Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes

Titelangaben

Verfügbarkeit überprüfen

Neugirg, Fabian ; Kaiser, Andreas ; Huber, Alena ; Heckmann, Tobias ; Schindewolf, Marcus ; Schmidt, Jürgen ; Becht, Michael ; Haas, Florian:
Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes.
In: Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution. 142 (April 2016). - S. 269-280.
ISSN 0341-8162 ; 1872-6887

Kurzfassung/Abstract

Multi-temporal data collection represents a useful tool to investigate changes by geomorphological processes. Unvegetated steep slopes often show high levels of geomorphological activity, and their seasonal behaviour is challenging to understand and predict. Our work presents monitoring of steep slopes in two alpine river catchments (Arzbach Valley and Lainbach Valley, Germany) and on a Mediterranean mining waste dump (RioMarina, Italy) using terrestrial laser scanning and a statistical modelling approach to better comprehend possible regularities in slope dynamics. Scans of all three slopes carried out repeatedly were analysed in terms of erosion and deposition rates and their distribution across the slope. The statistical model showed large differences between the three study areas, but promising agreements between modelled soil loss and measurements could be achieved within each catchment.

Weitere Angaben

Publikationsform:Artikel
Institutionen der Universität:Mathematisch-Geographische Fakultät > Geographie > Lehrstuhl für Physische Geographie
Weitere URLs:
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:17639
Eingestellt am: 12. Apr 2016 13:54
Letzte Änderung: 20. Jun 2016 10:01
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/17639/
AnalyticsGoogle Scholar