Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Evaluation and Optimal Calibration of Purchase Time Recommendation Services

Titelangaben

Verfügbarkeit überprüfen

Buchwitz, Benjamin:
Evaluation and Optimal Calibration of Purchase Time Recommendation Services.
In: Proceedings of the 52nd Hawaii International Conference on System Sciences, HICSS 2019. - Grand Wailea, Maui, Hawaii, USA, 2019. - S. 1-10

Volltext

Kurzfassung/Abstract

rice Comparison Sites enable customers to make better – more informed, less costly – buying decisions through providing price information and offering buying advice in the form of prediction services. While these services differ to some extent, they are comparable regarding their prediction target and usually monitor every arbitrarily small price decrease. We use a large data set of daily minimum prices for 272 smartphones consisting of 198,560 daily price movements from a Price Comparison Site to show that the standard prediction setting is not optimal. A custom evaluation framework allows the maximization of the achievable savings by altering the calibration of the forecasting service to monitor changes that exceed a certain threshold. Additionally, we show that time series features calculated in a calibration period can be used to obtain precise out of sample estimates of the saving optimal forecasting setting.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Schlagwörter:Service Analytics; Decision Analytics; Mobile Services; Service Science; Buying; Recommendation; E-Commerce; Predictive Analytics; Price Comparison Sites; Threshold Forecasting
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Statistik > Lehrstuhl für Statistik und Quantitative Methoden der Wirtschaftswissenschaften
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Begutachteter Aufsatz:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:23021
Eingestellt am: 13. Jun 2019 09:06
Letzte Änderung: 13. Jun 2019 09:06
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/23021/
AnalyticsGoogle Scholar