Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Hybrid Recommender Systems for Next Purchase Prediction Based on Optimal Combination Weights

Titelangaben

Verfügbarkeit überprüfen

Haubner, Nicolas ; Setzer, Thomas:
Hybrid Recommender Systems for Next Purchase Prediction Based on Optimal Combination Weights.
2021
Veranstaltung: 16th International Conference on Wirtschaftsinformatik, 09.03. - 11.03.2021, Essen, Deutschland.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung, Paper)

Kurzfassung/Abstract

Recommender systems (RS) play a key role in e-commerce by preselecting presumably interesting products for customers. Hybrid RSs using a weighted average of individual RSs’ predictions have been widely adopted for improving accuracy and robustness over individual RSs. While for regression tasks, approaches to estimate optimal weighting schemes based on individual RSs’ out-of-sample errors exist, there is scant literature in classification settings. Class prediction is important for RSs in e-commerce, as here item purchases are to be predicted. We propose a method for estimating weighting schemes to combine classifying RSs based on the variance-covariance structures of the errors of individual models' probability scores. We evaluate the approach on a large real-world ecommerce data set from a European telecommunications provider, where it shows superior accuracy compared to the best individual model as well as a weighting scheme that averages the predictions using equal weights.

Weitere Angaben

Publikationsform:Veranstaltungsbeitrag (unveröffentlicht): Kongress/Konferenz/Symposium/Tagung, Paper
Schlagwörter:hybrid recommender systems; forecast combination; optimal
weights; demographic filtering
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
Weitere URLs:
Titel an der KU entstanden:Ja
KU.edoc-ID:26076
Eingestellt am: 09. Mär 2021 07:19
Letzte Änderung: 05. Okt 2021 20:05
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26076/
AnalyticsGoogle Scholar