Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Data-Driven Decisions in Service Engineering and Management

Titelangaben

Verfügbarkeit überprüfen

Setzer, Thomas:
Data-Driven Decisions in Service Engineering and Management.
In: Enterprise modelling and information systems architectures. 9 (2014) 1. - S. 106-117.
ISSN 1866-3621

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.18417/emisa.9.1.7

Kurzfassung/Abstract

Today, the frontier for using data to make business decisions has shifted, and high-performing service companies are building their competitive strategies around data-driven insights that produce impressive business results. In principle, the ever-growing amount of available data would allow for deriving increasingly precise forecasts and optimised input for planning and decision models. However, the complexity resulting from considering large volumes of high-dimensional, fine-grained, and noisy data in mathematical models leads to the fact that dependencies and developments are not found, algorithms do not scale, and traditional statistics as well as data-mining techniques collapse because of the well-known curse of dimensionality. Hence, in order to make big data actionable, the intelligent reduction of vast amounts of data to problem-relevant features is necessary and advances are required at the intersection of economic theories, service management, dimensionality reduction, advanced analytics, robust prediction, and computational methods to solve managerial decisions and planning problems.

Weitere Angaben

Publikationsform:Artikel
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
DOI / URN / ID:10.18417/emisa.9.1.7
Peer-Review-Journal:Ja
Verlag:Ges. für Informatik
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:24885
Eingestellt am: 25. Sep 2020 11:50
Letzte Änderung: 06. Okt 2020 15:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/24885/
AnalyticsGoogle Scholar