Titelangaben
Wirsching, Günther:
On the combinatorial structure of 3n+1 predecessor sets.
In: Journal of Discrete Mathematics. 148 (1996) 1/3.
- S. 265-286.
ISSN 2090-9837 ; 2090-9845
Kurzfassung/Abstract
The 3n + 1 predecessor set P(a) of an integer a consists of all integers n whose iterates Ti(n) eventually hit a, where T is the 3n + 1 function defined by T(n) = n/2 if n is even, T(n) = (3n + 1)/2 if n is odd. This paper gives a representation of the sets P(a) by certain sets of finite integer sequences and studies their combinatorial structure. The notion of small sequences is introduced and explored in connection with the sets P(a). We also investigate an averaging and approximation heuristics based on small sequences.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen |
Peer-Review-Journal: | Ja |
Verlag: | Hindawi |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 14179 |
Letzte Änderung: 15. Mai 2014 07:15
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/14179/