Titelangaben
Nieß, Markus:
Universal approximants of the Riemann zeta-function.
In: Computational methods and function theory. 9 (2009) 1.
- S. 145-159.
ISSN 1617-9447 ; 2195-3724
Kurzfassung/Abstract
The Riemann zeta-function ζ(z) has the following well-known properties, cf. the excellent survey of Steuding [10]:
(i) it is holomorphic in the complex plane except for a simple pole at z = 1 with residue 1;
(ii) the symmetry relation ζ(z) = \overline{ζ(\bar z) holds for z ≠1;
(iii) the functional equation ζ(z) Γ(z/2) π{-z/2} = ζ(1 - z) Γ((1 - z)/2) π{-(1 - z)/2} holds;
(iv) it has a universality property due to Voronin [11].
The aim of this paper is to show that arbitrarily close approximations of the Riemann zeta-function which satisfy (i)–(iii) may have a different universal property. Consequently, these approximations do not satisfy the Riemann hypothesis. This extends a result due to Gauthier and Zeron [6].
Furthermore, we show that the set of all Birkhoff-universal functions satisfying (i)–(iii) is a dense G_δ-set in the set of all functions satisfying (i)–(iii).
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | universality; tangential approximation; Riemann zeta-function |
Sprache des Eintrags: | Deutsch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik |
Peer-Review-Journal: | Ja |
Verlag: | Springer |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 1661 |
Letzte Änderung: 08. Jun 2016 12:25
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/1661/