Titelangaben
Hänsel, Phoebe ; Schindewolf, Marcus ; Eltner, Anette ; Kaiser, Andreas ; Schmidt, Jürgen:
Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry.
In: Hydrology. 3 (November 2016) 38.
- S. 1-16.
ISSN 2306-5338
Volltext
|
Text (PDF)
Veröffentlichungsstatus: Eingereichte Version Download (922kB) | Vorschau |
|
Link zum Volltext (externe URL): http://www.mdpi.com/2306-5338/3/4/38 |
Kurzfassung/Abstract
The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM) photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm), terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs) for the pre-and post-event (resolution 1 × 1 mm). By multi-temporal change detection, the digital elevation model of difference (DoD) and an averaged soil loss (in mm) is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP) approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | rainfall simulations; SfM photogrammetry; soil erosion; soil loss; multi-temporal change detection; splash erosion; soil compaction; tillage; agricultural landscapes |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Geographie > Fachgebiet Bodengeographie und Bodenerosion |
Peer-Review-Journal: | Ja |
Verlag: | MDPI |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 19205 |
Letzte Änderung: 11. Nov 2021 23:29
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/19205/