Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Enhancing electric vehicle sustainability through battery life optimal charging

Titelangaben

Verfügbarkeit überprüfen

Schoch, Jennifer ; Gaerttner, Johannes ; Schuller, Alexander ; Setzer, Thomas:
Enhancing electric vehicle sustainability through battery life optimal charging.
In: Transportation research. Part B, Methodological. 112 (2018). - S. 1-18.
ISSN 0191-2615

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.trb.2018.03.016

Kurzfassung/Abstract

In this article, we investigate the potential for battery life prolongation through optimized charging under consideration of individual mobility requirements. Based on a comprehensive battery aging model we introduce a continuous quadratic programming model to derive battery life optimal charging (OPT). The strategy indicates when and how much to charge to maximize the potential range throughout the battery life. We find that OPT has the potential to more than double the expected battery life compared to simple and often abundant recharging activities as observable today. The degree of battery life prolongation strongly depends on the operating temperature. Since optimal charging would require deterministic knowledge of future trips and corresponding charging levels we investigate a more convenient charging heuristic derived from “As-Late-As-Possible” (ALAP) charging. ALAP charging considers range buffers between 5% and 60% over the range required until the next re-charging opportunity. We analyze the trade-off between (long-term) battery life and (short-term) range flexibility. We find that for decreasing temperatures the tradeoff between battery life and flexibility is solved with increasing range buffers. From our results battery degradation aware charging heuristics can be easily derived and applied in real-world settings.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Battery aging; Optimal charging behavior; Range anxiety; Battery electric vehicle
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.1016/j.trb.2018.03.016
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:24890
Eingestellt am: 24. Sep 2020 14:09
Letzte Änderung: 08. Dez 2021 08:31
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24890/
AnalyticsGoogle Scholar