Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

From consumer to enterprise grade : How the choice of four UAS impacts point cloud quality

Titelangaben

Verfügbarkeit überprüfen

Stark, Manuel ; Heckmann, Tobias ; Piermattei, Livia ; Dremel, Fabian ; Kaiser, Andreas ; Machowski, Patrick ; Haas, Florian ; Becht, Michael:
From consumer to enterprise grade : How the choice of four UAS impacts point cloud quality.
In: Earth surface processes and landforms : the journal of the British Geomorphological Research Group. 46 (2021) 10. - S. 2019-2043.
ISSN 0197-9337 ; 1096-9837

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1002/esp.5142

Kurzfassung/Abstract

Uncrewed aerial systems (UAS), combined with structure-from-motion photogrammetry, has already proven to be very powerful for a wide range of geoscience applications and different types of UAS are used for scientific and commercial purposes. However, the impact of the UAS used on the accuracy of the point clouds derived is not fully understood, especially for the quantitative analysis of geomorphic changes in complex terrain. Therefore, in this study, we aim to quantify the magnitude of systematic and random error in digital elevation models derived from four commonly used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following different flight patterns. The vertical error of each elevation model is evaluated through comparison with 156 GNSS reference points and the normal distribution and spatial correlation of errors are analysed. Differences in mean errors (0.4 to 1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant for most geomorphological applications. The Mavic Pro shows lower accuracies with mean errors up to 4.3 cm, thus showing a higher influence of random errors. QQ plots revealed a deviation of errors from a normal distribution in almost all data. All UAS data except Mavic Pro exhibit a pure nugget semivariogram, suggesting spatially uncorrelated errors. Compared to the other UAS, the Mavic Pro data show trends (i.e. differences increase with distance across the survey—doming) and the range of semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed to the lower GSD at the same flight altitude and most likely, the rolling shutter sensor has an effect on the accuracy of the camera calibration. Overall, our study shows that accuracies depend highly on the chosen data sampling strategy and that the survey design used here is not suitable for calibrating all types of UAS camera equally.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Unmanned Aerial Systems UAS 3D pointclouds Error distribution and accuracy
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Geographie > Lehrstuhl für Physische Geographie
DOI / URN / ID:10.1002/esp.5142
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Wiley
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:27357
Eingestellt am: 21. Jun 2021 13:33
Letzte Änderung: 07. Dez 2021 19:21
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/27357/
AnalyticsGoogle Scholar