Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Usage Space Sampling for Fringe Customer Identification

Titelangaben

Verfügbarkeit überprüfen

Ling, Kunxiong ; Thiele, Jan ; Setzer, Thomas:
Usage Space Sampling for Fringe Customer Identification.
In: Proceedings of the 54th Hawaii International Conference on System Sciences. - Hawaii, USA, 2021. - S. 1748-1757
ISBN 978-0-9981331-4-0

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://doi.org/10.24251/HICSS.2021.212

Kurzfassung/Abstract

With large numbers of available customers, it is often essential to select representative samples for reasons of computational cost reduction and upstream advanced data analytics. However, for many analytical procedures, the usage behavior observed from a smaller sample of customers must indicate well the fringe of usage and its relation to extreme product loads. Due to the high complexity of technical or service systems, it remains challenging to minimize the number of samples while sufficiently capturing the fringe customers. With
the availability of data related to usage behavior, we consider a sampling method to address this problem by analyzing the customer usage space before sampling, then separately sampling fringe and core customers, and weighting the samples afterwards. Experimental results show that the method can identify fringe customers with significantly fewer, yet reproducible samples, while maintaining the distribution representativeness of customer population to a large extend.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.24251/HICSS.2021.212
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:26078
Eingestellt am: 09. Mär 2021 07:17
Letzte Änderung: 06. Feb 2022 17:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26078/
AnalyticsGoogle Scholar