Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

When to choose the simple average in forecast combination

Titelangaben

Verfügbarkeit überprüfen

Blanc, Sebastian M. ; Setzer, Thomas:
When to choose the simple average in forecast combination.
In: Journal of business research : JBR. 69 (2016) 10. - S. 3951-3962.
ISSN 0148-2963

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.jbusres.2016.05.013

Kurzfassung/Abstract

Numerous forecast combination techniques have been proposed. However, these do not systematically outperform a simple average (SA) of forecasts in empirical studies. Although it is known that this is due to instability of learned weights, managers still have little guidance on how to solve this “forecast combination puzzle”, i.e., which combination method to choose in specific settings. We introduce a model determining the yet unknown asymptotic out-of-sample error variance of the two basic combination techniques: SA, where no weightings are learned, and so-called optimal weights that minimize the in-sample error variance. Using the model, we derive multi-criteria boundaries (considering training sample size and changes of the parameters which are estimated for optimal weights) to decide when to choose SA. We present an empirical evaluation which illustrates how the decision rules can be applied in practice. We find that using the decision rules is superior to all other considered combination strategies.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Forecast combination; Simple average; Optimal weights; Structural changes
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.1016/j.jbusres.2016.05.013
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:24888
Eingestellt am: 24. Sep 2020 15:00
Letzte Änderung: 06. Okt 2020 15:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24888/
AnalyticsGoogle Scholar