Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

On the Assumptions of True Lift Models for Churn Prevention

Titelangaben

Verfügbarkeit überprüfen

Oechsle, Frank ; Setzer, Thomas ; Blanc, Sebastian M.:
On the Assumptions of True Lift Models for Churn Prevention.
In: Multikonferenz Wirtschaftsinformatik (MKWI) 2016 : Technische Universität Ilmenau, 09. - 11. März 2016. - Ilmenau, 2016. - S. 1233-1244
ISBN 978-3-86360-132-4

Kurzfassung/Abstract

Preventing customer churn by subjecting carefully selected customers to customer relationship management activities is of crucial importance to many service industries. A promising selection of customers can be achieved using so called true lift or incremental models, which focus on customers at high churn risk, that are also likely to be persuadable through appropriate campaigns. In comparison to simpler models, true lift modeling however not only requires estimating churn probabilities of untreated customers but also their churn probabilities when treated. We argue that the estimation of the latter probabilities introduces a novel source of uncertainty not considered in state-of-the-art true lift models. In this paper, we assess the consequences of these uncertainties for true lift modeling. We identify assumptions regarding distribution of churn probabilities made by true lift models and argue that these assumptions are most likely not met in any practical setting. As a result, churn prevention campaigns can easily fail and even increase total churn rate, which might provide an explanation for the very few published empirical success stories on true lift models.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
Titel an der KU entstanden:Nein
KU.edoc-ID:24930
Eingestellt am: 06. Okt 2020 10:16
Letzte Änderung: 06. Okt 2020 16:12
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24930/
AnalyticsGoogle Scholar