Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

On the correlation between fraud and default risk

Titelangaben

Verfügbarkeit überprüfen

Mählmann, Thomas:
On the correlation between fraud and default risk.
In: Zeitschrift für Betriebswirtschaft. 80 (2010) 12. - S. 1325-1352.
ISSN 0044-2372

Kurzfassung/Abstract

Identity fraud is one of the fastest growing white-collar crimes today and a serious concern in our information-based economy. This paper studies one type of identity fraud: new account fraud, where an impostor opens lines of credit using a false identity, made-up or stolen. Relying on a unique data set of consumer bank accounts, that contains information on both, fraud and default losses, I analyze the correlation between fraud and default risk. I find that common socioeconomic/demographic account holder characteristics have opposite effects on estimated default and fraud probabilities. For example, women possess a lower fraud probability, but a higher default probability, compared tomen, and foreigners aremore likely to engage in account fraud but less likely to default than Germans. Also, the portfolio level analysis indicates that portfolio loss distributions are quite sensitive to ex ante portfolio characteristics like the share of foreigners or blue-collar workers. These findings have important implications for banks managing their consumer credit portfolios using limiting rules based on borrower characteristics, and for the adequacy of banks’ capital levels.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Identity fraud ; Default risk ; Banks ; Demographics ; Socio-economic factors
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Finanzierung und Banken
Peer-Review-Journal:Ja
Verlag:Gabler
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:11827
Eingestellt am: 28. Aug 2012 16:50
Letzte Änderung: 04. Sep 2012 19:18
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/11827/
AnalyticsGoogle Scholar