Titelangaben
Nieß, Markus:
Generic approach to multiply universal functions.
In: Complex variables and elliptic equations. 53 (2008) 9.
- S. 819-831.
ISSN 1747-6933
Kurzfassung/Abstract
Let $\{ z_n \}$ be a sequence of complex numbers. The author uses a generic approach to show the existence of universal entire functions $\varphi$ having several universal properties, i.e. for any preassigned compact set $K \subset \mathbb{C}$ with connected complement and any preassigned function $f \in C(K)$, holomorphic in the interior of $K$, there exist \par 1) a suitable sequence $\varphi(z + z_{n_k{'}})$ of additively translates,\par 2) a suitable sequence $\varphi(z_{n_k{}} \cdot z)$ of multiplicatively translates (if $0 \notin K$), and \par 3) a suitable sequence $\varphi{([|z_{n_k{'}}|])}(z)$ of derivatives \par of $\varphi$ that all converge to $f$ uniformly on $K$. By a so-called constructive approach, {\it W. Luh} [Complex Variables, Theory Appl. 31, 87--96 (1996; Zbl 0869.30022)] obtained functions of this type. In addition, the constructed functions $\varphi$ join two non-universal properties, namely having zeros at certain prescribed points of prescribed order and solving a certain interpolation problem.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | universality, approximation in the complex domain; zeros; interpolation; Baire spaces |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik |
Peer-Review-Journal: | Ja |
Verlag: | Taylor & Francis |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 1528 |
Letzte Änderung: 01. Feb 2010 15:46
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/1528/