Titelangaben
Haubner, Nicolas ; Setzer, Thomas:
Applying Optimal Weight Combination in Hybrid Recommender Systems.
In: 53rd Hawaii International Conference on System Sciences, HICSS 2020, Maui, Hawaii, USA, January 7-10, 2020. -
Hawaii, USA, 2020. - S. 1552-1561
ISBN 978-0-9981331-3-3
Volltext
Link zum Volltext (externe URL): https://doi.org/10.24251/HICSS.2020.191 |
Kurzfassung/Abstract
We propose a method for learning weighting schemes in weighted hybrid recommender systems (RS) that is based on statistical forecast and portfolio theory. An RS predicts the future preference of a set of items for a user, and recommends the top items. A hybrid RS combines individual RS in making the predictions. To determine the weighting of individual RS, we learn so-called optimal weights from the covariance matrix of available error data of individual RS that minimize the error of a combined RS. We test the method on the well-known MovieLens 1M dataset, and, contrary to the “forecast combination puzzle”, stating that a simple average (SA) weighting typically outperforms learned weights, the out-of-sample results show that the learned weights consistently outperform the individually best RS as well as an SA combination.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik |
DOI / URN / ID: | 10.24251/HICSS.2020.191 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 25195 |
Letzte Änderung: 04. Dez 2021 21:19
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/25195/