively.
We express the results as percentages ofmaximumdis-
crepancies detectable by an oracle at a 4% counting
depth, similar to Figure 6.

Figure 10(a) supports the notion that IRI is more
challenging to detect for low-rotation items than for
high-rotation items. The top-performing policies find
over 60% of possible discrepancies among high-
rotation items but no more than 40% of possible dis-
crepancies among low-rotation items. We also observe
less pronounced performance differences among poli-
cies for low-rotation items. The BAYESIAN and SALES
policies, which are the top performers at detecting
IRI overall, are both among the best policies for both
low-rotation and high-rotation items. We see that the
PAST ERROR policy, which was not among the best
approaches for IRI detection overall (see Figure 5(a)),
does particularly well for high-rotation items. An ex-
planation is that for high-rotation items, errors occur
more frequently, and so, by a law of large numbers
argument, we get more reliable estimates of the under-
lying error process given the fixed time range of our
historical data.

In a breakdown by historical category-level IRI (see
Figure 10(b)), we find that the set of best policies is
mostly consistent for items from below-median IRI and
above-median IRI product categories, with the BAYE-
SIAN and SALES policies among the best policies for
each group. (We note that it is easier to statistically dis-
tinguish the best policies looking at overall results
rather than broken down into item groups because of
the larger sample size.) Not surprisingly, IRI appears to
be easiest to detect for high-IRI categories, where the
discrepancies tend to be most pronounced. Interest-
ingly, the INVENTORY DEC policy, which is not
among the best policies for overall IRI detection (see
Figure 5(a)), performs well within low-IRI and high-IRI
item categories. It seems that the signal of IRI provided
by high inventory levels can bemore useful within rela-
tively homogeneous categories than when confounded
across heterogeneous categories.

Turning to the detection of unknown OOS, we show
in Figure 10(c) a breakdown of OOS detection among
items that are belowmedian and abovemedian in their
historical service levels. The INVENTORY INC and
BAYESIAN policies are among the best performers for
both low-service level and high-service level items, but

Figure 9. OOS Detection Vs. IRI Detection Across Several
Policies at a 4% Counting Depth
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Figure 10. (Color online) (a) Results on IRI Detection Across Policies and Low- and High-Rotation Items at a 4% Counting
Depth, (b) Results on IRI Detection Policies Across Item Groups with Low and High Historical Category IRI at a 4% Counting
Depth. (c) Results on OOS Detection Policies Across Item Groups with Low and High Historical Service Levels Relative to the
MaximumDiscrepancies Detectable at a 4% Counting Depth

(a)

(b)

(c)

Notes. The dashed lines represent the expected performance of a counting policy that selects items at random. We indicate statistical significance
and the random selection benchmark using the same conventions as in Figure 5. Asterisks indicate that the labeled policy’s performance is signif-
icantly different from the best-performing policy at a 4% counting depth at the 10% (*), 5% (**), and 1% (***) significance levels.

***1% significance level; **5% significance level; *10% significance level.
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they provide dramatically better detection perform-
ance than the other policies for low-service level items.
For low-service level items, there is less safety stock to
provide protection against OOS, and the real-time sig-
nals provided by inventory records and sales observa-
tions seem to bring significant value in this case.
Indeed, the ability to incorporate low-sales signals as
indicators of OOS status is an important feature of the
BAYESIAN approach.

6. Alternative Approaches
The analysis shows that individual rule-based ap-
proaches can perform quite differently when detecting
IRI and OOS. A natural way to pursue both objectives
simultaneously is to combine the two best-performing
rule-based approaches into an integrated approach. We
evaluate this hybrid approach in Section 6.1. In Section
6.2, we evaluate how the individual approaches perform
when weighing two different goals (i.e., detecting posi-
tive and negative IRI). We also discuss a nondata-driven
approach for detecting unknown OOS (i.e., “zero-
balancewalks”) in our context.

6.1. Hybrid Approach: Using Multiple Metrics
In reality, a retailer may audit with the dual goals of
detecting both IRI and OOS, and therefore, it may be
useful in some contexts to generate prioritized lists
that target both objectives. Although Figure 9 shows
that no individual rule-based policies excel at both
dimensions, the question remains whether we can
build a hybrid policy based on rule-based approaches
that does well at detecting both IRI and unknown
OOS.

With this goal in mind, we derive a sequence of
lists using the BAYESIAN model-based approach and
combinations of the INVENTORY INC and SALES
rule-based policies that target OOS and IRI in different
proportions. Specifically, we consider the following
sets of lists.

• For the rule-based hybrid lists, we fill x% of the list
with items chosen according to the INVENTORY INC
index and (100− x)% chosen according to the SALES
index for x � 0, 5, : : : , 100. (We did not have situations
in which there was overlap across the two sublists.)

• For the BAYESIAN model-based hybrid lists, we
fill x% of the list with items chosen according to the
trigger criterion for OOS (i.e., ranking in decreasing
order of pit(0)) and (100− x)% chosen according to the
trigger criterion for IRI (i.e., ranking in increasing order
of the variance of pit(·)).

Figure 11 shows the frontier of unknownOOS and IRI
detection achieved by these hybrid lists at a 4% counting
depth. We see that the rule-based hybrid approaches
result in a set of performances that dominate those
achieved by the BAYESIAN hybrid approaches. Such

results show the promise of combining approaches to
optimize dual objectives.

6.2. Metrics Other than IRI and OOS
Retailers may be interested in metrics other than IRI and
OOS. For example, retailers may not be equally con-
cerned about positive and negative errors. Positive
errors (where stock is less than system inventory) can
impact customer service, whereas negative errors
(where stock is greater than system inventory) can lead
to excess inventory costs. Figure 12 evaluates the prioriti-
zation policies at a 4% counting depth under an evalua-
tion metric that accounts for discrepancies in a relative
fashion (relative to long-term average inventory) and
asymmetrically weighs positive and negative errormag-
nitudes. That is, rewards are assigned as (1=ūi)(Pos ·
[ûit − uit]+ +Neg · [uit − ûit]+) for constants Pos and
Neg � 1−Pos andwhere ūi equals the average recorded
inventory level over the past year. We show results for a
range of Pos � 0:0, 0:1, 0:2, : : : , 1:0. For the model-based
approaches, we prioritize items according to the evalua-
tion metric. Specifically, the BAYESIAN and CONVO-
LUTION approaches rank items in decreasing order
of the quantity (1=ūi)(Pos ·E[{ûit − uit}+] +Neg ·E[{uit
− ûit}+]), with expectations evaluated according to pit(·)
and qit(·), respectively.

We see that most of the rule-based approaches
are significantly better at detecting either positive or
negative deviations, and so, their performances are
sensitive to the choice of the parameters Pos and Neg
in Figure 12. The performances of the BAYESIAN and
CONVOLUTION approaches, however, are relatively

Figure 11. Performances of “Hybrid” Prioritized Lists at a
4% Counting Depth
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insensitive to the choice of evaluation metric. They are
the two top-performing policies for all objectives with
Pos < 0:7, and the CONVOLUTION approach per-
forms well for most choices of weights.

6.3. Discussion of Zero-Balance Walks
Asmentioned in Section 3.2, a version of a zero-balance
walk program is in place at dm. Zero-balance walks
are procedures in place at many retailers whereby
store employers periodically walk through the aisles
and note items absent from the shelves.

To evaluate a literal zero-balance walk program in
our setting involves prioritizing all items with zero
actual stock. We have not included this as part of our
main results because it is not a fair comparison with
other approaches. A zero-balance walk policy would
have access to a statistic of actual stock (namely,
1{uit � 0} for item i on day t) to which our other poli-
cies do not have access. Furthermore, a list of items
with no actual stock is easier to count than a similar
length list of items with positive actual stock. Never-
theless, the execution of a zero-balance walk is time
intensive as employees have to check inventory posi-
tions of all items in the store. In an average dm store, a
full zero-balance walk takes about two hours.

Nevertheless, we can evaluate the effectiveness of a
zero-balance walk policy using our data. On the week
for which we evaluated results, there were 1.4% of
items with zero shelf inventory that would have been
noted under a perfect zero-balance walk program.
Naturally, among these are all the actual OOS items
(including known and unknown OOS items) at the
retailer. The same zero-balance walk would have iden-
tified 2.6% of items with inaccurate inventory records,
compared with 3.1% and 3.0% of items with inaccurate
inventory records detected in similar-length lists using

the best-performing IRI detection policies BAYESIAN
and SALES, respectively. We conclude that a zero-
balance walk policy, although naturally effective at
detecting OOS, is also reasonably effective at detecting
IRI in our setting. However, we note that all of the IRI
found using a zero-balance walk is necessarily positive
IRI (as negative IRI requires there to be positive actual
stock). Figures 2 and 3 show the incidence of unknown
OOS and positive and negative IRI across stores and
product categories. It is known that zero-balance walk
programs can bias inventory records toward negative
IRI (Mosconi et al. 2004). In the end, we believe that a
zero-balance walk program can be effective in concert
with a cycle counting program chosen to effectively
detect negative IRI and positive IRI that has not yet
resulted in OOS.

7. Summary and Future Research
Our study compares several methods for generating
lists for the purpose of prioritizing inventory counts in
retail stores. Our methods range from basic rankings
by available metrics to more complicated approaches
maintaining probabilistic beliefs around the quantity
of actual stock on shelves. The size of our study, span-
ning approximately 500 items across 10 stores, enables
us to make statistically meaningful comparisons. We
list a few summary findings.

• We find that the Bayesian inventory record of
DeHoratius et al. (2008), coupledwith a triggering opera-
tor suited to the performance measure, performs best or
nearly best among the approacheswe tried across awide
range of performancemeasures. For certain performance
measures, in particular for detecting unknown OOS
for low-service level items, the more complex Bayesian
approach outperforms a simpler model-based approach
that does not make use of sales observations as signals

Figure 12. (Color online) Policy Performance at a 4% Counting Depth for an IRI Detection RewardMetric Weighting Relative
Positive (Pos) and Relative Negative (Neg) Deviations Differently
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of inventory positions (CONVOLUTION). In other cases,
such as detecting IRI magnitudes relative to inventory
levels, the simpler CONVOLUTION approach is suffi-
cient for strong results.

• On the other hand, for each metric there is a rule-
based heuristic that performs statistically indistin-
guishably from the best available approach. Different
rule-based approaches perform well for different
performance measures. Generally, we find that high-
activity policies are more effective for detecting IRI,
whereas the low-activity heuristic based on recorded
inventory positions works especially well for detect-
ing unknown OOS.

• The Bayesian approach offers a “visibility” into the
true inventory state that can be valuable when consid-
ering novel performance metrics. This visibility can
also be useful for other tasks beyond designing count-
ing policies. For example, they can be used in modern
“buy online, pick up in store” systems to anticipate
possible out of stocks and plan for substitutions.

We estimate that reducing unknown OOS through
improved counting policies may result in up to e29
million of additional annual sales at dm’s German
stores. We derive this estimate by extrapolating the
number of unknown OOS found in our manual
counts across dm’s assortment and store network and
assuming that 35% more unknown OOS would be
detected and corrected by best-performing policies
compared with random selection (see the results at
a 4% counting depth in Figure 8). This would restart
sales for items that would otherwise remain stocked
out, and we estimate the magnitude of these addi-
tional sales by applying proprietary information from
dm on annual sales volumes. Our estimate ignores
two important factors. First, we are unable to account
for the effects of customer substitutions, which could
offset the negative impact of an OOS at dm. Second,
the estimate ignores other benefits of improved inven-
tory accuracy beyond reduced OOS. We note that
implementing an improved counting program on an
ongoing basis may reduce unknown OOS at dm by
even more than the initial 35%.

A limitation of our work is that it is specific to one
retailer at a particular point in time. The errors encoun-
tered in our physical audit are a product of both under-
lying error processes at dm and ongoing correction
efforts. As discussed in Section 3.1, dm’s main correc-
tion effort is their predetermined annual counting
plan, although they also detect irregularities through
daily counts and a zero-balance walk program. This
may partially explain why certain irregularities, such
as out of stocks, are relatively uncommon in our data,
and it frames our results as describing the effects of
incremental correction efforts. We note that all retailers
of which we are aware have some inventory record

correction efforts in place, so it is probably impossible
to entirely separate the evaluation of counting policies
from a specific retail environment.

Our retail partner, dm, has used our results to refine
their counting lists and is considering further tests of
the more complex model-based approaches. Further-
more, our evaluation approach can be replicated at
other retailers interested in customized optimization of
their counting programs. Indeed, we hope that future
work will explore similar questions in other retail set-
tings. In addition, there is room to consider broader
profit objectives in future research. As demonstrated in
Section 6.2, a benefit of the visibility offered by proba-
bilistic inventory records is that they can naturally
incorporate a variety of objectives. Long-term testing of
counting policies is also important (Chuang et al. 2016).
When implementing a counting program, in the short
term we want to maximize the number of errors found,
but long-term successmeans fewer errors in the system.
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