Titelangaben
Leitgöb, Heinz:
Analysis of rare events.
In: Atkinson, Paul ; Delamont, Sara ; Cernat, Alexandru ; Sakshaug, Joseph W. ; Williams, Richard A. (Hrsg.): SAGE Research Methods Foundations. -
Thousand Oaks, Calif. : SAGE, 2020
ISBN 9781529748741
Volltext
Link zum Volltext (externe URL): https://doi.org/10.4135/9781526421036863804 |
Kurzfassung/Abstract
Rare events represent a great analytical challenge. The maximum likelihood-based (ML) binary logit model as the workhorse model in the social sciences can generate heavily biased parameter estimates if events are rare. In detail, the finite sample bias in ML estimates may be substantially larger than that observed in cases with balanced data of the same sample size. Furthermore, the ML estimator is prone to overfitting rare event data even in low-dimensional models and not identified in cases of perfectly separated data. Starting with a brief introduction to the standard binary logit as a reference model, this entry discusses several design issues (e.g., selection on the dependent variable) and analytical approaches (e.g., first-order bias correction, exact conditional inference, penalized ML estimation, specification of cloglog models) to overcome these threats to valid inferences. Finally, the potential of Bayesian rare event modeling, which addresses some limitations of the frequentist probability perspective, is briefly introduced.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Schlagwörter: | Event history analysis; Logit and probit models; Probability |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Geschichts- und Gesellschaftswissenschaftliche Fakultät > Soziologie > Lehrstuhl für Soziologie und empirische Sozialforschung |
DOI / URN / ID: | 10.4135/9781526421036863804 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 26436 |
Letzte Änderung: 08. Jan 2022 18:22
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26436/