Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Analytical debiasing of corporate cash flow forecasts

Titelangaben

Verfügbarkeit überprüfen

Blanc, Sebastian M. ; Setzer, Thomas:
Analytical debiasing of corporate cash flow forecasts.
In: European Journal of Operational Research. 243 (2015) 3. - S. 1004-1015.
ISSN 0377-2217

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.ejor.2014.12.035

Kurzfassung/Abstract

We propose and empirically test statistical approaches to debiasing judgmental corporate cash flow forecasts. Accuracy of cash flow forecasts plays a pivotal role in corporate planning as liquidity and foreign exchange risk management are based on such forecasts. Surprisingly, to our knowledge there is no previous empirical work on the identification, statistical correction, and interpretation of prediction biases in large enterprise financial forecast data in general, and cash flow forecasting in particular. Employing a unique set of empirical forecasts delivered by 34 legal entities of a multinational corporation over a multi-year period, we compare different forecast correction techniques such as Theil’s method and approaches employing robust regression, both with various discount factors. Our findings indicate that rectifiable mean as well as regression biases exist for all business divisions of the company and that statistical correction increases forecast accuracy significantly. We show that the parameters estimated by the models for different business divisions can also be related to the characteristics of the business environment and provide valuable insights for corporate financial controllers to better understand, quantify, and feedback the biases to the forecasters aiming to systematically improve predictive accuracy over time.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Analytics; Judgmental Forecasting; Forecast Bias Correction; Cash Flow Forecasting
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.1016/j.ejor.2014.12.035
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:24886
Eingestellt am: 25. Sep 2020 11:49
Letzte Änderung: 06. Okt 2020 15:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24886/
AnalyticsGoogle Scholar