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Abstract 35 

Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency 36 

with which subjective reports differentiate between correct and incorrect task responses? We 37 

analytically show that logistic regression slopes are independent from rating criteria in one 38 

specific model of metacognition, which assumes (i) that rating decisions are based on sensory 39 

evidence generated independently of the sensory evidence used for primary task responses 40 

and (ii) that the distributions of evidence are logistic. Given a hierarchical model of 41 

metacognition, logistic regression slopes depend on rating criteria. According to all 42 

considered models, regression slopes depend on the primary task criterion. A reanalysis of 43 

previous data revealed that massive numbers of trials are required to distinguish between 44 

hierarchical and independent models with tolerable accuracy. It is argued that researchers 45 

who wish to use logistic regression as measure of metacognitive sensitivity need to control 46 

the primary task criterion and rating criteria. 47 

Keywords: metacognition; metacognitive sensitivity, logistic regression; signal detection 48 

theory; type 2 signal detection theory; generalized linear regression, cognitive modelling 49 
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1 Introduction 51 

Metacognitive sensitivity, also called type 2 sensitivity or resolution of confidence, refers to 52 

the efficiency with which participants’ subjective reports during an experimental task 53 

discriminate between correct and incorrect responses in a primary task (Baranski & Petrusic, 54 

1994; Fleming & Lau, 2014; Galvin, Podd, Drga, & Whitmore, 2003). It relates to a key 55 

aspect of metacognition: If participants possessed any knowledge about their performance in 56 

the task, their subjective reports about the task should differentiate between correct and 57 

erroneous trials. Consequently, measures of metacognitive sensitivity are relevant for all 58 

research areas where quantifying participants’ insight into their task performance is of 59 

interest, including consciousness research (Dienes, 2004). Given the theoretical importance 60 

of metacognitive sensitivity, a universally accepted measure is desirable. However, various 61 

competing measures of metacognitive sensitivity were proposed in the literature:  62 

• gamma correlation coefficients (Nelson, 1984),  63 

• a’/type 2 d’ (Kunimoto, Miller, & Pashler, 2001)  64 

• type-2 receiver operating characteristic ( Fleming, Weil, Nagy, Dolan, & Rees, 65 

2010) 66 

• meta-d’ (Maniscalco & Lau, 2012) 67 

• logistic regression analysis (Sandberg, Timmermans, Overgaard, & 68 

Cleeremans, 2010) 69 

Logistic regression has been widely used in empirical studies as measure of the association 70 

between verbal reports and task accuracy (Rausch, Müller, & Zehetleitner, 2015; Rausch & 71 

Zehetleitner, 2014; Sandberg et al., 2010; Siedlecka, Paulewicz, & Wierzchoń, 2016; 72 

Wierzchoń, Asanowicz, Paulewicz, & Cleeremans, 2012; Wierzchoń, Paulewicz, Asanowicz, 73 

Timmermans, & Cleeremans, 2014). However, while gamma correlations, a’, and meta-d’ 74 

have been extensively examined using both empirical and analytical methods (Barrett, 75 

Dienes, & Seth, 2013; Evans & Azzopardi, 2007; Galvin et al., 2003; Masson & Rotello, 76 

2009), the conditions for logistic regression to be an appropriate measure of metacognitive 77 

sensitivity have never been systematically investigated. 78 

1.1 Logistic regression as measure of metacognitive sensitivity 79 

Logistic regression is a specific case of a generalized linear regression model (GLM). In 80 

general, it is a method to quantify the relationship between a binary outcome variable and one 81 

or several dichotomous or continuous predictors. The standard approach to quantify 82 

metacognitive sensitivity by means of logistic regression is to model the probability of being 83 

correct in the primary task P(T) as a linear function of a subjective report C, e.g. a confidence 84 

judgment or a visibility rating. A linear relationship between predictors and outcome is 85 

obtained by transforming the probability of being correct into the logarithm of the odds of the 86 

primary response being correct to being incorrect: 87 

log(
𝑃(𝑇)

1 − 𝑃(𝑇)
) = 𝑎 + 𝑏 ∗ 𝐶 

(1) 

As can be seen from Fig. 1, metacognitive sensitivity is indexed by the slope b of the 88 

regression line: the steeper the regression line, the stronger are subjective reports associated 89 

with the probability of being correct (Sandberg et al., 2010). Logistic regression is also used 90 

to quantify the minimal criteria participants apply when they make a subjective report: The 91 

more conservative participants’ reporting strategy is, the better they perform while still giving 92 
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the lowest possible subjective report. As the intercept a is just the transformed accuracy when 93 

the subjective report is zero, it is interpreted as measure of criterion (Wierzchoń et al., 2012).  94 

Quantifying metacognition by logistic regression is tempting due to three reasons: First, the 95 

hierarchical structure of the data often found in behavioral experiments can be explicitly 96 

included into the model by using nested random effects (Sandberg, Bibby, & Overgaard, 97 

2013; Siedlecka et al., 2016): For example, two experimental groups with several participants 98 

each contributing a number of trials can be described by a random effect of trial nested within 99 

a random effect of participant nested within groups. As such an analysis can be conducted on 100 

a single trial level without the need for summary statistics to be computed for each 101 

participant, logistic regression may also be a promising way to increase statistical power 102 

(Sandberg et al., 2010). Second, using random effects allows the data to be unbalanced, i.e. 103 

the number of observations can vary between conditions or there can be empty cells in the 104 

design matrix (Rausch et al., 2015; Siedlecka et al., 2016). Consequently, slopes on the group 105 

level can be obtained even when not all participants made errors in all experimental 106 

conditions. This is particularly useful in studies of metacognitive sensitivity because the 107 

number of errors may vary heavily between participants and conditions. Finally, it has been 108 

argued that logistic regression, unlike SDT-measures, does not make any assumptions about 109 

the sources of the evidence involved in making subjective reports (Siedlecka et al., 2016).  110 

However, logistic regression as measure of metacognition may also suffer from at least two 111 

drawbacks: First, it depends on the assumption that the relation between subjective reports 112 

and transformed accuracy is linear. A non-linear relationship implies that there is no single 113 

slope of the regression line that could be interpreted as measure of metacognitive sensitivity. 114 

A previous analysis suggested non-linear trends between subjective reports and logit-115 

transformed accuracy occur relatively frequently, although there were also some data sets 116 

where the assumption of a linear relationship appeared to be justified (Rausch et al., 2015). It 117 

should be noted that this critique only applies to rating scales with more than two response 118 

options because two data from two response options always can be connected by a straight 119 

line.  120 

The present analysis explores a potential second and more principal problem of logistic 121 

regression: An adequate measure of metacognitive sensitivity should depend exclusively on 122 

the amount of evidence available for subjective reports, and should not be confounded by 123 

other factors such as rating criteria and response biases (Barrett et al., 2013). Although the 124 

distinction between slopes and intercepts appears superficially similar to a separation 125 

between metacognitive sensitivity and criteria, it has never been systematically investigated 126 

what exactly are the assumptions that have to be fulfilled so that slopes are independent from 127 

criteria.  128 

1.2 Models of metacognition 129 

A systematic investigation of the impact of rating criteria and primary task criterion on 130 

logistic regression models requires a mathematically formulated model that accounts for both 131 

task responses as well as subjective reports. One of the most prominent models of perceptual 132 

decision making under uncertainty is signal detection theory (SDT) (Green & Swets, 1966; 133 

Macmillan & Creelman, 2005; Wickens, 2002). Standard SDT applies to tasks where 134 

participants are instructed to correctly classify a binary stimulation S. For the purpose of 135 

present analysis, it is not relevant whether the two variants of the stimulation are interpreted 136 

as signal and noise or as two different stimuli. Each stimulus provides the participants with 137 

sensory evidence which of the two response options he or she should select. Participants 138 
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select their responses based on a comparison of the sensory evidence with a primary task 139 

criterion θ. θ represents the degree to which observers tend towards one response option 140 

independent of the sensory evidence. Participants respond 0 if the sensory evidence is smaller 141 

than θ and 1 otherwise. As there is noise in the system, the sensory evidence is not always the 142 

same at each presentation of the stimulus, but instead is modeled as a random sample out of 143 

two distributions, one for each variant of S. If the observer’s perceptual system was unable to 144 

differentiate between the variants of S, the two distributions would be identical. The more 145 

sensitive the observer is to the stimulus, the greater is the distance d between the centers of 146 

the two distributions. This distance d can therefore be interpreted as the ability of the 147 

observer’s perceptual system to differentiate between the two kinds of S. The SDT model can 148 

be extended to include subjective reports by assuming that task responses and ratings are 149 

considered to form an ordered set of responses such as ‘‘I’m sure it’s A’’, ‘‘I guess A’’, ‘‘I 150 

guess B’’, ‘‘I’m sure it’s B’’. The different response options are delineated by a series of 151 
criteria, c1, c2, …, cn. Participants select one response out of the set of responses by comparing 152 

the sensory evidence against the set of criteria. For example, they respond “I guess A” when the 153 

sensory evidence falls between that criterion separating the response ‘‘I’m sure it’s A’’ from 154 

‘‘I guess A” and that criterion separating “I guess A” from “I guess B”. An important 155 

implication of the SDT model is that the full evidence available to task responses is also 156 

available to subjective reports (Macmillan & Creelman, 2005), which is why the model is 157 

sometimes referred to as “ideal observer model” (Barrett et al., 2013). While the SDT model 158 

has been successfully applied to a vast number of different experiments over the last decades 159 

(Macmillan & Creelman, 2005; Wickens, 2002), in recent years, more recent experiments 160 

both found support for the SDT model (Peters & Lau, 2015), but also situations where 161 

subjective reports were not as optimal as expected from SDT (Maniscalco & Lau, 2012, 162 

2016) or even better than expected (e.g. Rausch & Zehetleitner, 2016).  163 

1.2.1 Hierarchical model 164 

Measuring metacognition only makes sense in models where metacognition is not necessarily 165 

perfect. For the purpose of the present analysis, we consider two models of how the SDT 166 

model can be extended to account for imperfect metacognition, the hierarchical model and 167 

the independent model. In both of these two models, the task response is selected by a 168 

comparison between sensory evidence and the task criterion, just as in the SDT model. A 169 

summary of all free parameters of the two models is found in Table 1.  170 

TABLE 1 ABOUT HERE 171 

The hierarchical model assumes that the sensory evidence involved in selecting the task 172 

response is also involved in selecting a rating category (see Fig. 2a). However, in contrast to 173 

standard SDT, it is not assumed that the sensory evidence involved in the task response 174 

completely determines the subjective report as well. Instead, the sensory evidence is read out 175 

by metacognitive processes, whereas the read-out can be incomplete or distorted (Maniscalco 176 

& Lau, 2016). One way to express this mathematically is by assuming that the sensory 177 

evidence is overlaid by random additive noise, characterized by its standard deviation, σ (cf. 178 

Maniscalco & Lau, 2016). The additive noise σ can interpreted as the degree of distortion 179 

between the task process and the metacognitive processes. When the additive noise is absent, 180 

the model is identical to the SDT model. For simplicity, we also assume that two rating criteria 181 

are placed symmetrically around the primary task criterion θ. The distances of the rating 182 

criteria to the task criterion are controlled by the same parameter τ. Conceptually, the spread 183 

of rating criteria τ expresses whether subjective reports are made more liberally or more 184 

conservatively: When τ is large, the rating criteria are further away from the center of the 185 
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distribution of sensory evidence. Thus, it is rather unlikely that the sensory evidence is more 186 

extreme than the rating criteria; therefore, participants will not often report high confidence.  187 

1.2.2 Independent model 188 

The present study will propose that logistic regression is closely related to another model of 189 

metacognition, the independent model. The independent model is a new variant of so-called 190 

dual channel models (cf. Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009; Maniscalco & 191 

Lau, 2016; Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012). Dual channel models assume 192 

that the rating decision does not depend on the sensory evidence considered for the task 193 

decision. Instead, rating decisions are based on a second sample of evidence (see Fig. 2b). In 194 

contrast to previous flavors of the dual channel model, the independent model discussed here 195 

assumes that there is no interaction between the two samples of evidence except that 196 

observers know which of two the task responses they choose. As a consequence, they respond 197 

high confidence or high visibility when the evidence sampled in parallel confirms the 198 

response option they decide for. It is assumed that the distributions from which the parallel 199 

samples of evidence are drawn are characterized by the same shape as those distributions of 200 

evidence involved in the primary task, except that the distance between the two distributions 201 

may deviate from the distance of distributions in the primary task and is denoted by the rating 202 

sensitivity parameter dm. Conceptually, the rating sensitivity parameter dm can be interpreted 203 

as the amount of evidence available to metacognitive processes that predict whether a 204 

decision is correct. Again, we assume that rating criteria are placed symmetrically around the 205 

primary task criterion θ, with the distances of the rating criteria to the task criterion controlled 206 

by the same parameter τ. The independent model is able to accommodate patterns of data that 207 

the hierarchical model struggles to explain: First, the hierarchical model cannot account for 208 

participants successfully detecting their own errors (Yeung & Summerfield, 2012). Second, 209 

the independent model is able to account for blind insight, e.g. cases when participants 210 

perform at chance, but their confidence responses are able to differentiate between correct 211 

and incorrect trials (Scott, Dienes, Barrett, Bor, & Seth, 2014). While the hierarchical model 212 

achieved better fits to the data than several variants of dual channel models in a metacontrast 213 

masking task (Maniscalco & Lau, 2016), the independent model has never been formally 214 

assessed with empirical data.  215 

1.2.3 Rationale of the present study 216 

The present analysis was performed to investigate the eligibility of logistic regression as a 217 

measure of metacognition. For this purpose, we computed analytically whether logistic 218 

regression slopes depend on parameters conceptually associated with metacognition, i.e. the 219 

internal noise σ in the hierarchical model and the distance between distributions dm in the 220 

independent model. To test whether logistic regression slopes is biased by task and rating 221 

criteria, we varied task bias θ and the spread of rating criteria τ in both models, and 222 

investigated the effects on logistic regression slopes. If logistic regression slopes were 223 

suitable measures of metacognitive sensitivity, they should be associated with internal noise 224 

in the hierarchical model and rating sensitivity in the independent model, and also be 225 

independent from task bias and report criteria. To examine the generality of these effects, we 226 

also varied the shape of the distributions of evidence generated by the two stimuli. In 227 

addition, we varied the link functions, i.e. the transformations to relate subjective reports and 228 

task performance. In addition, we performed an analogous analysis to investigate if rating 229 

criteria can be assessed by regression intercepts. Finally, data obtained in a low-contrast 230 

orientation discrimination task (Rausch & Zehetleitner, 2016) was reanalyzed to investigate if 231 

it is possible to differentiate between the hierarchical and the independent model empirically.  232 
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2 Logistic regression in a hierarchical model of metacognition 233 

All analyses were conducted using the free software R (R Core Team, 2014). The analysis 234 

code and all reported results are freely available at the Open Science Framework 235 

(https://osf.io/72aqe/) to facilitate reproduction of the present study and replication of its 236 

results (Ince, Hatton, & Graham-Cumming, 2012; Morin et al., 2012).  237 

2.1 Calculation of GLM slopes 238 

Analytical closed-form solutions exist for the coefficients of logistic regression when there is 239 

one categorical predictor (Lipovetsky, 2015), but this approach generalizes to other GLMs as 240 

well. In case of metacognition, the GLM is given by the formula 241 

𝑔(𝑃(𝑇 = 1|𝐶)) = 𝑎 + 𝑏 ∗ 𝐶 (2) 

with g denoting the link function, which describes the transformation used to relate accuracy 242 

and predictors, 𝑃(𝑇 = 1|𝐶) the probability of being correct in the primary task conditioned 243 

on participant’s subjective report, a as intercept, b as slope, and C ∈ {0, 1} as subjective 244 

report. The intercept is  245 

𝑎 =  𝑔(𝑃(𝑇 = 1|𝐶 = 0) (3) 

and the slope, which is indicative of metacognitive sensitivity, is given by 246 

𝑏 = 𝑔(𝑃(𝑇 = 1|𝐶 = 1)) − 𝑔(𝑃(𝑇 = 1|𝐶 = 0)) (4) 

Consequently, GLM slopes can be computed analytically in all situations when 247 

𝑃(𝑇 = 1|𝐶 = 0) and 𝑃(𝑇 = 1|𝐶 = 1) are known.  248 

2.2 Model description 249 

A graphical model of the hierarchical model is found in Fig. 3. We assume that in each trial 250 

of the experiment, participants are presented with one out of two manifestations of the 251 

stimulus S ∈ {0, 1} which both occur with the same probability. Participants select a response 252 

R ∈ {0, 1} which of the two stimuli was presented. Accuracy of the response T is 1 when 𝑆 =253 

𝑅, and 𝑇 = 0 otherwise. In each trial, participants select a response based on a single sample 254 

of sensory evidence x. The sensory evidence x is a random sample out of a distribution that 255 

depends on the stimulus. The two distributions corresponding to the two stimulus variants 256 

have the same standard deviation of 1. However, their location depends on the sensitivity 257 

parameter d: When 𝑆 = 0, the mean of the distribution is -0.5 d, and when 𝑆 = 1, then the 258 

mean of the distribution of evidence is 0.5 d. Participants’ response R is 0 when x is smaller 259 

than the primary task criterion θ, and 1 otherwise. The sensory evidence x is overlaid by 260 

internal noise, which is randomly sampled out of a distribution with a mean of 0 and a 261 

standard deviation determined by the rating noise parameter σ. The sum of x and internal 262 

noise is called decision variable z and determines subjective reports by a comparison with 263 

rating criteria c0 and c1: When 𝑅 = 1 and the z is greater than the rating criterion c1, then the 264 

subjective report C is 1. When 𝑅 = 1 and the z is smaller than the rating criterion c1, then the 265 

subjective report C is 0. Likewise, when 𝑅 = 0, than C is 1 if z is smaller than the rating 266 

criterion c0, and C is 0 if z is greater than the rating criterion c0. For simplicity, we assume 267 

that the distance between θ and c0 is the same as the distance between θ and c1. This distance 268 

is controlled by the parameter τ, which reflects the conservativeness of rating criteria. The 269 
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formulae for computing 𝑃(𝑇 = 1|𝐶 = 0) and 𝑃(𝑇 = 1|𝐶 = 1) in the hierarchical model can 270 

be found in the Appendix A.  271 

We considered two different distributions of evidence, the Gaussian distribution and the 272 

logistic distribution. The Gaussian distribution is often motivated by the central limits 273 

theorem and the averaging of many events (DeCarlo, 1998). The logistic distribution can be 274 

motivated from Choice Theory (Luce & Suppes, 1965; Macmillan & Creelman, 2005). For 275 

most SDT applications, results obtained based on logistic and Gaussian distributions are very 276 

similar (DeCarlo, 1998; Wickens, 2002). 277 

2.3 Link functions 278 

The link function that transforms the probability of being correct to the logarithm of the odds 279 

of being correct to being incorrect is called the logit link and is the defining feature of logistic 280 

regression. In the present analysis, three different link functions are examined:  281 

1) the logit link 282 

2) the probit link 283 

3) the half-logit link. 284 

The logit link was the default choice in previous studies. The probit link was included into 285 

the analysis because SDT models can be seen as a subclass of generalized linear regression 286 

models where the inverse link function corresponds to the cumulative distribution function of 287 

the evidence (Brockhoff & Christensen, 2010; DeCarlo, 1998). Logistic regression assumes a 288 

logistic distribution of errors, while probit regression assumes a standard normal distribution 289 

of errors. Consequently, it appears necessary to examine if logistic regression is only valid in 290 

logistic SDT models, and probit regression in Gaussian SDT models. The adjusted link was 291 

proposed as an adjustment in tasks with a finite guessing probability (Brockhoff & Müller, 292 

1997). The use of the logit and probit transform implies that the probability of being correct 293 

varies between 0 and 1; however, in binary tasks, the probability of being correct is bounded 294 

by the guessing probability 0.5 (Rausch et al., 2015). To account for the guessing probability, 295 

a link function can be used to ensure that the transformed accuracy is free to vary in the full 296 

range between -∞ and ∞. In tasks with two choices, this can be achieved by the adjusted link 297 

function g(x) = log⁡((x − 0.5) (1 − x)⁄ ). This function was referred to as half-logit link (cf. 298 

Williams, Ramaswamy, & Oulhaj, 2006).  299 

2.4 Results 300 

To investigate if GLM slopes are sensitive to metacognition and unbiased by primary task 301 

criterion and by rating criteria assuming the hierarchical model, we calculated logistic 302 

regression slopes as a function of internal noise σ as well as primary task criterion θ (Fig. 4) 303 

and spread of rating criteria τ (Fig. 5). These calculations were repeated using Gaussian and 304 

logistic distributions of evidence and with logit, probit, and half-logit link functions.  305 

2.4.1 Are GLM slopes sensitive to metacognition? 306 

In Fig. 4 and 5, separate lines indicate different degrees of internal noise σ. Greater amounts 307 

of internal noise are associated with lower regression slopes at each level of primary task 308 

criterion (Fig. 4), and at each level of rating criteria spread (Fig. 5). This pattern holds 309 

independently from distributions of evidence and link functions (separate panels of Fig. 4 and 310 
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5). When the amounts of noise are extreme, i.e. when metacognition is effectively absent, 311 

regression slopes also tend towards zero. Overall, GLM analysis is sensitive to metacognition 312 

according to the hierarchical model.  313 

2.4.2 Do GLM slopes depend on the primary task criterion? 314 

As can be seen from each panel of Fig. 4, regression slopes depend heavily on the primary 315 

task criterion according to the hierarchical model. The precise form of the relationship 316 

between primary task criterion and slopes depends on a complex interaction between the 317 

amount internal noise, the shape of the distributions of evidence, and the link functions. 318 

When the distributions are logistic, when the half-logit transform is used, or when the internal 319 

noise is not small, logistic regression slopes increase monotonously with primary task 320 

criterion: Consequently, greater regression slopes are not necessarily due to metacognition, 321 

but could also be due to a stronger bias towards one of the task alternatives. However, when 322 

Gaussian distributions are assumed and the amount of noise is small, the relationship between 323 

regression slopes and primary task criterion is u-shaped: Slopes are maximal when observers 324 

are either not biased at all or extremely biased towards one of the task alternatives. Therefore, 325 

a primary task criterion may not only increase, but also decrease regression slopes. Overall, 326 

regression slopes depend on the primary task criterion, but the direction and magnitude of the 327 

effect is strongly dependent on the other model parameters of the hierarchical model.  328 

FIG.4 ABOUT HERE 329 

2.4.3 Do GLM slopes depend on rating criteria? 330 

As can be seen from Fig. 5, logistic and probit regression slopes increase with rating criteria 331 

spread τ, i.e. when more conservative rating criteria are set (top and central panels). The 332 

relationship between half-logit regression slopes and rating criteria can be u-shaped or 333 

decreasing (bottom panels). However, the relationships between slopes and rating criteria are 334 

moderated by internal noise as well the shape of the distributions: When the distributions are 335 

Gaussian, the effect imposed by rating criteria will be smaller the more internal noise is 336 

superimposed on the sensory evidence. When the distributions are logistic, the effect imposed 337 

by rating criteria is maximal at medium level of internal noise. Overall, according to 338 

hierarchical models, differences between regression slopes can not only be caused by 339 

metacognition and task criterion, but also by the way participants set rating criteria. Again, 340 

the effect is strongly dependent on the other model parameters of the hierarchical model.  341 

FIG. 5 ABOUT HERE 342 

2.4.4 Can rating criteria be assessed by regression intercepts? 343 

To investigate if regression intercepts are sensitive to rating criteria and independent from 344 

metacognition and primary task criterion in the hierarchical model, we calculated intercepts 345 

as a function of internal noise σ, primary task criterion θ, rating criteria spread τ, shape of the 346 

distributions, and link functions. Consistent across distributions and link functions, intercepts 347 

were negatively related to the primary task criterion θ and positively correlated to the internal 348 

noise sigma σ (see Supplementary Fig. 1). However, intercepts were only sensitive to the 349 

spread of rating criteria τ when the amount of internal noise was low (see Supplementary Fig. 350 

2). This means that intercept effects cannot uniquely be attributed to rating criteria, but also 351 

to metacognition or due to primary task criterion. Even more, when rating criteria are 352 

different between two conditions, it will not be possible to detect the effect using intercepts 353 

when the amount of internal noise is high.  354 
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3 Logistic regression in the independent model of metacognition  355 

3.1 Calculation of GLM slopes and link functions  356 

Calculation of GLM slopes and link functions were identical to the hierarchical model. 357 

3.2 Model description 358 

The independent model can be expressed by the graphical model in Fig. 6. It is analogous to 359 

the hierarchical model with the following differences: Participants select only the primary 360 

task response based on the sensory evidence x. For subjective reports, a second sample of 361 

sensory evidence y is created, which is stochastically independent from x. The standard 362 

deviation of the distribution of y is assumed to be 1. The location of the distribution of y 363 

depends on the stimulus in the current trial as well as on the rating sensitivity parameter dm: 364 

When 𝑆 = 0, the mean of the distribution is -0.5 dm, and when 𝑆 = 1, then the mean of the 365 

distribution of evidence is 0.5 dm. When 𝑅 = 1⁡and y is greater than the rating criterion c1, 366 

then the participant’s subjective report C is 1. When 𝑅 = 1 and y is smaller than the rating 367 

criterion c1, then the subjective report C is 0. Likewise, when 𝑅 = 0, the C is 1 if y is smaller 368 

than the rating criterion c0, and C is 0 if y is greater than the rating criterion c0. Again, it is 369 

assumed for simplicity that the distance between θ and c0 is the same as the distance between 370 

θ and c1, controlled by the parameter τ reflecting the conservativeness of rating criteria. The 371 

formulae for computing 𝑃(𝑇 = 1|𝐶 = 0) and 𝑃(𝑇 = 1|𝐶 = 1) in the independent model can 372 

be found in the Appendix B.  373 

3.3 Results 374 

To investigate if GLM slopes are sensitive to metacognition and unbiased by the primary task 375 

criterion and by rating criteria according to the independent model, slopes were calculated as 376 

a function of rating sensitivity dm as well as primary task criterion θ (Fig. 7) and spread of 377 

rating criteria τ (Fig. 8). Again, these calculations were performed using Gaussian and 378 

logistic distributions of evidence and using logit, probit, and half-logit link functions.  379 

3.3.1 Are GLM slopes sensitive to metacognition? 380 

In Fig. 7 and 8, separate lines indicate different degrees of rating sensitivity dm. Greater rating 381 

sensitivity was associated with increasing regression slopes at each level of primary task 382 

criterion (Fig. 7), and at each level of rating criteria spread (Fig. 8). This pattern holds across 383 

the different distributions of evidence and link functions (separate panels of Fig. 7 and 8). 384 

When rating sensitivity is 0, i.e. when the sensory evidence available to metacognition does 385 

not differentiate between the two stimuli, regression slopes become 0 when observers are 386 

unbiased towards the two response options. However, when rating sensitivity is 0 and when 387 

there is a bias, the slope will become negative. Overall, these results indicate GLM analysis is 388 

sensitive to metacognition in the independent model, but the sign of the slope should not be 389 

interpreted without consideration of the primary task criterion.  390 

3.3.2 Do GLM slopes depend on the primary task criterion? 391 

As can be seen from each panel of Fig. 7, slopes are influenced by the primary task criterion 392 

θ according to the independent model as well. While there is always an effect of primary task 393 
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criterion, direction and magnitude of the effect depends on a complex interaction between the 394 

amount of metacognition as indexed by the rating sensitivity dm, the shape of the distributions 395 

of evidence, as well as the link functions. When the distributions of evidence are Gaussian 396 

and when a probit or logit link function is used, the relationship between primary task 397 

criterion θ and slopes appears to be u-shaped and similar across different levels of 398 

metacognition: Slopes reach a minimum at medium primary task criterion θ, and increase 399 

when θ is either 0 or maximal (see Fig. 7 upper and central panel to the left). When the 400 

distributions of evidence are logistic and when a probit or logit link functions is applied, 401 

GLM slopes decrease with increasing θ (see Fig. 7 upper and central panel to the right). 402 

When the half-logit link function is used, the slopes increase exponentially with θ for 403 

medium-to-large rating sensitivities. However, when rating sensitivity is low, slopes decrease 404 

with increasing θ. Overall, these observations indicate that slopes as measures of 405 

metacognition in the independent model can be biased by the primary task criterion; the kind 406 

of bias however depends on the other model parameters as well as on the choice of the link 407 

function.  408 

FIG.7 ABOUT HERE 409 

3.3.3 Do GLM slops depend on rating criteria? 410 

Fig. 8 shows that GLM slopes are independent from the spread of rating criteria τ in one case: 411 

When the evidence is assumed to be logistically distributed, logistic regression slopes are 412 

independent from rating criteria (see Fig. 8 upper right panel). Probit regression slopes 413 

decrease when more conservative rating criteria are used. In contrast, when the evidence is 414 

assumed to be Gaussian, both logistic and probit regression slopes increase when more 415 

conservative rating criteria are applied (see Fig. 8 upper and central panel to the left). These 416 

effects are moderated by the amount of evidence available to ratings, i.e. rating sensitivity dm. 417 

The larger dm is, the more pronounced is the effect of rating criteria on GLM slopes. For the 418 

half-logit link function, slopes increase massively when the spread of rating criteria is very 419 

small (see Fig. 8 lower row). In summary, logistic regression slopes are unbiased by the 420 

spread of the rating criteria in the independent model when the distributions of evidence are 421 

logistic. When other link functions and Gaussian distributions are assumed, slopes can be 422 

heavily influenced by rating criteria.  423 

FIG. 8 ABOUT HERE 424 

3.3.4 Can rating criteria be assessed by regression intercepts? 425 

To investigate if regression intercepts are sensitive to rating criteria and independent from 426 

metacognition and primary task criterion in the independent model, we calculated intercepts 427 

as a function of rating sensitivity dm, primary task criterion θ, rating criteria spread τ, shape of 428 

the distributions, and link functions. Consistent across distributions and link functions, 429 

intercepts were negatively associated with the primary task criterion θ and positively 430 

associated with the rating sensitivity dm (see Supplementary Fig. 3). The intercepts were only 431 

sensitive to the spread of rating criteria τ when dm was above zero (see Supplementary Fig. 432 

4). Overall, this means that according to the independent model – just as the hierarchical 433 

model - intercept effects could be due to rating criteria, degree of metacognition, and primary 434 

task criterion. In addition, true effects on rating criteria will remain undetected when 435 

metacognition is low. 436 
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4 Model fits of the independent and the hierarchical model in a low-contrast 437 

orientation discrimination task 438 

The present analysis implies that logistic regression slopes are unbiased by rating criteria 439 

according to only one specific model of metacognition, namely the logistic independent 440 

model. In all models, the slopes are dependent on primary task criteria. Consequently, if 441 

researchers intend to use logistic regression as measure of metacognition, it would be useful 442 

to identify the cognitive model underlying the rating data. While measures of primary task 443 

criteria are readily available from SDT (Green & Swets, 1966; Macmillan & Creelman, 2005; 444 

Wickens, 2002), it might be a challenge to differentiate the independent model and logistic 445 

distributions from the hierarchical model and Gaussians. We reanalyze confidence ratings 446 

obtained in a recent low-contrast orientation discrimination experiment (Rausch & 447 

Zehetleitner, 2016) to investigate if this is possible using cognitive modeling and the 448 

maximum likelihood procedure.  449 

4.1 Reanalysis 450 

4.1.1 Experimental task  451 

20 participants, all of which provided written informed consent, performed one training block 452 

and nine experimental blocks of 42 trials each of a low contrast orientation discrimination 453 

task. First, participants were presented with a fixation cross for 1 s. Then, the target stimulus, 454 

a binary grating oriented either horizontally or vertically, was presented for 200 ms with 455 

varying contrast levels of 0, 2.2, 3.9, 5.0, 5.5, and 6.9%. The screen remained blank 456 

afterwards until participants made a non-speeded discrimination response by key press 457 

whether the target had been horizontal or vertical. After each discrimination response, 458 

participants made two subjective reports, one regarding their visual experience of the 459 

stimulus, and one regarding their confidence in being correct in the discrimination task. For 460 

that, each question was displayed on the screen, which was: ‘‘How clearly did you see the 461 

grating?’’ or ‘‘How confident are you that your response was correct?’’ The sequence of 462 

questions was balanced across participants. Participants delivered subjective reports on a 463 

visual analog scale using a joystick, which means that participants selected a position along a 464 

continuous line between two end points by moving a cursor. The end points were labeled as 465 

‘‘unclear’’ and ‘‘clear’’ for the experience scale and ‘‘unconfident’’ and ‘‘confident’’ for the 466 

confidence scale, i.e. observers indicated their experience or confidence by the selected 467 

cursor position on the continuous scale. If the discrimination response was erroneous, the trial 468 

ended by displaying the word ‘‘error’’ for 1 s on the monitor. There was no feedback with 469 

respect to the subjective report. Please refer to Rausch and Zehetleitner (2016) for a more 470 

detailed description of the experiment.  471 

4.1.2 Models 472 

We fitted eight different models to the data, which were characterized by all possible 473 

combinations of the following three features:  474 

(i) The model could be either a hierarchical or an independent model as outlined 475 

above. 476 

(ii) The distributions of evidence and noise could be either Gaussian or logistic. 477 

(iii) The primary task criterion θ was either treated as a free parameter or fixed at 478 

0.  479 
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In all eight models, we assumed that the discrimination sensitivity d varied across contrast 480 

levels, while the other parameters were assumed to be constant across contrast levels. Thus, 481 

each model involved six different sensitivity parameters d1 - d6, one for each contrast level. 482 

Moreover, each model involved a series of 11 rating criteria spread parameters τ1 - τ11. These 483 

parameters described how close the rating criteria were located to the primary task criterion 484 

θ: τ1 denotes the location of the closest pair of criteria at both sides of θ; τ2 referred to the 485 

second pair, and so on. In hierarchical models, the degree of metacognition was denoted by 486 

the internal noise parameter σ. For independent models, the rating sensitivity dm was assumed 487 

to be a constant fraction of the discrimination sensitivity d, denoted by the parameter a. 488 

Overall, the models had 18 or 19 free parameters depending on if the primary task criterion θ 489 

was fixed at zero.  490 

4.1.3 Model fitting 491 

Model fitting was performed separately for each single participant. The fitting procedure 492 

involved the following computational steps. First, the continuous confidence ratings were 493 

discretized by dividing the continuous scale into equal 12 partitions. Analyses using four or 494 

eight bins gave similar results when used on the empirical data; however, 12 bins improved 495 

the recovery of model-generated data (see 4.1.6), which is why results based on 12 bins are 496 

reported. Second, we computed the frequency of each rating bin given orientation of the 497 

stimulus and the orientation response. Third, for each of the 8 models, the set of parameters 498 

was determined that maximized the likelihood of the data. To compute the likelihood, we 499 

made two widespread assumptions in SDT modeling (Dorfman & Alf, 1969; Maniscalco & 500 

Lau, 2016): (i) responses in each trial were assumed to be independent from each other and 501 

(ii) the joint probability of a task response and a subjective report given the stimulus was 502 

constant across trials. Formally, the likelihood of a set of parameters given primary task 503 

responses and subjective reports ℒ(p|𝑅, 𝐶) is given by  504 

ℒ(p|𝑅, 𝐶) ∝ ⁡∏𝑃(𝑅𝑖, 𝐶𝑗|𝑆𝑘, 𝑝)
𝑛(𝑅𝑖,𝐶𝑗|𝑆𝑘)

𝑖,𝑗,𝑘

 
(5) 

where 𝑃(𝑅𝑖, 𝐶𝑗|𝑆𝑘, 𝑝) denotes the probability of a primary task response in conjunction with a 505 

specific subjective report given the stimulus and the set of parameters, and 𝑛(𝑅𝑖, 𝐶𝑗|𝑆𝑘) 506 

indicates the frequency how often the participants gave a specific response in conjunction 507 

with a specific subjective report given the stimulus. The set of parameters with the maximum 508 

likelihood was determined by minimizing the negative log likelihood as the latter is 509 

computationally more stable: 510 

log(ℒ(p|𝑅, 𝐶)) ∝ ⁡∑ log (𝑃(𝑅𝑖, 𝐶𝑗|𝑆𝑘, 𝑝)) ×

𝑖,𝑗,𝑘

⁡𝑛(𝑅𝑖, 𝐶𝑗|𝑆𝑘) 
(6) 

To minimize the negative log likelihood, we used a general SIMPLEX minimization routine 511 

implemented in the R function optim (Nelder & Mead, 1965). The formulae for 512 

P(Ri, Cj|Sk, p) are found in the Appendix as formulae (A6) – (A13) and (B5) – (B12). 513 

Internal noise was parametrized as the log of the standard deviation of the noise to allow 514 

negative values of the parameter during the fitting process. To maintain a fixed sequence of 515 

rating criteria, we did not directly fit τ1 – τ11, instead, optimization was performed on the log 516 

distance to the nearest rating criterion closer to the primary task criterion.  517 

4.1.4 Model selection 518 
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Following the fitting procedure, we assessed the relative quality of the eight candidate models 519 

using the Bayes information criterion (BIC, Schwarz, 1978) and the Akaike information 520 

criterion (AIC, Akaike, 1974). Conceptually, the BIC measures the degree of belief that a 521 

certain model is the true data-generating model relative to the other models under 522 

comparison, assuming that the true generative model is among the set of candidate models. In 523 

contrast, the AIC measures the loss of information when the true generative model is 524 

approximated by the candidate model. We used AICc, a variant of AIC that corrects for finite 525 

sample sizes (Burnham & Anderson, 2002). BIC and AICc take into account descriptive 526 

accuracy (i.e. goodness of fit) and parsimony (i.e. smallest number of parameters), but the 527 

BIC favors parsimony more heavily than the AICc does. BIC and AICc are given by the 528 

following formulae: 529 

𝐵𝐼𝐶 = ⁡−2⁡ log(ℒ(p|𝑅, 𝐶)) + 𝑘⁡log⁡(𝑛) (7) 

𝐴𝐼𝐶𝑐 =⁡−2⁡⁡ log(ℒ(p|𝑅, 𝐶)) + 2𝑘 + (
2𝑘(𝑘 + 1)

(𝑛 − 𝑘 − 1)
) 

(8) 

where k indicates the number of parameters and n the number of observations.  530 

4.1.5 Statistical testing 531 

In experiments with a standard number of trials, even if the independent logistic model with 532 

fixed task criterion was true, it cannot be expected that models can be correctly identified for 533 

each single participant. However, in this case, it would still be expected that independent 534 

models obtained the best fit more frequently than hierarchical models, that models based on 535 

the logistic distribution would achieve the best fit more often than Gaussian models, and 536 

likewise that models with the free primary task criterion fixed at 0 would obtain better fits 537 

than models with a free primary task criterion.  538 

Therefore, we determined for each participant which of the eight candidate models achieved 539 

the minimal BIC and minimal AICc. Then, we performed three tests if those model features 540 

that imply that logistic regression slopes are independent from criteria are more likely to 541 

result in the best BIC or AICc: First, we tested if independent models were more likely to 542 

achieve the best BIC or AICc than hierarchical models. Second, we assessed if models with 543 

the primary task criterion fixed at 0 achieved the best BIC/AICc with a greater probability 544 

than models with the primary task criterion as free parameter. Finally, we examined if models 545 

based on logistic distributions attained minimal BIC and AICc more frequently than models 546 

based on Gaussians.  547 

Statistical testing was based on Bayes factors for proportions implemented in the R library 548 

BayesFactor (Morey & Rouder, 2015). Bayes factors provide continuous measures of how 549 

the evidence supports the alternative hypothesis over the null hypothesis and vice versa 550 

(Dienes, 2011; Rouder, Speckman, Sun, Morey, & Iverson, 2009). Specifically, the Bayes 551 

factor indicates how the prior odds about alternative hypothesis and null hypothesis need to 552 

be multiplied to obtain the posterior odds of the two hypotheses. As null hypothesis, we 553 

assumed that both variants of the model were equally likely to achieve the best fit. As one-554 

sided alternative hypothesis, we assumed a logistic distribution of the logits of the probability 555 

around 0 over the interval 0.5 and 1 with a scale parameter of 0.5.  556 

4.1.6 Recovery of model generated data 557 

To investigate the reliability of the model selection process, we generated random data sets 558 

based on each participant’s parameter set obtained during the fitting process (analogous 559 
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procedure to Maniscalco & Lau, 2016). We used only the parameter sets of two models: The 560 

independent logistic model with primary task criterion fixed at 0 was used because it implies 561 

that slopes are independent of confounds by criteria and thus logistic regression slopes can be 562 

used as measure of metacognition without concern. The alternative model was the 563 

hierarchical Gaussian model with free primary task criterion because it is maximally different 564 

from the independent logistic model with primary task criterion fixed at 0. This procedure 565 

yielded a mock replica of each participant’s behavioral data. We then fitted all eight models 566 

to these simulated data and performed model selection using AICc and BIC. If the model 567 

selection methodology is reliable, then independent, logistic and fixed θ models should be 568 

selected when the data is generated according to the independent logistic model with primary 569 

task criterion fixed at 0. Likewise, when the hierarchical Gaussian model with free primary 570 

task criterion is used to create the data, hierarchical, Gaussian models with a free primary 571 

task parameter should be preferred during model selection. We replicated the analysis using 572 

100, 200, 378 (the same number of trials as in the real experiment), 600, 1200, 2500, 5000, 573 

10000, 20000 and 50000 trials to estimate the number of trials required to perform a reliable 574 

model selection. 575 

4.2 Results 576 

The fitting procedure converged for all participants except for one participant, where the 577 

fitting of the hierarchical Gaussian model did not converge. On average, the best model fit 578 

was obtained by the hierarchical logistic model with fixed primary task criterion both in 579 

terms of BIC (M = 1432.8) as well as AICc (M =1363.7). According to the BIC, the strength 580 

of evidence in favor the hierarchical logistic model with fixed primary task criterion as 581 

indexed by the difference in BIC was always substantial (all other models: M’s ≥ 1437.7). In 582 

contrast, according to the AICc, there was only a small benefit of the hierarchical logistic 583 

model with fixed primary task criterion compared to the independent logistic model with free 584 

task criterion parameter (M = 1364.5) and the hierarchical logistic model including a free task 585 

criterion parameter (M = 1364.9). As can be seen from Fig. 9, both the hierarchical logistic 586 

model with task criterion fixed at zero and the hierarchical logistic model including a free 587 

task criterion parameter provided qualitatively good accounts of the distributions of 588 

discrimination accuracy and confidence ratings.  589 

4.2.1 Is there support for the independent model? 590 

Independent models of metacognition only provided the best model fit in 30% of the 591 

participants according to the BIC, and in 40% of the participants according to the AICc. The 592 

Bayes factor analysis indicated evidence against the hypothesis that independent models are 593 

more likely to attain the best fit both in terms of BIC, BF10 = 0.19, as well as in terms of 594 

AICc, BF10 = 0.29. This result implies that prior beliefs that a flavor of the independent 595 

models is the generative model of the present data should be attenuated. Accordingly, 596 

estimates of metacognition in the present data set based on GLM slopes are likely to be 597 

affected by rating criteria.  598 

4.2.2 Can the primary task criterion be fixed at 0? 599 

Models with the primary task criterion fixed at zero attained the best model fit in 60% of the 600 

participants according to the BIC, and in 40% according to the AICc. The Bayes factor 601 

analysis does not provide any support in favor of the hypothesis that models with the primary 602 

task criterion fixed at zero are associated with better BICs, BF10 = 1.02. However, there was 603 
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evidence against the hypothesis that models with the primary task criterion fixed at zero are 604 

associated with better AICcs, BF10 = 0.29. Consequently, there is some indication that GLM 605 

slopes in the present data would also influenced by the primary task criterion, but the 606 

evidence is not consistent. 607 

4.2.3 Is the evidence distributed logistically? 608 

Models based on the assumption of logistic distributions achieved the minimal BIC in 85% of 609 

the participants according to BIC and even in 90% according to AICc.. The Bayes factors 610 

indicated strong evidence that the logistic models were more likely to produce better fits than 611 

Gaussian models, both in terms of BIC, BF10 = 56.1, as well with regard to AICc, BF10 = 612 

231.6. This means that only one out of the three conditions for logistic regression slopes to be 613 

independent of criteria was met in the present data set.  614 

4.2.4 Can the model underlying simulated data be recovered? 615 

Fig. 10 shows the results of the model recovery analysis of data simulated according to the 616 

independent logistic model with fixed task criterion (squares) and data generated according to 617 

the hierarchical Gaussian model with a free task criterion (circles).  618 

As can be seen from the panels on the left, when the data was simulated according to the 619 

independent logistic model with fixed task criterion, the model was nearly always correctly 620 

identified as being one of the independent models. However, when the true model was the 621 

hierarchical Gaussian model with free task criterion, the model was relatively often 622 

misclassified as independent: When the trial number was small (N ≤ 200), model recovery 623 

was even below chance. 5000 trials were required to obtain a tolerable recovery rate of 624 

approximately 70%. Increasing the trial number even more did not substantially improve 625 

model recovery. 626 

The central panels of Fig. 10 show model recovery with respect to the free primary task 627 

criterion vs. the primary task criterion fixed at 0. For the BIC as model selection criterion, 628 

5000 trials were necessary to detect the free task criterion parameter with a tolerable accuracy 629 

of 70%. In contrast, for the AICc, 1200 trials were sufficient to reach 70%. Notably, the AICc 630 

does not favor models with smaller number of parameter as heavily as the BIC does. It can 631 

also be seen that model recovery accuracy decreased with trial number for the independent 632 

logistic model with fixed task criterion (dotted lines). However, at the same time, model 633 

recovery accuracy increased with sample size for the hierarchical Gaussian model with free 634 

task criterion (straight lines). An explanation for this pattern may be that AICc and BIC both 635 

favor more parsimonious models. For small sample sizes, both AICc and BIC prefer models 636 

with a smaller number of parameters, which is why models are selected where the primary 637 

task criterion is fixed at 0. The bias towards smaller results will result in a correct 638 

classification with respect to the primary task criterion when the true model is the 639 

independent logistic model with fixed task criterion, but an error will occur when the true 640 

model is the hierarchical Gaussian model with free task criterion.  641 

Finally, model recovery with respect to logistic and Gaussian distributions is depicted in the 642 

right panels of Fig. 10. For large sample sizes, logistic distributions were more often correctly 643 

identified than Gaussians. However, 1200 trials were sufficient to obtain a tolerable recovery 644 

rate of approximately 70% for both distributions.  645 

5 Discussion 646 
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The analysis presented here investigated whether GLM slopes as measures of metacognition 647 

are biased by the spread of rating criteria and the primary task criterion. We showed 648 

analytically that logistic regression slopes are independent from rating criteria only according 649 

to one specific model of metacognition: the independent model based on logistic 650 

distributions. When other distributions were assumed, when other link functions were used, 651 

or when a hierarchical model was adopted, regression slopes always depended on the spread 652 

of rating criteria. The direction and magnitude of these effects depended on the other model 653 

parameters. The primary task criterion was related to regression slopes in all considered 654 

models. Depending on the model parameters, the relationship between slopes and task 655 

criterion were increasing, decreasing, or even u-shaped. An analysis of regression intercepts 656 

revealed that intercepts were insensitive to rating criteria when the amount of metacognition 657 

was too low. In addition, we examined if these models can be identified empirically on an 658 

existing data set, observing that a massive number of trials is required to distinguish between 659 

hierarchical and independent models with tolerable accuracy.  660 

5.1 Is logistic regression a biased measure of metacognitive sensitivity? 661 

When the aim of a study is to estimate the degree of metacognitive sensitivity, it is generally 662 

accepted that a suitable measure should be independent from the primary task criterion and 663 

rating criteria (Barrett et al., 2013). However, the present study revealed that logistic 664 

regression slopes depend on the primary task criterion independent of the underlying model 665 

of metacognition. Logistic regression slopes also depend on rating criteria except for one 666 

specific model of metacognition: When the sensory evidence considered for primary task 667 

responses is stochastically independent from the sensory evidence used in rating decisions, 668 

and when these two types of evidence both form logistic distributions, then logistic regression 669 

slopes are independent from rating criteria. This means that when researchers encounter an 670 

empirical effect on logistic regression slopes, without knowledge about the underlying model 671 

of metacognition, there will be at least three possible explanations for the effect: (i) the effect 672 

can be mediated by participants’ degree of metacognition of the processes engaged in 673 

performing the task, (ii) the effect might also be due to participants’ bias towards one of the 674 

task alternatives, and (iii) the effect may also depend entirely on differences how liberal or 675 

conservative participants’ rating criteria are. Likewise, researchers might be unable to 676 

observe real effects on participants’ degree of metacognition when there is also a difference 677 

between participants’ bias or between rating criteria because the effects of metacognition and 678 

criteria could balance out.  679 

5.2 Does the present analysis generalize to other models of decision-making and 680 

metacognition? 681 

The present analysis was based on specific assumptions about the decision process as well as 682 

the cognitive model underlying metacognition. Concerning the decision process, we assumed 683 

the standard SDT model. Concerning metacognition, only two models, the hierarchical and 684 

the independent model were considered. Is it reasonable to assume that the characteristics of 685 

GLM slopes outlined here generalize to other models of decision-making and metacognition? 686 

As the literature provides a multitude of competing models of decision making, confidence 687 

and / or metacognition, it is not feasible to investigate the eligibility of logistic regression for 688 

each model proposed in the literature. Examples for different models include the bounded 689 

accumulation model (Kiani, Corthell, & Shadlen, 2014), the collapsing confidence boundary 690 
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model (Moran, Teodorescu, & Usher, 2015), the consensus model (Paz, Insabato, Zylberberg, 691 

Deco, & Sigman, 2016), the reaction time account (Ratcliff, 1978), the self-evaluation model 692 

(Fleming & Daw, 2016), and two-stage signal detection theory (Pleskac & Busemeyer, 2010). 693 

The attempt seems even futile because the number of models in the literature is continuously 694 

increasing. However, the two models tested here represent two complementary prototypes of 695 

models of metacognition: The hierarchical model is the simplest possible variant of models 696 

where the evidence used for the decision between the primary task alternatives also informs 697 

the decision between different rating criteria. The view that the evidence used in the decision 698 

process is also involved in metacognition is a standard tenet of theories about metacognition. 699 

In contrast, the independent model assumes that evidence used for the rating decision is 700 

sampled entirely independently from the evidence used for the task response. It is an open 701 

question whether datasets exist that can be conveniently described by the independent model.  702 

The majority of existing models in the literature are closely related to one of the two models 703 

or the models constitute a combination of the two models. For example, post-decisional 704 

accumulation models can be seen as a combination of the hierarchical and the independent 705 

model, where a second, independent sample of evidence is acquired later in time than the 706 

sensory evidence used for performing the task (Moran et al., 2015; Pleskac & Busemeyer, 707 

2010). When a model assumes that rating decisions are informed by both evidence considered 708 

in the primary task as well as evidence sampled in parallel, it is reasonable to expect that 709 

biases apparent in the hierarchical and the independent model persist when the two sources of 710 

evidence are combined.  711 

Of course, it is still possible that there will be new theories which imply that logistic 712 

regression is not affected by primary task criteria and rating criteria. However, the 713 

implications of the present study do not require that such a model does not exist. What the 714 

study implies is that according to plausible models of metacognition, logistic regression is 715 

affected from primary task criterion and rating criteria. As a consequence, researchers who 716 

wish to use logistic regression to measure metacognitive sensitivity need to show that their 717 

effects cannot be alternatively explained by rating criteria and primary task criteria.  718 

5.3 Can the independent model be empirically identified? 719 

To exclude the possibility that effects on regression slopes are not caused or masked by rating 720 

criteria, it would be useful to identify the underlying model of metacognition. Unfortunately, 721 

the present model recovery analysis revealed that the amount of trials required to correctly 722 

classify a true underlying hierarchical Gaussian model is massive. Moreover, the hierarchical 723 

Gaussian model was still occasionally misclassified as independent or logistic even with 724 

extreme trial numbers. In a similar comparison between different models of metacognition, 725 

two thirds of the participants were excluded to reduce noise in the data and improve model 726 

selection, implying that these models are also not trivial to distinguish based on other data 727 

sets (Maniscalco & Lau, 2016). Likewise, Gaussian and logistic distributions are known to 728 

produce similar results in many applications (DeCarlo, 1998; Wickens, 2002). Consequently, 729 

when researchers intend to model the cognitive architecture of metacognition, they will need 730 

to ensure that both the sample size and the trial number are sufficiently large to ensure that 731 

classification errors are outnumbered by correct classifications. However, for those 732 

researchers who are only interested in measuring metacognition, the standard application of 733 

logistic regression as measure of metacognitive sensitivity, cognitive modeling will usually 734 

not be a feasible option because the number of trials in standard experiments is typically too 735 

small. Future studies might be able to provide more efficient methods to distinguish between 736 

the hierarchical Gaussian and the independent logistic model.  737 
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5.4 What other methods can be used to estimate metacognitive sensitivity? 738 

What are the options to avoid the confound of metacognitive sensitivity with task criteria and 739 

rating criteria? There are two options: (i) researchers can resort to measures of metacognitive 740 

sensitivity other than GLM slopes, or (ii) they can control for primary task and rating criteria 741 

statistically.  742 

What are the alternatives to logistic regression slopes (cf. Fleming & Lau, 2014)? A method 743 

that recently received a considerable amount of attention is meta-d’. Meta-d’ quantifies the 744 

degree of metacognition in terms of a standard SDT model where task responses and 745 

subjective reports are made based on identical evidence (Maniscalco & Lau, 2012). There are 746 

several reasons to use meta-d’: Meta-d’ is reasonably robust to changes of primary task 747 

criteria and rating criteria in an optimal observer SDT model, a decreasing signal SDT model 748 

and an increasing signal SDT model (Barrett et al., 2013). The decreasing signal SDT model 749 

is closely related to the hierarchical model in the present study, while the increasing signal 750 

SDT model can be seen as combination of the hierarchical model and the independent model 751 

in the present study. In addition, meta-d’ provides control over performance in the primary 752 

task. Meta-d’ has even the unique advantage of allowing comparisons with primary task 753 

performance as metacognitive sensitivity and primary task performance are measured on the 754 

same scale (Fleming & Lau, 2014; Maniscalco & Lau, 2012). Thus, meta-d’ is able to assess 755 

imperfect metacognition as well as metacognition better than expected from task 756 

performance.  757 

An argument against the use of meta-d’ is that meta-d’ requires assumptions about the 758 

distributions of evidence during the decision process. The most common choice are equal 759 

Gaussian distributions (Barrett et al., 2013; Maniscalco & Lau, 2012), but other distributions 760 

have been implemented as well (Rausch et al., 2015). However, to our knowledge, no study 761 

so far has investigated how often the distributional assumptions of meta-d’ are in fact 762 

violated, or how sensitive meta-d’ is to violations of these distributional assumptions. 763 

Moreover, meta-d’ has also never been assessed in an independent model of metacognition.  764 

SDT approaches that rely on distributional assumptions are often criticized because it is often 765 

hard to test of these assumptions are justified. Indeed, in a classical paper, Nelson (1984) 766 

recommended gamma correlations to avoid the distributional assumptions made by 767 

parametric SDT methods. Although many researchers have since used gamma correlations, 768 

simulations suggested that rating criteria strongly impact on gamma correlations, making 769 

results obtained by gamma ambiguous as they could be due to metacognition or due to 770 

criterion setting (Masson & Rotello, 2009).  771 

An non-parametric SDT approach to estimate metacognitive sensitivity is by means of type 2 772 

ROC-curves (Fleming et al., 2010). This method provides a measure of metacognitive 773 

sensitivity free of bias by rating criteria and distributional assumptions. However, the number 774 

of trials required to estimate type 2 ROC-curves can be massive (Nelson, 1984), and type 2 775 

ROC curves do not provide any control over performance in the primary task and the 776 

associated criteria (Fleming & Lau, 2014).  777 

Overall, it appears to us that meta-d’ is the most useful measure of metacognitive sensitivity, 778 
although more research on the distributional assumptions required by meta-d’ would be desirable. 779 

Meanwhile, when the underlying distributions of evidence cannot be ascertained, it may be 780 

useful to check if meta-d’ and type 2 ROC-curve converge to the same results.  781 

5.5 How can criteria be controlled? 782 
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When researchers do not wish to resort to other methods than logistic regression slopes, they 783 

should at least control primary task criteria and rating criteria statistically. This approach 784 

requires of course the assessment of criteria independent of metacognitive sensitivity. As 785 

logistic regression will often be used when researchers do not wish to make explicit 786 

assumptions about the underlying model of metacognition, the measure of criteria should also 787 

be model-free. 788 

Logistic regression intercepts, which are occasionally used as measure of rating criteria 789 

(Wierzchoń et al., 2012), do not fulfill these requirements. According to the present analysis, 790 

intercepts also depend on model parameters assumed to reflect the degree of metacognition. 791 

Moreover, when metacognition is low, intercepts are no longer sensitive to rating criteria. 792 

Overall, rating criteria need to be controlled by other measures than regression intercepts.  793 

A model based approach to assess rating criteria is based on the standard SDT model used to 794 

estimate meta-d’. When the standard SDT model is assumed, rating criteria and the primary 795 

task criterion can be directly estimated from the model (Rausch & Zehetleitner, 2016). The 796 

advantage of this approach is that it allows to control for primary task criterion and rating 797 

criteria at the same time. Unfortunately, this approach again requires assumptions about the 798 

distributions of evidence. In addition, it has never been investigated if these estimates are 799 

unbiased when the data-generating model is not the standard SDT model or a hierarchical 800 

model of metacognition.  801 

SDT theory provides numerous other indices for response bias (Green & Swets, 1966; 802 

Macmillan & Creelman, 2005; Wickens, 2002). A non-parametric measure of primary task 803 

criterion is βK, which is calculated from the empirical receiver operating characteristic 804 

(Kornbrot, 2006). When researchers construct type 2 ROC-curves, they can compute Broc, the 805 

analog of βK for type 2 ROC-curves, as a measure of conservative and liberal rating criteria 806 

(Fleming et al., 2010). A disadvantage of these measures is again that the number of trials 807 

required for ROC-curves is large. Nevertheless, when distributional assumptions need to be 808 

avoided, βK and Broc appear to be the most promising approach.  809 

It should be noted that in order to control the impact of criteria on regression slopes, it is not 810 

sufficient to demonstrate that the mean primary task criterion and the mean rating criteria are 811 

the same between two conditions. The reason is that the effects of criteria on GLM slopes 812 

often follow non-linear trends. Thus, when the variance of criteria is greater in one condition, 813 

the effect of the maximal and minimal criteria will not necessarily balance out. Consequently, 814 

slopes can be different between two conditions solely due to different variances of primary 815 

task criteria or rating criteria. Researchers who would like to rule out than an effect on slopes 816 

is not due to criteria should assess if the distributions of primary task criteria and rating 817 

criteria are the same between conditions.  818 

6 Conclusion 819 

Logistic regression slopes as measures of metacognitive sensitivity always depend on the 820 

primary task criterion and are independent from rating criteria according to only one specific 821 

model of metacognition, namely the independent logistic model. It is argued that researchers 822 

who want to quantify metacognitive sensitivity using logistic regression should provide 823 

evidence that the underlying model is the independent logistic model where the primary task 824 

criterion is fixed at zero. However, this will often not be feasible as number of trials required 825 

to allow accurate model selection is massive. Alternatively, they can also control the primary 826 

task criteron and rating criteria statistically or use alternative methods to measure 827 

metacognitive sensitivity.  828 
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Table 1. Parameters of the hierarchical and the independent model of metacognition  

Name Symbol Conceptual interpretation  Part of which models? 

Sensitivity d Objective discrimination ability of 

the observer between the two 

stimulus alternatives 

hierarchical and 

independent 

Primary task 

criterion 

θ Bias of the observer towards one of 

the two stimulus alternatives 

hierarchical and 

independent 

Rating criteria 

spread 

τ Degree of conservativeness of 

subjective reports 

hierarchical and 

independent 

Internal noise σ Amount of distortion during 

metacognitive read-out of sensory 

evidence 

hierarchical 

Rating 

sensitivity 

dm Ability of the second, metacognitive 

channel to discern between the two 

stimulus alternatives 

independent 

  978 
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 979 

Fig. 1. Quantifying the relationship between trial accuracy and subjective reports by logistic 980 

regression. (A): Data of a hypothetical experiment. Task accuracy in % correct is plotted 981 

separately for two categories of subjective reports, “not confident” and “confident”. (B): 982 

Same data, but accuracy transformed into logits. Logistic regression is based on fitting a 983 

linear function on such transformed data. The slope of the regression line is interpreted as 984 

metacognitive sensitivity, the intercept as criterion. 985 

  986 
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 987 

Fig. 2. The hierarchical and the independent model of metacognition. According to the 988 

hierarchical model, the rating is generated by the same evidence as the response to the 989 

primary task, but the evidence is distorted by internal noise. The task response determines 990 

which criteria are applied to select a subjective report. According to the independent model, 991 

evidence is created in parallel by two channels. The task response is selected based on the 992 

evidence selected in one of the channels. The rating response depends on whether the 993 

evidence sampled independently in the second channel confirms the response.  994 

  995 
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 996 

Fig. 3. Graphical model of the hierarchical model of metacognition. In each trial, the observer 997 

is faced with sensory evidence x, which depends on the stimulus S as well as the observers’ 998 

sensitivity to discriminate between the two stimuli d. The response R is selected based on a 999 

comparison between x and the task bias θ. In addition, the decision variable z for selecting 1000 

one out of several rating options depends on x as well as on unsystematic noise σ. The rating 1001 

C depends on the decision variable z, the response R, and the rating criterion c.  1002 

  1003 
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 1004 

Fig. 4. Generalized linear regression slopes according to the hierarchical model of 1005 

metacognition as a function of primary task criterion θ (X-Axis), internal noise σ (different 1006 

lines), distributions of evidence (different columns) and link function (different rows). The 1007 

other parameters were fixed to d = 1 and τ = 1. 1008 

  1009 
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 1010 

Fig. 5. Generalized linear regression slopes according to the hierarchical model of 1011 

metacognition as a function of rating criteria spread τ (X-Axis), internal noise σ (different 1012 

lines), distributions of evidence (different columns) and link function (different rows). The 1013 

other parameters were fixed: d = 1, θ = 0. 1014 

  1015 
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 1016 

Fig. 6. Graphical model representing the dual evidence model of metacognition. Each trial, 1017 

the observer is faced with sensory evidence x, which depends on the stimulus S as well as the 1018 

observers’ sensitivity to discriminate between the two stimuli d. The response R is selected 1019 

based on a comparison between x and the task bias θ. In contrast to the single evidence 1020 

model, the decision variable y for selecting one out of the several rating options depends on 1021 

the stimulus S as well as on the metacognitive access parameter dm. The rating C depends on 1022 

the decision variable y, the response R, and the rating criterion c.  1023 

  1024 
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 1025 

Fig. 7. Generalized linear regression slopes according to the independent model of 1026 

metacognition as a function of primary task criterion θ (X-Axis), rating sensitivity dm 1027 

(different lines), distributions of evidence (different columns) and link function (different 1028 

rows). The other parameters were fixed: d = 1, τ = 1. 1029 

  1030 
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 1031 

Fig. 8. Generalized linear regression according to the independent model of metacognition as 1032 

a function of rating criteria spread τ (X-Axis), rating sensitivity dm (different lines), 1033 

distributions of evidence (different columns) and link function (different rows). The other 1034 

parameters were fixed: d = 1, θ = 0. 1035 

  1036 
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 1037 

Fig. 9. Joint probability of primary task accuracy (symbols) and confidence bins (on the X-1038 

Axis) as a function of contrast levels (separate columns). Different rows indicate the 1039 

prediction of the two best performing models, the hierarchical logistic model without task 1040 

bias (upper row) and the independent logistic model with task bias (lower row).  1041 

  1042 
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 1043 

Fig. 10. Accuracy of model recovery as a function of model feature (model: hierarchical vs. 1044 

independent, bias: θ free vs. fixed, distribution: logistic vs. Gaussian; in different columns), 1045 

the true generative model (different symbols), number of simulated trials (X-Axis) as well as 1046 

the goodness-of-fit measure (AICc vs BIC).  1047 

 1048 

  1049 
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9 Appendix A 1050 

According to SDT theory, when participants are instructed to indicate which out of two 1051 

possible alternative stimuli was presented, their perceptual systems provides sensory 1052 

evidence, with is randomly sampled out of a distribution depending on the stimulus in the 1053 

current trial. This distribution f and the corresponding cumulative density function F can be 1054 

the normal distribution or the logistic distribution, which we both parametrize here by mean 1055 

and standard deviation. When 𝑆 = 1, then  1056 

𝑥⁡~⁡𝑓𝑑
2
,1

 (A1) 

and correspondingly, when 𝑆 = 0, then  1057 

𝑥⁡~⁡𝑓
−
𝑑
2
,1

 (A2) 

In the hierarchical model, the decision variable z evaluated when selecting a subjective report 1058 

depends on x overlaid by additive noise. Consequently, z will be distributed with a mean of x 1059 

and a standard deviation of σ: 1060 

𝑧⁡~⁡𝑓𝑥,𝜎 (A3) 

Participants are assumed to report confidence about a response 𝑅 = 1 when 𝑧 > ⁡ 𝑐1, and 1061 

about a response 𝑅 = 0 when 𝑧 < ⁡ 𝑐0. The probability of giving a correct response and being 1062 

correct given 𝑆 = 1 can be computed as: 1063 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1|𝑆 = 1) ⁡= 𝑃(𝑥 > ⁡𝜃|𝑆) × 𝑃(z > 𝑐1|𝑥 > 𝜃, 𝑆 = 1) (A4) 

= ∫ 𝑃

∞

𝜃

(𝑥) × ⁡𝑃(z > 𝑐1|𝑥) 𝑑𝑥 

(A5) 

⁡= ∫ 𝑓𝑑
2
,1
(𝑥) ×⁡(1 −⁡𝐹𝑥,𝜎(𝑐1)) 𝑑𝑥

∞

𝜃

 

(A6) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 0), 𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 1), 𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 0), 𝑃(𝑇 = 0⁡ ∧1064 

𝐶 = 1|𝑆 = 1), 𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 0), 𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 1), and 𝑃(𝑇 = 1⁡ ∧ 𝐶 =1065 

1|𝑆 = 0) are computed analogously:  1066 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 0) ⁡= ∫ 𝑓
−
𝑑
2
,1
(𝑥) × 𝐹𝑥,𝜎(𝑐1)⁡𝑑𝑥

∞

𝜃

 

(A7) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 1) = ∫𝑓𝑑
2
,1
(𝑥) × (1 −⁡𝐹𝑥,𝜎(𝑐0))⁡𝑑𝑥

θ

−∞

 

(A8) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 0) ⁡= ∫ 𝑓
−
𝑑
2
,1
(𝑥) × (1 −⁡𝐹𝑥,𝜎(𝑐1))⁡𝑑𝑥

∞

𝜃

 

(A9) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 1) = ∫𝑓𝑑
2
,1
(𝑥) × 𝐹𝑥,𝜎(𝑐0)𝑑𝑥

θ

−∞

 

(A10) 



Logistic regression and metacognition 37 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 0) =⁡ ∫𝑓
−
𝑑
2
,1
(𝑥) × (1 −⁡𝐹𝑥,𝜎(𝑐0)) 𝑑𝑥

θ

−∞

 

(A11) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 1) = ∫ 𝑓𝑑
2
,1
(𝑥) × 𝐹𝑥,𝜎(𝑐1)⁡𝑑𝑥

∞

𝜃

 

(A12) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1|𝑆 = 0) = ∫𝑓
−
𝑑
2
,1
(𝑥) × 𝐹𝑥,𝜎(𝑐0)⁡𝑑𝑥

θ

−∞

 

(A13) 

For simplicity, we assume that ⁡𝑐1 − 𝜃 = ⁡𝜃 − 𝑐0 = 𝜏, leaving only one parameter of rating 1067 

criteria τ, which represents the conservativeness of rating criteria.  1068 

Eq. (A6) – (A12) can be used to compute the probability of being correct given a subjective 1069 

report of 𝐶 = 0 and 𝐶 = 1, respectively.  1070 

𝑃(𝑇 = 1|𝐶 = 0) = 
𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0)

𝑃(𝐶 = 0)
 

(A14) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0) = 

 

1

2
× (𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 0)

+ ⁡𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 1)) 

(A15) 

𝑃(𝐶 = 0) = 

 

 

1

2
× (𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 0)

+ ⁡𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 1)
+ 𝑃⁡(𝑇 = 0⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 0) ⁡

+ ⁡𝑃⁡(𝑇 = 0⁡ ∧ 𝐶 = 0⁡|⁡𝑆 = 1)) 

(A16) 

𝑃(𝑇 = 1|𝐶 = 1) = 
𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1)

𝑃(𝐶 = 1)
 

(A17) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1) = 

 

1

2
× (𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 0)

+ ⁡𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 1)) 

(A18) 

𝑃(𝐶 = 1) = 

 

 

1

2
× (𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 0)

+ 𝑃⁡(𝑇 = 1⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 1)
+ 𝑃⁡(𝑇 = 0⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 0) ⁡

+ 𝑃⁡(𝑇 = 0⁡ ∧ 𝐶 = 1⁡|⁡𝑆 = 1)) 

(A19) 
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10 Appendix B 1073 

According to the independent model, participants select the response R based on a 1074 

comparison between the sample of sensory evidence x and the primary task criterion θ, just as 1075 

in the standard SDT model. However, subjective reports are assumed to be based on a second 1076 

independent sample of sensory evidence y. The distribution f and the corresponding 1077 

cumulative distribution function F are assumed to be the same as those from which x is 1078 

sampled, except for the mean, which is described by the metacognitive access parameter 1079 

𝑑𝑚.⁡When 𝑆 = 1, then  1080 

𝑦⁡~⁡𝑓1
2
𝑑𝑚,1

 (B1) 

and correspondingly, when 𝑆 = 0, then  1081 

𝑦⁡~⁡𝑓
−
1
2
𝑑𝑚,1

 (B2) 

Participants are assumed to report confidence about a response 𝑅 = 1 when 𝑦 >⁡ 𝑐1, and 1082 

about a response 𝑅 = 0 when 𝑦 < ⁡𝑐0. The probability of giving a correct response and being 1083 

correct given 𝑆 = 1 in the dual evidence model is obtained by: 1084 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1|𝑆 = 1) ⁡= 𝑃(𝑥 > ⁡𝜃|𝑆) × 𝑃(y > 𝑐1|⁡𝑆 = 1) (B4) 

= (1 −⁡𝐹𝑑
2
,1
(𝜃)) × (1 −⁡𝐹1

2
𝑑𝑚,1

(𝑐1)) 
(B5) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 0), 𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 1), 𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 0), 𝑃(𝑇 = 0⁡ ∧1085 

𝐶 = 1|𝑆 = 1), 𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 0), 𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 1), and 𝑃(𝑇 = 1⁡ ∧ 𝐶 =1086 

1|𝑆 = 0) are computed analogously:  1087 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 0) ⁡= (1 −⁡𝐹
−
𝑑
2
,1
(𝜃)) × 𝐹

−
1
2
𝑑𝑚,1

(𝑐1) 
(B6) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 0|𝑆 = 1) = 𝐹𝑑
2
,1
(𝜃) × (1 −⁡𝐹1

2
𝑑𝑚,1

(𝑐0)) 
(B7) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 0) ⁡= (1 −⁡𝐹
−
𝑑
2
,1
(𝜃)) × (1 −⁡𝐹

−
1
2
𝑑𝑚,1

(𝑐1)) 
(B8) 

𝑃(𝑇 = 0⁡ ∧ 𝐶 = 1|𝑆 = 1) = 𝐹𝑑
2
,1
(𝜃) × 𝐹1

2
𝑑𝑚,1

(𝑐0) (B9) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 0) =⁡ 𝐹
−
1
2
𝑑𝑚,1

(𝜃) × (1 −⁡𝐹
−
1
2
𝑑𝑚,1

(𝑐0)) 
(B10) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 0|𝑆 = 1) = (1 −⁡𝐹1
2
𝑑,1
(𝜃)) ×⁡𝐹1

2
𝑑𝑚,1

(𝑐1) 
(B11) 

𝑃(𝑇 = 1⁡ ∧ 𝐶 = 1|𝑆 = 0) = 𝐹
−
1
2
𝑑𝑚,1

(𝜃) ⁡×⁡𝐹
−
1
2
𝑑𝑚,1

(𝑐0) (B12) 
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 1114 

Figure S1. Generalized linear regression intercepts according to the hierarchical model of 1115 

metacognition as a function of primary task criterion θ (X-Axis), internal noise σ (different 1116 

lines), distributions of evidence (different columns) and link function (different rows). The 1117 

other parameters were fixed: d = 1, τ = 1. 1118 

1119 
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 1120 

Figure S2. Generalized linear regression intercepts according to the hierarchical model of 1121 

metacognition as a function of rating criteria spread τ (X-Axis), internal noise σ (different 1122 

lines), distributions of evidence (different columns) and link function (different rows). The 1123 

other parameters were fixed: d = 1, θ = 0. 1124 

  1125 



Logistic regression and metacognition 42 

 1126 

Figure S3. Generalized linear regression intercept according to the independent model of 1127 

metacognition as a function of primary task criterion θ (X-Axis), rating sensitivity dm 1128 

(different lines), distributions of evidence (different columns) and link function (different 1129 

rows). The other parameters were fixed: d = 1, τ = 1. 1130 
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 1133 

Figure S4. Generalized linear regression intercept according to the independent model of 1134 

metacognition as a function of rating criteria spread τ (X-Axis),, rating sensitivity dm 1135 

(different lines), distributions of evidence (different columns) and link function (different 1136 

rows). The other parameters were fixed: d = 1, θ = 0 1137 

 1138 


