Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Internet of Things Business Model Innovation and the Stage-Gate Process: An Exploratory Analysis

Titelangaben

Verfügbarkeit überprüfen

Tesch, Jan F. ; Brillinger, Anne-Sophie ; Bilgeri, Dominik:
Internet of Things Business Model Innovation and the Stage-Gate Process: An Exploratory Analysis.
In: International journal of innovation management. 21 (2017) 5: 1740002. - 19 S.
ISSN 1363-9196 ; 1757-5877

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1142/S1363919617400023

Kurzfassung/Abstract

Large manufacturing companies will in future be continuously challenged to develop and implement new IoT-related business models. Existing research offers interesting insights on high-level stages of business model innovation (BMI) processes in general. However, only little is known about the presence of main gates in BMI processes and even less about the underlying decision criteria applied at these gates. To shed more light on this research field, 27 expert interviews with employees from eight companies across the IoT ecosystem were conducted. The expert interviews reveal that, despite the increasing popularity of (radically) new innovation approaches, two main decision points can be identified across BMI processes. These findings are a first explorative step towards a better understanding of IoT adoption and provide a starting point for interesting future research avenues.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Organisation und Personal
DOI / URN / ID:10.1142/S1363919617400023
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:World Scientific Publ.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:20521
Eingestellt am: 20. Sep 2017 14:58
Letzte Änderung: 31. Dez 2021 22:12
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/20521/
AnalyticsGoogle Scholar