Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination

Titelangaben

Verfügbarkeit überprüfen

Blanc, Sebastian M. ; Setzer, Thomas:
Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination.
In: Management science. 66 (2020) 12. - S. 5720-5737.
ISSN 0025-1909 ; 1526-5501

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1287/mnsc.2019.3476

Kurzfassung/Abstract

Combining forecasts is an established approach for improving forecast accuracy. So-called optimal weights (OWs) estimate combination weights by minimizing errors on past forecasts. Yet the most successful and common approach ignores all training data and assigns equal weights (EWs) to forecasts. We analyze this phenomenon by relating forecast combination to statistical learning theory, which decomposes forecast errors into three components: bias, variance, and irreducible error. In this framework, EWs minimize the variance component (errors resulting from estimation uncertainty) but ignore the bias component (errors from under-sensitivity to training data). OWs, in contrast, minimize the bias and ignore the variance component. Reducing one component in general increases the other. To address this trade-off between bias and variance, we first derive the expected squared error of a combination using weights between EWs and OWs (technically, OWs shrunk toward EWs) and decompose it into the three error components. We then use the components to derive the shrinkage factor between EWs and OWs that minimizes the expected error. We evaluate the approach on forecasts from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters. For these forecasts, we first show that assumptions regarding the error distribution that are commonly used in theoretical analyses are likely to be violated in practice. We then demonstrate that our approach improves over EWs and OWs if the assumptions are met, for instance, as the result of using a standardization procedure for the training data

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:forecast combination; bias–variance trade-off; equal weights; optimal weights; optimal shrinkage
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.1287/mnsc.2019.3476
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:INFORMS
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:24892
Eingestellt am: 02. Feb 2021 11:10
Letzte Änderung: 04. Dez 2021 21:16
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24892/
AnalyticsGoogle Scholar